Calculus

Problem 22201

Find cc where f(c)=0f'(c)=0 and check if f(x)=ex2f(x)=e^{-x^{2}} has a local extremum at x=cx=c.

See Solution

Problem 22202

Find cc where f(c)=0f'(c)=0 for f(x)=ex2f(x)=e^{-x^{2}} and check if f(x)f(x) has a local extremum at x=cx=c.

See Solution

Problem 22203

Find where the function y=(5x6)13y=(5 x-6)^{\frac{1}{3}} is increasing, decreasing, concave up, and concave down using derivatives.

See Solution

Problem 22204

Find where the function y=(7x1)13y = (7x - 1)^{\frac{1}{3}} is concave up for xRx \in \mathbb{R}. Answer in interval notation.

See Solution

Problem 22205

Find where the function y=(2x5)13y=(2 x-5)^{\frac{1}{3}} is increasing, decreasing, concave up, and concave down using derivative tests.

See Solution

Problem 22206

Evaluate the limit: limx2cosxx2+x\lim _{x \rightarrow \infty} \frac{2-\cos x}{x^{2}+x}

See Solution

Problem 22207

Find where the function y=x+5xy=\frac{x+5}{x} is increasing, decreasing, concave up, and concave down using derivative tests.

See Solution

Problem 22208

Graph the function f(x)=x2+1f(x)=-x^{2}+1 on [1,1][-1, 1] and find its absolute maximum value.

See Solution

Problem 22209

Ein zylindrischer Wasserspeicher hat eine Höhe von 300 cm und einen Durchmesser von 60 cm. Der Wasserstand sinkt mit h(t)=154t103h^{\prime}(t)=\frac{1}{54} t-\frac{10}{3}. Nach 1,5 Stunden, wie viel Wasser ist verloren gegangen?

See Solution

Problem 22210

Determine where the function y=16xexy=16 x e^{-x} is increasing, decreasing, concave up, and concave down for x>0x>0.

See Solution

Problem 22211

Find the second derivative of f(x)=9excosxf(x) = -9 e^{x} \cos x.

See Solution

Problem 22212

For a logistic growth model, find g(N)=f(N)N=r(1NK)g(N)=\frac{f(N)}{N}=r\left(1-\frac{N}{K}\right), then plot for r=2r=2, K=8K=8. Complete parts (a) to (c).

See Solution

Problem 22213

For a logistic growth model, find g(N)=f(N)N=r(1NK)g(N)=\frac{f(N)}{N}=r\left(1-\frac{N}{K}\right), then plot for r=2r=2, K=9K=9.
(a) Plot g(N)g(N) and choose the correct answer. (b) Find g(N)g^{\prime}(N) for r=2r=2, K=9K=9 and determine where g(N)g(N) is increasing or decreasing.

See Solution

Problem 22214

Find the inflection points of f(x)=8e7x2f(x)=8 e^{-7 x^{2}} for x0x \geq 0. Provide coordinates as ordered pairs.

See Solution

Problem 22215

Find local maxima and minima, and intervals of increase/decrease for y=x312x+6,xRy=x^{3}-12x+6, x \in \mathbb{R}.

See Solution

Problem 22216

Geschwindigkeit und Beschleunigung:
a) Bestimme vˉ(t,z)\bar{v}(t, z) und drücke v(t)v(t) aus. b) Bestimme aˉ(t,z)\bar{a}(t, z) und drücke a(t)a(t) aus. c) Bei s(t)=0,5t2s(t)=0,5 \cdot t^{2}: Berechne vˉ[1,5]\bar{v}[1, 5] und v(5)v(5); zeige, dass a(t)a(t) konstant ist.

See Solution

Problem 22217

Find the derivative yy^{\prime} for y=5xcosxy=5 \sqrt{x} \cos \sqrt{x}.

See Solution

Problem 22218

For the logistic growth model, find g(N)g'(N) for r=2r=2, K=9K=9, and determine where g(N)g(N) is increasing/decreasing.

See Solution

Problem 22219

Find F(14)F'(14) given F(x)=f(g(x))F(x) = f(g(x)), g(14)=2g(14) = 2, g(14)=5g'(14) = 5, f(14)=15f'(14) = 15, and f(2)=11f'(2) = 11.

See Solution

Problem 22220

Determine if the series n=1n2(23)n2n\sum_{n=1}^{\infty} n^{2}\left(\frac{2}{3}\right)^{n^{2}-n} converges.

See Solution

Problem 22221

A balloon inflates at 100ft3/min100 \mathrm{ft}^{3}/\mathrm{min}. Find the radius increase rate when the radius is 3ft3 \mathrm{ft}.

See Solution

Problem 22222

A kite is at a height of 40 ft, moving horizontally at 3 ft/sec. Find the rate of string release when the string is 50 ft long.

See Solution

Problem 22223

A particle moves along y=x2y=x^{2} with dx/dt=3 m/sdx/dt=3 \mathrm{~m/s}. Find the rate of change of angle θ\theta when x=2 mx=2 \mathrm{~m}.

See Solution

Problem 22224

A boat is pulled to a dock with a rope. If the rope is pulled at 2ft/sec2 \mathrm{ft/sec}, how fast is the boat moving when 10ft10 \mathrm{ft} of rope is left?

See Solution

Problem 22225

Bestimme die Ableitung der Funktionen: a) f(x)=1x5f(x)=\frac{1}{x^{5}}, b) f(x)=3x4f(x)=\frac{3}{x^{4}}, c) f(x)=13x6f(x)=-\frac{1}{3 x^{6}}, d) f(x)=x4x+1x3f(x)=\frac{x^{4}-x+1}{x^{3}}.

See Solution

Problem 22226

A snowball with a diameter of 16ft16 \mathrm{ft} melts at 0.25ft3/min0.25 \mathrm{ft}^3/\mathrm{min}. Find the radius change rate when the radius is 5ft5 \mathrm{ft}.

See Solution

Problem 22227

Evaluate the series n=1(1)n2n+4\sum_{n=1}^{\infty}(-1)^{n} \frac{2}{n+4}.

See Solution

Problem 22228

Bestimmen Sie die Ableitungsfunktion f\mathrm{f}^{\prime} für die folgenden Funktionen: a) f(x)=14x42x2f(x)=\frac{1}{4} x^{4}-2 x^{2}, b) f(x)=3x2+4f(x)=-3 x^{2}+4, c) f(x)=3(x2)2+xf(x)=3(x-2)^{2}+x, d) f(x)=ax3+bx2+cx+df(x)=a x^{3}+b x^{2}+c x+d, e) f(x)=2xf(x)=2 \sqrt{x}, f) f(x)=4x+1f(x)=\frac{4}{x}+1.

See Solution

Problem 22229

Bestimmen Sie die ersten und zweiten Ableitungen von ff: a) f(x)=2ex1f(x)=2 \cdot e^{x-1}, b) f(x)=kekxf(x)=k \cdot e^{k \cdot x}, c) f(x)=exexf(x)=e^{x}-e^{-x}.

See Solution

Problem 22230

Find the critical number(s) of the function f(t)=3t343t14f(t)=3 t^{\frac{3}{4}}-3 t^{\frac{1}{4}}.

See Solution

Problem 22231

Evaluate the integral: 255xx2dx\int_{-2}^{5}\left|5 x-x^{2}\right| d x

See Solution

Problem 22232

Bestimmen Sie die Ableitungsfunktion ff^{\prime} für die folgenden Funktionen: a) f(x)=14x42x2f(x)=\frac{1}{4} x^{4}-2 x^{2}, b) f(x)=3x2+4f(x)=-3 x^{2}+4, c) f(x)=3(x2)2+xf(x)=3(x-2)^{2}+x, d) f(x)=ax3+bx2+cx+df(x)=a x^{3}+b x^{2}+c x+d, e) f(x)=2xf(x)=2 \sqrt{x}, f) f(x)=4x+1f(x)=\frac{4}{x}+1.

See Solution

Problem 22233

Berechne die Steigung des Graphen von ff an x0x_{0} für die Funktionen a) bis f).

See Solution

Problem 22234

A snowball's surface area decreases at 4 cm2/min4 \mathrm{~cm}^{2} / \mathrm{min}. Find the radius decrease rate when diameter is 39 cm39 \mathrm{~cm}. Use S=4πr2S=4 \pi r^{2}.

See Solution

Problem 22235

A cube's volume increases at 10 cm3/min\mathrm{cm}^{3}/\mathrm{min}. Find the surface area increase rate when edge length is 90cm90 \mathrm{cm}.

See Solution

Problem 22236

Evaluate the integral: 01/28dr1r2\int_{0}^{1 / 2} \frac{8 d r}{\sqrt{1-r^{2}}}

See Solution

Problem 22237

Bestimme den Grenzwert von f(x)=1x1xf(x)=\frac{1-x}{1-\sqrt{x}} für x1x \rightarrow 1 und zeige die Unstetigkeit von f(x)={xx0x2x>0f(x)=\left\{\begin{array}{cc}x & x \leq 0 \\ x-2 & x>0\end{array}\right. bei x0=0x_{0}=0.

See Solution

Problem 22238

Find the total distance traveled by a particle with velocity v(t)=2t2v(t)=2t-2 from t=0t=0 to t=5t=5.

See Solution

Problem 22239

Evaluate the integral: 16xsin(1+x3/2)dx\int \sqrt{16 x} \sin(1+x^{3/2}) \, dx

See Solution

Problem 22240

Evaluate the integral: (5xx)2dx\int\left(\frac{5-x}{x}\right)^{2} d x.

See Solution

Problem 22241

Differentiate the function f(t)=tt25f(t)=\frac{\sqrt{t}}{t^{2}-5}.

See Solution

Problem 22242

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} for the equation x5y5=8x^{5} - y^{5} = 8.

See Solution

Problem 22243

Find the derivative dydx\frac{d y}{d x} using implicit differentiation for the equation exyx6+y6=5e^{x y}-x^{6}+y^{6}=-5.

See Solution

Problem 22244

Analyze the function f(x)=2x3+3x236x10f(x)=2 x^{3}+3 x^{2}-36 x-10 for concavity, inflection points, and local extrema. Sketch the curve.

See Solution

Problem 22245

Encontre o valor positivo de aa para que a função ff seja contínua em R\mathbb{R}. Opções: (A) ln(5)\ln (5) (B) e5e^{5} (C) 5 (D) 15\frac{1}{5}.

See Solution

Problem 22246

Encontre o valor de k0k \neq 0 tal que limx0e3xexekx1=3\lim _{x \rightarrow 0} \frac{\mathrm{e}^{3 x}-\mathrm{e}^{x}}{\mathrm{e}^{k x}-1}=3. Opções: (A) 3 (B) 32\frac{3}{2} (C) 13\frac{1}{3} (D) 23\frac{2}{3}.

See Solution

Problem 22247

Bestimme f(x)f^{\prime}(x) für: a) f(x)=3x2f(x)=3 x^{2}, b) f(x)=5x3f(x)=5 x^{3}.

See Solution

Problem 22248

Find the first derivative with respect to x x for these functions: 1) ddx(x2+lnxx1) \frac{d}{dx}\left(\frac{x^{2}+\ln x}{x-1}\right) , 2) ddx(ln(x37x)) \frac{d}{dx}\left(\ln \left(x^{3}-7 x\right)\right) , 3) ddx(32x4x2) \frac{d}{dx}\left(3 \cdot 2^{x-4} \cdot x^{-2}\right) .

See Solution

Problem 22249

Untersuche die Kurvenschar fa(x)=x2(a+1)x+af_a(x) = x^2 - (a+1)x + a auf Nullstellen, Extremstellen und Flächeninhalte.

See Solution

Problem 22250

Bestimme die Punkte von f(x)=1x4f(x)=\frac{1}{x^{4}}, wo die Tangente die Steigung 4 hat.

See Solution

Problem 22251

b) For funksjonen f(x)=1ex+1f(x)=1-e^{x+1}, gjør følgende:
1. Finn nullpunktene.
2. Beskriv asymptoten og dens plassering.
3. Finn tangenten ved x=1x=-1.
4. Skisser grafen til ff.

See Solution

Problem 22252

What is the value of \600investedat8%interestcompoundedcontinuouslyafter3years?Roundtothenearestcent.Use600 invested at 8\% interest compounded continuously after 3 years? Round to the nearest cent. Use A(t)=P \cdot e^{rt}$. Options: A. \$771.14 B. \$755.83 C. \$744.00 D. \$762.73

See Solution

Problem 22253

Berechne die Ableitung von f(x)=x+1xf(x)=\frac{x+1}{\sqrt{x}} mit der Quotientenregel.

See Solution

Problem 22254

Find the slope of the tangent line to the curve x2y25xy=25x^2 - y^2 - 5xy = 25 at the point where x=2x=2.

See Solution

Problem 22255

Bestimme die Ableitung von x34x^{\frac{3}{4}}.

See Solution

Problem 22256

Find the limits: limx0f(x+1)f(1)x\lim _{x \rightarrow 0} \frac{f(x+1)-f(1)}{x} and limx466x4\lim _{x \rightarrow 4} \frac{6-6}{x-4}.

See Solution

Problem 22257

Find the derivative of the function (2x21x29)\left(\frac{2 x^{2}-1}{x^{2}-9}\right).

See Solution

Problem 22258

Find the critical points of the function y=6x318x+1y=6 x^{3}-18 x+1. Options: a) 1,11,-1 b) \bigcirc c) 010-1 d) 03,30 \sqrt{3},-\sqrt{3}.

See Solution

Problem 22259

In the Exponential Growth Model with initial quantity 600, how long for it to grow from 1000 to 1500?

See Solution

Problem 22260

Find the limit: limx0sin(x2)ln(1+x)x4\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)-\ln (1+x)}{x^{4}}.

See Solution

Problem 22261

In the Exponential Growth Model with initial quantity 600 growing to 1000 in 10 days, how long to reach 1500?

See Solution

Problem 22262

Find local extrema of f(x)=x2+x30f(x)=x^{2}+x-30 using the first derivative test. Choose the correct option.

See Solution

Problem 22263

Find the extrema of v(x)=4x33x2v(x)=4 x^{3}-3 x^{2} for 14x34-\frac{1}{4} \leq x \leq \frac{3}{4}.

See Solution

Problem 22264

Calculate the integral from 0 to 2 of e2t2e2t4t+8dt\frac{e^{2 t}-2}{e^{2 t}-4 t+8} dt.

See Solution

Problem 22265

What will your BAC be after 18 hours if it starts at 0.36g/100ml0.36 \mathrm{g} / 100 \mathrm{ml} and decreases by one third each hour?

See Solution

Problem 22266

Find the general antiderivative of (2x3)4(2 x-3)^{4}. Options: a) (2x3)55+c\frac{(2 x-3)^{5}}{5}+c b) 02(2x3)55+c0 \frac{2(2 x-3)^{5}}{5}+c c) (2x3)510+c\frac{(2 x-3)^{5}}{10}+c d) 0(2x3)52+c0 \frac{(2 x-3)^{5}}{2}+c

See Solution

Problem 22267

Find the x-coordinates of the inflection points of f(x)=112x42x2f(x)=\frac{1}{12} x^{4}-2 x^{2}. Options: a) none b) 2,2-2, 2 c) 2-2 d) 22

See Solution

Problem 22268

Find the general antiderivative of (2x3)4(2 x-3)^{4}. Options: a) (2x3)55+c\frac{(2 x-3)^{5}}{5}+c, b) 2(2x3)55+c\frac{2(2 x-3)^{5}}{5}+c, c) (2x3)510+c\frac{(2 x-3)^{5}}{10}+c, d) (2x3)52+c\frac{(2 x-3)^{5}}{2}+c.

See Solution

Problem 22269

Find the general antiderivative of sin(5x+2)\sin (5 x+2). Choose from the options provided.

See Solution

Problem 22270

Find the general antiderivative of sin(5x+2)\sin (5 x+2). Choose the correct option from the following: a) cos(5x+2)5+c\frac{\cos (5 x+2)}{5}+c b) 0cos(5x+2)+c0-\cos (5 x+2)+c c) cos(5x+2)+c\cos (5 x+2)+c d) cos(5x+2)5+c\frac{-\cos (5 x+2)}{5}+c

See Solution

Problem 22271

An artist invests \$1000 at a 2.5% annual interest rate. When will it grow to \$1200? (1 d.p.) Options: A) 8.3 B) 5.9 C) 6.5 D) 4.1 E) 7.3

See Solution

Problem 22272

Find limx3h(x)\lim _{x \rightarrow 3} h(x) where h(x)={x36x2+9x+18h(x)=\{x^{3}-6x^{2}+9x+18 if x<3x<3, 55 if x=3x=3, x39xx3\frac{x^{3}-9x}{x-3} if x>3}x>3\}.

See Solution

Problem 22273

Find the average rate of change of f(x)=1x2f(x) = \frac{1}{x-2} from x=4x = -4 to x=3x = -3. Use the formula f(x2)f(x1)x2x1\frac{f(x_2) - f(x_1)}{x_2 - x_1}.

See Solution

Problem 22274

Find the general antiderivative of 6x3+8x2x2\frac{6 x^{3}+8 x^{2}}{x^{2}}. Options: a) no antiderivative b) 3x2+8x+c3 x^{2}+8 x+c c) 0(3x42+8x33)x33+c0 \frac{\left(\frac{3 x^{4}}{2}+\frac{8 x^{3}}{3}\right)}{\frac{x^{3}}{3}}+c d) 3x28x+c3 x^{2}-8 x+c

See Solution

Problem 22275

Solve the differential equation dydx=45x\frac{d y}{d x}=4-5 x with initial condition y=5y=5 at x=0x=0. Choose the correct option.

See Solution

Problem 22276

Solve the equation d2ydx2=4x2+3x1\frac{d^{2} y}{d x^{2}}=4 x^{2}+3 x-1 for the general solution.

See Solution

Problem 22277

Solve the differential equation dydx=45x\frac{d y}{d x}=4-5 x with initial condition y=5y=5 at x=0x=0.

See Solution

Problem 22278

Find the simplified difference quotient for f(x)=3x2f(x)=\frac{3}{x^{2}} with step-size h0h \neq 0.

See Solution

Problem 22279

Find the value of aa such that the derivative of f(g(x))f(g(x)) at x=1x=1 equals 13\frac{1}{3}, where f(x)=xf(x)=\sqrt{x} and g(x)=a+x3g(x)=a+x^{3}.

See Solution

Problem 22280

Evaluate the integral: 39sinxcos2xdx\int \frac{3-9 \sin x}{\cos ^{2} x} d x

See Solution

Problem 22281

Find the value of bb such that the derivative of u(x)v(x)\frac{u(x)}{v(x)} at x=0x=0 equals 1, where u(x)=bxu(x)=b x and v(x)=exv(x)=e^{x}.

See Solution

Problem 22282

Find the limit of f(x)=sin(x2)ln(1+x)x4f(x)=\frac{\sin \left(x^{2}\right)-\ln (1+x)}{x^{4}} as xx approaches 0. What does it approach?

See Solution

Problem 22283

Evaluate the integral: (8x32csc2x)dx\int(8 \sqrt[3]{x}-2 \csc ^{2} x) dx (simplify radicals, enclose fractions in parentheses).

See Solution

Problem 22284

Find the simplified difference quotient for f(x)=3x2f(x)=\frac{3}{x^{2}} with step-size h0h \neq 0. Options: (A) (B) (C) (D) (E)

See Solution

Problem 22285

Find the value of aa such that the derivative of f(g(x))f(g(x)) at x=1x=1 equals 13\frac{1}{3}, where f(x)=xf(x)=\sqrt{x} and g(x)=a+x3g(x)=a+x^{3}.

See Solution

Problem 22286

At time t0t \geq 0, a particle has position (x(t),y(t))(x(t), y(t)) and velocity v(t)=(cos(t2),e0.5t)v(t)=\left(\cos \left(t^{2}\right), e^{0.5 t}\right). Given (3,5)(3,5) at t=1t=1, find x(2)x(2).

See Solution

Problem 22287

Find the function f(x)f(x) given that f(x)=ex+11+x2f^{\prime}(x)=e^{x}+\frac{1}{1+x^{2}} and f(1)=0f(1)=0.

See Solution

Problem 22288

Find the sum of the critical values of the function f(x)=x2ln(x)+3f(x)=x^{2} \cdot \ln (x)+3.

See Solution

Problem 22289

A car overheats at 280F280^{\circ} \mathrm{F} and cools down to 230F230^{\circ} \mathrm{F} with an outside temp of 80F80^{\circ} \mathrm{F}. If the cooling rate is r=0.0058r=0.0058, how long until you can drive again? Round to the nearest minute. You will have to wait about \square minutes.

See Solution

Problem 22290

A company can sell xx solar panels for a profit P(x)=300,000,000+2,000,000x+1000x23x3P(x)=300,000,000+2,000,000 x+1000 x^{2}-3 x^{3}. Maximize P(x)P(x). Options: (A) 5000(7+12)3\frac{5000(7+\sqrt{12})}{3}, (B) 100(5+15)2\frac{100(5+\sqrt{15})}{2}, (C) 1000(1+19)y3\frac{1000(1+\sqrt{19})}{y^{3}}, (D) 3000(2+19)8\frac{3000(2+\sqrt{19})}{8}, (E) 500(3+18)7\frac{500(3+\sqrt{18})}{7}.

See Solution

Problem 22291

Calculate the integral: (4x+2)(x2+x+1)3dx\int(4x+2)(x^{2}+x+1)^{3} \, dx

See Solution

Problem 22292

Determine local extrema of y=f(x)y=f(x) using f(x)f'(x) and f(x)f''(x) given. What does the Second Derivative Test yield?

See Solution

Problem 22293

Find the function f(x)f(x) given f(x)=ex+11+x2f^{\prime}(x)=e^{x}+\frac{1}{1+x^{2}} and f(1)=0f(1)=0.

See Solution

Problem 22294

Calculate the integral: 10cos25xdx\int 10 \cos ^{2} 5 x \, dx

See Solution

Problem 22295

Evaluate the integral: (4x+2)(x2+x+1)3dx\int(4 x+2)(x^{2}+x+1)^{3} \, dx

See Solution

Problem 22296

Sam invests \700inanaccountwithcontinuous700 in an account with continuous 15\%$ interest. What is the account balance after 8 years?

See Solution

Problem 22297

Calculate the integral from 1 to 4 of the function (3x - 5) with respect to x: 14(3x5)dx\int_{1}^{4}(3 x-5) d x.

See Solution

Problem 22298

Find the average rate of change of the function ff on the interval axca \leq x \leq c, given f(a)=bf(a)=b and f(c)=df(c)=d.

See Solution

Problem 22299

Find the integral of sin(cosx)sinx\sin (\cos x) \sin x with respect to xx: sin(cosx)sinxdx\int \sin (\cos x) \sin x \, dx.

See Solution

Problem 22300

Find the limit: limx+x1xx\lim _{x \rightarrow+\infty} \frac{\frac{\sqrt{x-1}}{x}}{x}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord