Mensuration

Problem 1

Find the length of line segment AB AB where A A and B B are intersections of 2x+3y=6 2x + 3y = 6 and x22y2xy=0 x^2 - 2y^2 - xy = 0 .

See Solution

Problem 2

Find the dimensions of a rectangle with area 21yd2 21 \mathrm{yd}^{2} and length 1yd 1 \mathrm{yd} less than twice the width.

See Solution

Problem 3

Find the area between the curves y=3x2 y=3 x^{2} , y=0 y=0 , and x=3 x=3 . Choose integration with respect to x x or y y .

See Solution

Problem 4

已知半径为1的球体,求四棱锥体积最大时的高度选项:A. 13 \frac{1}{3} B. 12 \frac{1}{2} C. 33 \frac{\sqrt{3}}{3} D. 22 \frac{\sqrt{2}}{2}

See Solution

Problem 5

Find the apparent distance from the top of a 4.20 cm benzene layer to the bottom of a 6.20 cm water layer at normal incidence.

See Solution

Problem 6

A mud house has a cone roof over a cylinder. Given dimensions, find AB A B , volume, surface area, and house choice.

See Solution

Problem 7

Find the volume of a cuboid with face areas 35 cm235 \mathrm{~cm}^{2}, 42 cm242 \mathrm{~cm}^{2}, and 14 cm214 \mathrm{~cm}^{2}.

See Solution

Problem 8

Calculate the inductance and capacitance per phase of a 40 km overhead line with copper conductors (1.5 cm diameter) in two spacings: 75 cm flat and triangular sides 70 cm, 90 cm, 110 cm.

See Solution

Problem 9

A rectangle has a length of 4 times its width and an area of 16. Find its perimeter. A. 8 B. 10 C. 20 D. 32

See Solution

Problem 10

Съществува десетоъгълна призма с периметър на основата 30 cm30 \mathrm{~cm} и околен ръб 8 cm8 \mathrm{~cm}. Намерете сбора на ръбовете в см.

See Solution

Problem 11

Una finca rectangular de 187 m de largo y 87 m de ancho necesita cercarse. ¿Cuántos rollos de 200 m se requieren y su costo total?

See Solution

Problem 12

Il perimetro di un rettangolo è 51,8 cm51,8 \mathrm{~cm} e la lunghezza è 16,4 cm16,4 \mathrm{~cm}. Qual è la larghezza? R: 9,5 cm

See Solution

Problem 13

Calcola il perimetro di un rombo con lato 10,5 cm10,5 \mathrm{~cm} e il perimetro di un parallelogramo con lati 160 cm160 \mathrm{~cm} e 13,9 dm13,9 \mathrm{~dm}.

See Solution

Problem 14

Une piscine rectangulaire de 10 m sur 15 m est entourée d'une bande de gazon de xx m. Montre que la clôture fait 50+8x50 + 8x m et l'aire des allées de gazon est 50x+4x250x + 4x^2. Calcule pour x=2x=2 m.

See Solution

Problem 15

Find the area of a rectangle with one side 12 cm12 \mathrm{~cm} and diagonal 13 cm13 \mathrm{~cm}.

See Solution

Problem 16

Points A, B, C, and D divide segment AD in the ratio 212:113:562 \frac{1}{2}: 1 \frac{1}{3}: \frac{5}{6}; AB = 30 cm. Find length of BD.

See Solution

Problem 17

Points A, B, C, and D divide segment AD in the ratio 212:113:562 \frac{1}{2}: 1 \frac{1}{3}: \frac{5}{6}. Given AB=30 cm, find BD. a. 26 cm b. 56 cm

See Solution

Problem 18

A model of an 800m tower is built at a scale of 1:40001: 4000. What is the model's height? Options: 5cm, 20cm, 200cm, 320cm.

See Solution

Problem 19

A tower is 800 m tall. If a model is built at a scale of 1:40001: 4000, what is the model's height?

See Solution

Problem 20

A model of an 800 m tower is built at a scale of 1:40001:4000. What is the model's height? Options: 5 cm, 20 cm, 200 cm, 320 cm.

See Solution

Problem 21

A cylinder has a radius of xx cm and height x+3x + 3 cm. Its surface area is 130π130 \pi cm². Find the quadratic in xx.

See Solution

Problem 22

Trova il lato di un quadrato isoperimetrico a un rettangolo di base 15 cm15 \mathrm{~cm} e altezza 24 cm24 \mathrm{~cm}. R: 19,5 cm19,5 \mathrm{~cm}. Inoltre, la somma e la differenza di due lati consecutivi di un rettangolo sono 75 cm75 \mathrm{~cm} e 17 cm17 \mathrm{~cm}.

See Solution

Problem 23

Find the area of a square (side 2) with a semi-circle on top. Options: a) 6+π6+\pi, b) 2+π2+\pi, c) 4+4π4+4\pi, d) 4+π24+\frac{\pi}{2}, e) 4+π4+\pi.

See Solution

Problem 24

Un quadrato è isoperimetrico a un rettangolo con base 15 cm15 \mathrm{~cm} e altezza 4 cm4 \mathrm{~cm}. Trova il lato del quadrato. R: 19,5 cm19,5 \mathrm{~cm}

See Solution

Problem 25

36) Trova il lato di un quadrato isoperimetrico a un rettangolo di base 15 cm15 \mathrm{~cm} e altezza 24 cm24 \mathrm{~cm}. R: 19,5 cm19,5 \mathrm{~cm} 37) Due lati consecutivi di un rettangolo hanno somma 75 cm75 \mathrm{~cm} e differenza 17 cm17 \mathrm{~cm}.

See Solution

Problem 26

Calcola il perimetro di un esagono con lati congruenti: 15 cm15 \mathrm{~cm}, 21 cm21 \mathrm{~cm} e 7 cm7 \mathrm{~cm}. R: 78 cm78 \mathrm{~cm}

See Solution

Problem 27

36) Trova il lato di un quadrato isoperimetrico a un rettangolo di base 15 cm15 \mathrm{~cm} e altezza 24 cm24 \mathrm{~cm}. R: 19,5 cm19,5 \mathrm{~cm} 37) Due lati consecutivi di un rettangolo hanno somma 75 cm75 \mathrm{~cm} e differenza 17 cm17 \mathrm{~cm}. Trova i lati. R: 46 cm,29 cm46 \mathrm{~cm}, 29 \mathrm{~cm}

See Solution

Problem 28

Правоъгьлен паралелепипед с размери a,b,ca, b, c има отношение a:b=4:3a:b=4:3 и b:c=2:5b:c=2:5. Сборът на ръбовете е 232 cm232 \mathrm{~cm}. Какъв е обемът му?

See Solution

Problem 29

Calculate the area of a regular 7-sided polygon with an apothem of 8 m and side length of 7.7 m. Round to the nearest tenth. [?] m2\mathrm{m}^{2}

See Solution

Problem 30

Tasha's drawing shows piers 12 cm12 \mathrm{~cm} apart. If 2 cm2 \mathrm{~cm} = 0.5mi0.5 \mathrm{mi}, find the actual distance between the piers.

See Solution

Problem 31

Find the perimeter of a rectangle with length 6 feet and width 3 feet. Use the formula P=2(l+w)P = 2(l + w).

See Solution

Problem 32

Emily's barn drawing is 15 in. wide and 18 in. long. If the actual width is 10 ft, find the actual length.

See Solution

Problem 33

Find the dimensions of a rectangle scaled by 23\frac{2}{3} if the original is 12 inches long and 8 inches wide.

See Solution

Problem 34

Tentukan tinggi tiang silinder dengan isi padu 404 cm3404 \mathrm{~cm}^{3} dan jejari 2 cm2 \mathrm{~cm}.

See Solution

Problem 35

Determine the length LL and width WW (where WLW \leq L) of a rectangle with perimeter 28 that maximizes area, then find that area.

See Solution

Problem 36

In parallelogram ABCDA B C D, with AB=BE=ECA B = B E = E C and area of triangle BECB E C as 8, find the perimeter of polygon ABECDA B E C D.

See Solution

Problem 37

A square frame has an outer perimeter of 28 and an inner perimeter of 20. Find the shortest distance between two vertices.

See Solution

Problem 38

Calculate the area of a regular 7-sided polygon with an apothem of 8 m and side length of 7.7 m. Round to the nearest tenth.  [?] m2\text { [?] } \mathrm{m}^{2}

See Solution

Problem 39

Compare the area of Priya's new figure (after cutting and attaching 4 squares) with the original square.

See Solution

Problem 40

Find the width of a rectangular playground with area 78 m² and length 13 m. Use the formula A=l×wA = l \times w.

See Solution

Problem 41

Una empresa fabrica peceras. Si el ancho es xx, ¿cuál es la expresión para el volumen en función de xx?

See Solution

Problem 42

Calcula el volumen de una semiesfera con diámetro de 24 metros.

See Solution

Problem 43

Une piscine rectangulaire de 10m x 15m a une bande de gazon de xx m. Montre que la clôture mesure 50+8x50 + 8x.

See Solution

Problem 44

Find the actual area of a closet with dimensions 4.4 cm4.4 \mathrm{~cm} by 3.2 cm3.2 \mathrm{~cm} at a scale of 2 cm2 \mathrm{~cm} to 1 m1 \mathrm{~m}.

See Solution

Problem 45

Find the dimensions of a scaled exercise mat if the actual area is 144 m2144 \mathrm{~m}^{2} and the scale is 8 m8 \mathrm{~m} for every 2in2 \mathrm{in}.

See Solution

Problem 46

Francesca's mural is 12ft12 \mathrm{ft} high and 135ft135 \mathrm{ft} long. What are the dimensions of her scale drawing using 3 cm3 \mathrm{~cm} for every 4ft4 \mathrm{ft}?

See Solution

Problem 47

A 12.875m12.875-\mathrm{m} fence is one side of a rectangle. With 45.625 m45.625 \mathrm{~m} left for the other sides, find the longer dimension.

See Solution

Problem 48

Find the area of parallelogram ABCDABCD with sides 6 and 4 units and an angle of 125 degrees. Compare it to 24.

See Solution

Problem 49

Francesca's mural is 12ft12 \mathrm{ft} high and 135ft135 \mathrm{ft} long. With a scale of 3cm3 \mathrm{cm} for 4ft4 \mathrm{ft}, find the drawing's dimensions.

See Solution

Problem 50

A scale drawing shows a closet measuring 4.4 cm4.4 \mathrm{~cm} by 3.2 cm3.2 \mathrm{~cm}. With a scale of 2 cm2 \mathrm{~cm} to 1 m1 \mathrm{~m}, find the actual area.

See Solution

Problem 51

A rectangle has dimensions 10 cm10 \mathrm{~cm} by 8 cm8 \mathrm{~cm}. If length increases by 60%60\%, find width's percentage change if: (a) perimeter stays the same. (b) area stays the same.

See Solution

Problem 52

Calcula cuántos rollos de material necesita comprar para insonorizar 4 paredes de 2 m x 2.2 m, considerando una puerta de 0.8 m.

See Solution

Problem 53

Calcula el volumen de un archivador de 150 cm150 \mathrm{~cm} alto, 55 cm55 \mathrm{~cm} ancho y 60 cm60 \mathrm{~cm} fondo en m³.

See Solution

Problem 54

Find the radius of a sphere with volume 4.5 m34.5 \mathrm{~m}^{3} using the formula V=43πr3V=\frac{4}{3} \pi r^{3}.

See Solution

Problem 55

Find the length LL and width WW (with WLW \leq L) of a rectangle with perimeter 28 that maximizes area. What is the max area?

See Solution

Problem 56

Calculate the area of quadrilateral ABCDABCD with vertices A(0,2)A(0,2), B(4,7)B(4,7), C(8,2)C(8,2), D(4,3)D(4,3).

See Solution

Problem 57

Calculate the area of a parallelogram with base 6 inches and height 3 inches. Use the formula: Area = base × height = 6×36 \times 3.

See Solution

Problem 58

Find the area of a sector with radius 2 cm and central angle 90°, where OE = OF.

See Solution

Problem 59

Yair added sawdust to a toilet. The seat is 0.4 m0.4 \mathrm{~m} above ground and the pit bottom is 1.5 m1.5 \mathrm{~m} below.
1. Find the distance from the toilet seat to the pit bottom in m\mathrm{m}.
2. Calculate the height change of the sawdust from the seat to the pit bottom.

See Solution

Problem 60

Find the distance between Natasha's beagle at 254\frac{25}{4} meters and her labrador at 5120\frac{51}{20} meters.

See Solution

Problem 61

A tank is 4.5 m long, 3.5 m wide, and 2.8 m deep. Water is pumped at 6500 L/h. After 3 hours, what is the water level from the top?

See Solution

Problem 62

What is the total cost of a rectangular plot measuring 1200 m×900 m1200 \mathrm{~m} \times 900 \mathrm{~m} if 1 hectare costs R5 200,00?

See Solution

Problem 63

Find the length of a side of square ABCD if its area is 89 cm². What is xundefined\widehat{x}?

See Solution

Problem 64

Calculate the volume of a hole measuring 11.0 m×14.5 m×4.0 m11.0 \mathrm{~m} \times 14.5 \mathrm{~m} \times 4.0 \mathrm{~m} and a truck bed 4 m×3 m×2.0 m4 \mathrm{~m} \times 3 \mathrm{~m} \times 2.0 \mathrm{~m}. How many trips needed?

See Solution

Problem 65

Find the area of the tiled walkway around a 24ft×12ft24 \mathrm{ft} \times 12 \mathrm{ft} pool with a 2ft2 \mathrm{ft} wide border.

See Solution

Problem 66

Find the map length of a road that is 3 km3 \mathrm{~km} long, with a scale of 1:1200001: 120000. Answer in cm\mathrm{cm}.

See Solution

Problem 67

Find the range of the actual area of a rectangle with width 3.0 cm3.0 \mathrm{~cm} and length 8.0 cm8.0 \mathrm{~cm}.

See Solution

Problem 68

Find the maximum absolute error for the measurements of an 8-sided polygon with given sides: GF=4cmGF = 4cm, FE=3cmFE = 3cm, DC=6cmDC = 6cm, CB=8cmCB = 8cm.

See Solution

Problem 69

In an 8-sided polygon ABCDEFGHABCDEFGH with rectangles ABCDABCD and EFGHEFGH, find:
(a) max error in cm. (b) min area of rectangle ABCDABCD. (c) min area of rectangle EFGHEFGH. (d) range of actual area xx in cm².

See Solution

Problem 70

Find the volume between a cone and a cube, with the cone's base inscribed in the cube's face. Use edge length ss.

See Solution

Problem 71

Find the perimeter of a rectangle with area 100 m2100 \mathrm{~m}^{2} as a function of one side's length.

See Solution

Problem 72

Find the length of the latus rectum and the parabolic arc for the parabola given by x2=4ayx^{2}=4 a y.

See Solution

Problem 73

Find the length and width of a rectangular garden with area 96 m296 \mathrm{~m}^{2} and perimeter 40 m40 \mathrm{~m}.

See Solution

Problem 74

Find the equation of line OAO A, show AA is (16,8)(16,-8), and calculate area of trapezium OABCO A B C.

See Solution

Problem 75

Find the maximum load P P for an 8m beam with I section dimensions and stress limit of 340 MPa.

See Solution

Problem 76

Find the volume of a donut box with length 9 in, width 4 in, and height 3 in: V=l×w×hV = l \times w \times h.

See Solution

Problem 77

Find the volume of a donut box with dimensions: length = 9 in, width = 4 in, height = 3 in. Use V=l×w×hV = l \times w \times h.

See Solution

Problem 78

Find the volume of a rectangular prism with a base area of 20 unit cubes and 4 layers high.

See Solution

Problem 79

What is the volume of a rectangular prism with a base area of 20 unit cubes and a height of 4 layers?

See Solution

Problem 80

Penelope's Pizzeria has a pizza box volume of 12 cubic units. Which dimensions are possible? A. 1×12×11 \times 12 \times 1 B. 3×2×23 \times 2 \times 2 C. 6×3×16 \times 3 \times 1

See Solution

Problem 81

What is the volume of a rectangular prism with a base area of 20 unit cubes and a height of 4 layers?

See Solution

Problem 82

Astiton compares two peanut boxes: Box 1 (base 14 in², height 7 in) and Box 2 (105 in³). Which has more volume?

See Solution

Problem 83

Astiton wants to buy the box of peanuts with the most volume. Compare Box 1 (14×714 \times 7) and Box 2 (105105). Which is larger?

See Solution

Problem 84

Ashton needs to choose between two peanut boxes. Box \#1 has a volume of 14×7=9814 \times 7 = 98 cubic inches. Box \#2 is 105 cubic inches. Which box is larger?

See Solution

Problem 85

Locate points of rectangle ABCDABCD at A(2,2),B(2,1),C(1,1),D(1,2)A(2,2), B(2,-1), C(-1,-1), D(-1,2), then find its perimeter and area.

See Solution

Problem 86

Find the perimeter of a pentagon with sides 14, 12, 10, 8, and 6 inches using the expression P=14+12+10+8+6P = 14 + 12 + 10 + 8 + 6.

See Solution

Problem 87

César siembra un terreno cuadrado de 6 m en 20 min. ¿Cuánto tardará en sembrar uno de 12 m de lado?

See Solution

Problem 88

Punctele coliniare A,BA, B și CC au BC=2ACB C=2 A C. Dacă MM și NN sunt mijloacele segmentelor ACA C și CBC B cu MN=9 cmM N=9 \mathrm{~cm}, găsește lungimea lui ACA C: a) 3 cm3 \mathrm{~cm}; b) 6 cm6 \mathrm{~cm}; c) 18 cm18 \mathrm{~cm}.

See Solution

Problem 89

Hitung luas bilik dalam cm2\mathrm{cm}^{2} jika 250 jubin berukuran 6.096×102 mm6.096 \times 10^{2} \mathrm{~mm} dan 3.048×102 mm3.048 \times 10^{2} \mathrm{~mm}.

See Solution

Problem 90

Find a formula for the perimeter of a rectangle with area 100 m2100 \mathrm{~m}^{2} as a function of one side's length.

See Solution

Problem 91

Find the volume of a right cone with a base diameter of 9.5 cm9.5 \mathrm{~cm} and a height of 16 cm16 \mathrm{~cm}.

See Solution

Problem 92

In a pipeline with a 30 cm diameter and water speed of 1.5 m/s, find the speed at a 1 cm diameter.

See Solution

Problem 93

The office floor plan is at a scale of 1:201:20. Find the actual length for 96 cm96 \mathrm{~cm} and pantry area in cm2\mathrm{cm}^{2} for 4.8 m24.8 \mathrm{~m}^{2}.

See Solution

Problem 94

In square ABCDABCD, area equals the sum of areas of triangles ABEABE and DCEDCE. If AB=6AB=6, find CECE. (a) 5 (b) 6 (c) 2 (d) 3 (e) 4

See Solution

Problem 95

In square ABCDABCD with AB=6AB=6, the area equals the sum of triangles ABEABE and DCEDCE. Find length of CECE.

See Solution

Problem 96

Find the area xx of hexagon ABCDEFABCDEF with rectangle ABCDABCD where AB=9AB=9 cm, BC=16BC=16 cm, AE=8AE=8 cm, and FG=3FG=3 cm.

See Solution

Problem 97

Berechne Volumen und Oberfläche einer Pyramide mit Grundfläche a=15 cm,b=12 cm,h=20 cma=15 \mathrm{~cm}, b=12 \mathrm{~cm}, h=20 \mathrm{~cm}.

See Solution

Problem 98

Clarence's garden is 20 ft by 40 ft. How many 4-yard fencing packages do they need for the perimeter?

See Solution

Problem 99

Berechne das Volumen und die Oberfläche eines Quaders mit a=4 cm,b=6 cm,c=12 cma=4 \mathrm{~cm}, b=6 \mathrm{~cm}, c=12 \mathrm{~cm}.

See Solution

Problem 100

Calculate the volume and surface area of a cube with side length 3 units. Use V=s3V = s^3 and A=6s2A = 6s^2.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord