Calculus

Problem 2701

Gegeben ist die Funktion f(x)=x22f(x)=x^{2}-2. Bestimme die Tangente in P(0,5)P(0,5), die Punkte mit Steigung 4 und 0 sowie parallele Tangenten zu g:y=2x+3g: y=-2x+3.

See Solution

Problem 2702

Calculate the limit: limx+2x232x2+5\lim _{x \rightarrow+\infty} \sqrt{2 x^{2}-3}-\sqrt{2 x^{2}+5}.

See Solution

Problem 2703

Minimize the perimeter of a rectangle with area 400m2400 \, m^2. Perimeter is U=2a+bU = 2|a+b|, area A=abA = ab.

See Solution

Problem 2704

Calculate the limit: limx0+3x4x2ln(x)\lim _{x \rightarrow 0^{+}} \frac{3 x-4}{x^{2}}-\ln (x).

See Solution

Problem 2705

Ist die Aussage wahr oder falsch? Begründen Sie. a) f(x)=x3x2f(x)=x^{3} \cdot x^{2}, ist f(x)=3x22xf^{\prime}(x)=3 x^{2} \cdot 2 x? b) Hat ff^{\prime} immer weniger Schnittpunkte mit der xx-Achse als ff? c) Können zwei verschiedene Funktionen dieselbe Ableitungsfunktion haben?

See Solution

Problem 2706

Calculate the indefinite integral of 2x343x2+22x^3 - \frac{4}{3}x^2 + 2.

See Solution

Problem 2707

Find the limit: limxx+x2+3\lim _{x \rightarrow-\infty} x+\sqrt{x^{2}+3}.

See Solution

Problem 2708

Calculate the integral of 12(4x23)-12(4x^{2} - 3).

See Solution

Problem 2709

Calculate the integral of the function f(x)=4x42tx2+txf(x) = 4x^4 - 2tx^2 + tx.

See Solution

Problem 2710

Določi aa in bb tako, da velja: limx0a+bx42x=1\lim _{x \rightarrow 0} \frac{\sqrt{a+b x}-4}{2 x}=1.

See Solution

Problem 2711

Find the indefinite integral of f(x)=z2x3zx2f(x)=z^{2} x^{3}-z x^{2}.

See Solution

Problem 2712

Find the area between f(x)=xf(x) = \sqrt{x}, g(x)=1g(x) = 1, x=0x=0, and x=4x=4.

See Solution

Problem 2713

Bestimme die Wendepunkte der Funktion f(x)=13x443x3+9f(x)=\frac{1}{3} x^{4}-\frac{4}{3} x^{3}+9.

See Solution

Problem 2714

Calculate the integral of the function f(x)=12(2x3)2f(x)=-12(2x-3)^{2}.

See Solution

Problem 2715

Find the limit of f(x)=(3+x)3(3x)3f(x)=\frac{(3+x)^{3}}{(3-x)^{3}} as xx approaches \infty and -\infty.

See Solution

Problem 2716

Berechne die Flächeninhaltsfunktionen A0(x)A_{0}(x) für die Funktionen f(x)=xf(x)=x und f(x)=2xf(x)=2x. Vergleiche die Ergebnisse.

See Solution

Problem 2717

Find the difference in earnings of a \2,600investmentover5yearsat2,600 investment over 5 years at 2.3\%$ continuously vs. semi-annually.

See Solution

Problem 2718

Wo hat ff die Steigung mm? a) f(x)=2x,m=0,5f(x)=\frac{2}{x}, m=0,5 b) f(x)=2x,m=0,5f(x)=2 \sqrt{x}, m=0,5 c) f(x)=x1x,m=3f(x)=x-\frac{1}{x}, m=-3

See Solution

Problem 2719

How much more does \$2,600 earn in 5 years at 2.3\% continuous compounding vs. semiannual compounding?

See Solution

Problem 2720

Find the limit of f(x)=3x13x1f(x)=\frac{3^{x-1}}{3^{x}-1} as xx \to \infty.

See Solution

Problem 2721

Find the limit of f(x)=12x+1f(x) = \frac{1}{2^{x}+1} as xx \to -\infty.

See Solution

Problem 2722

Berechnen Sie die Ableitungsfunktion ff^{\prime} für: a) f(x)=5x2f(x)=\frac{5}{x^{2}}, b) f(x)=x3f(x)=\sqrt{x^{3}}, c) f(x)=3x2f(x)=3 x^{-2}, d) f(x)=2x4f(x)=2 \cdot \sqrt[4]{x}, e) f(x)=2x2+xf(x)=\frac{2}{x^{2}}+\sqrt{x}, f) f(x)=x2+4xf(x)=x^{2}+\frac{4}{x}.

See Solution

Problem 2723

Determine the limits of 12x+1\frac{1}{2^{x}+1} as xx approaches -\infty and ++\infty.

See Solution

Problem 2724

Find the first derivative of the function RTVmbaVm2\frac{R T}{V_{m}-b}-\frac{a}{V_{m}^{2}}.

See Solution

Problem 2725

Find the limit of the function f(x)=5x3+7x2x5+3f(x)=\frac{5 x^{3}+7 x}{2 x^{5}+3} as x±x \to \pm \infty.

See Solution

Problem 2726

Ein Skateboardfahrer fährt über einen Wall, modelliert durch f(x)=e0,1x20,2f(x)=e^{-0,1 x^{2}}-0,2.
a) Bestimme die maximale Höhe hh und die Breite des Walls. b) Finde die Stellen mit der größten Steigung. c) Berechne das Volumen des Walls bei einer Tiefe von 2,5 m.

See Solution

Problem 2727

Bestimme die Ableitungen f(x)f^{\prime}(x) und g(x)g^{\prime}(x) für die Funktionen a) und b) und skizziere deren Graphen.

See Solution

Problem 2728

Find the derivative f(x)f^{\prime}(x) for the function f(x)=4x3cos(x)f(x)=\frac{4 x^{3}}{\cos (x)}.

See Solution

Problem 2729

Find the 22nd derivative of 10sin(x)10 \sin(x).

See Solution

Problem 2730

Find the roots and extreme points of f(x)=14x494x2f(x)=\frac{1}{4} x^{4}-\frac{9}{4} x^{2}.

See Solution

Problem 2731

Bestimme die Nullstellen und Extrempunkte der Funktion fa(x)=14x4a4x2f_{a}(x)=\frac{1}{4} x^{4}-\frac{a}{4} x^{2}.

See Solution

Problem 2732

Find the limits as nn approaches infinity for these expressions:
1) limn2n3n21n\lim _{n \rightarrow \infty} \frac{\frac{2}{n}}{\frac{3}{n^{2}}-\frac{1}{n}}
2) limn2n3n21n2\lim _{n \rightarrow \infty} \frac{\frac{2}{n}}{\frac{3}{n^{2}-\frac{1}{n^{2}}}}
3) limn2nn23n\lim _{n \rightarrow \infty} \frac{2}{n} \cdot \frac{n^{2}}{3-n}

See Solution

Problem 2733

Find the derivative of the function f(x)=6tan(x)+x2f(x)=-6 \tan (x)+x^{2}.

See Solution

Problem 2734

Gegeben ist die Halbwertszeit von Cäsium-137 (30 Jahre).
a) Finde die Exponentialfunktion f(t)f(t) für den Zerfall und bestimme limt+f(t)\lim _{t \rightarrow+\infty} f(t).
b) Bestimme, nach wie vielen Jahren der Anteil noch nicht zerfallener Kerne 1\%o beträgt.

See Solution

Problem 2735

Find the derivative of the function f(x)=7csc(x)+1xf(x)=7 \csc (x)+\frac{1}{x}.

See Solution

Problem 2736

Find the tangent line equation for f(x)=3sin(x)2cos(x)f(x)=3 \sin (x)-2 \cos (x) at x=πx=-\pi.

See Solution

Problem 2737

Bestimme, welche der folgenden Folgen Nullfolgen sind und gegen einen festen Wert g0g \neq 0 streben: a) 3n3^{-n}, b) 500n2\frac{500}{n^{2}}, c) n+1n2\frac{n+1}{n^{2}}, d) n3n\frac{n-3}{n}, e) (1)n3n(-1)^{n} \frac{3}{n}, f) 202n20 \cdot 2^{n}, g) 0,3n0,3^{n}, h) 5n1n+2\frac{5 n-1}{n+2}, i) (12)n\left(-\frac{1}{2}\right)^{n}, j) 30n\frac{-30}{n}, k) (32n)(3-2 n), l) n22n\frac{n^{2}}{2^{n}}.

See Solution

Problem 2738

Find the tangent line equation to f(x)=33csc(x)f(x)=-3-3 \csc (x) at x=π3x=-\frac{\pi}{3}.

See Solution

Problem 2739

Find the half-life of a radioisotope if 24%24\% decays in 6.5 years. Options: 2.2yr2.2 \mathrm{yr}, 3.9yr3.9 \mathrm{yr}, 16yr16 \mathrm{yr}, 0.22yr0.22 \mathrm{yr}, 3.2yr3.2 \mathrm{yr}.

See Solution

Problem 2740

Find the tangent line equation for f(x)=33csc(x)f(x)=-3-3 \csc (x) at x=π3x=-\frac{\pi}{3}. Enter an exact answer.

See Solution

Problem 2741

Find the derivative f(x)f^{\prime}(x) for the function f(x)=65x4cos(x)f(x)=-\frac{6}{5} x^{4} \cos (x).

See Solution

Problem 2742

Berechnen Sie die Gliednummer nn, ab der an<11000\left|a_{n}\right|<\frac{1}{1000} gilt für: a) (1)n2n(-1)^{n} \frac{2}{n}, b) 642n\frac{64}{2^{n}}, c) n+1n2\frac{n+1}{n^{2}}.

See Solution

Problem 2743

Find the derivative f(x)f^{\prime}(x) for the function f(x)=x37cos(x)f(x)=-\frac{x^{3}}{7 \cos (x)}.

See Solution

Problem 2744

Find the derivative of the function f(x)=2csc(x)+4cot(x)f(x)=-2 \csc (x)+4 \cot (x).

See Solution

Problem 2745

Find the derivative of the function f(x)=2cot(x)+6x4csc(x)f(x)=-2 \cot (x)+6 x^{4} \csc (x).

See Solution

Problem 2746

Find the derivative of the function f(x)=2cot(x)+6x4csc(x)f(x)=-2 \cot (x)+6 x^{4} \csc (x).

See Solution

Problem 2747

Find the derivative of f(x)=cos(x)csc(x)+10f(x)=\frac{\cos (x)}{\csc (x)+10}.

See Solution

Problem 2748

Find the 44th derivative of y=10sin(x)8cos(x)y=-10 \sin (x)-8 \cos (x).

See Solution

Problem 2749

Differentiate 5sin(x)+13cos(x)-5 \sin(x) + 13 \cos(x) fifteen times with respect to xx.

See Solution

Problem 2750

Leite die Ableitungen der folgenden Funktionen ab: a) f(x)=x4f(x)=x^{-4}, b) f(x)=x1f(x)=x^{-1}, c) g(x)=x2g(x)=x^{-2}, d) h(x)=x12h(x)=x^{\frac{1}{2}}, e) g(x)=x13g(x)=x^{\frac{1}{3}}.

See Solution

Problem 2751

Leiten Sie die Funktionen ab: a) f(x)=x4f(x)=x^{-4}, b) f(x)=x1f(x)=x^{-1}, c) g(x)=x2g(x)=x^{-2}, d) h(x)=x12h(x)=x^{\frac{1}{2}}, e) g(x)=x13g(x)=x^{\frac{1}{3}}.

See Solution

Problem 2752

Find the 14th derivative of y=2cos(x)y=-2 \cos (x).

See Solution

Problem 2753

Find the tangent line equation for f(x)=3csc(x)232π3+1f(x)=3 \csc (x)-2 \sqrt{3}-\frac{2 \pi}{3}+1 at x=π3x=\frac{\pi}{3}.

See Solution

Problem 2754

Bestimme die Ableitungen für die Funktionen: a) f(x)=3x4f(x)=3 x^{4}, b) f(x)=2xf(x)=2 \sqrt{x}, c) f(x)=13x3f(x)=\frac{1}{3} x^{3}, d) f(x)=14xf(x)=\frac{1}{4} \sqrt{x}, e) f(x)=21xf(x)=-2 \cdot \frac{1}{x}, f) f(x)=141x2f(x)=\frac{1}{4} \cdot \frac{1}{x^{2}}.

See Solution

Problem 2755

Find the tangent line equation for f(x)=3csc(x)232π3+1f(x)=3 \csc (x)-2 \sqrt{3}-\frac{2 \pi}{3}+1 at x=π3x=\frac{\pi}{3}.

See Solution

Problem 2756

Finde die Nullstelle von f und die Koordinaten der Extrem- und Wendepunkte für f(x)=x48x3+18x2f(x)=x^{4}-8x^{3}+18x^{2}.

See Solution

Problem 2757

Find the tangent line equation for f(x)=2+3csc(x)f(x)=-2+3 \csc (x) at x=π3x=\frac{\pi}{3}.

See Solution

Problem 2758

Find the tangent line equation for f(x)=2+3csc(x)f(x)=-2+3 \csc (x) at x=π3x=\frac{\pi}{3}. (Provide an exact answer.)

See Solution

Problem 2759

Evaluate the limit as xx approaches infinity: limx1000x5x6+πx51000+11x6+e8.\lim _{x \rightarrow \infty} \frac{1000 x-5 x^{6}+\pi x^{5}}{1000+11 x^{6}+e^{8}}. Justify your answer.

See Solution

Problem 2760

Finde die Stellen, wo g(x)=1g(x)=1 für g(x)=4x416x3+16x23g(x)=4 x^{4}-16 x^{3}+16 x^{2}-3, berechne die Extrempunkte und die Tangente bei x=3x=3.

See Solution

Problem 2761

Find the limit: limx5x27x+10x5\lim _{x \rightarrow 5} \frac{x^{2}-7 x+10}{x-5}.

See Solution

Problem 2762

Find the output level xx to minimize the marginal cost given by C(x)=x2100x+8900C(x)=x^{2}-100x+8900. What is the minimum cost?

See Solution

Problem 2763

A coin is dropped from a 1,346 ft building.
(a) Find position s(t)=16t2+1346s(t)=-16t^2+1346 and velocity v(t)=32tv(t)=-32t functions.
(b) Calculate average velocity on [2,3][2,3].
(c) Find instantaneous velocities at t=2t=2 and t=5t=5.

See Solution

Problem 2764

Find the limits as xx approaches -6 for f(x)=tanπx4f(x)=\tan \frac{\pi x}{4} from the left and right.

See Solution

Problem 2765

Bestimmen Sie die Stammfunktionen für folgende Funktionen: a) f(x)=(2x+8)3f(x)=(2 x+8)^{3}, b) f(x)=5(23x)7f(x)=5 \cdot(2-3 x)^{7}, c) f(x)=3(2x1)2f(x)=\frac{3}{(2 x-1)^{2}}.

See Solution

Problem 2766

Find the limit as xx approaches ±\pm \infty for f(x)=14x+14x2+9f(x)=\frac{14 x+1}{\sqrt{4 x^{2}+9}} and calculate f(x)f(x) at x=±100,±500,±1000,±10000x=\pm 100, \pm 500, \pm 1000, \pm 10000.

See Solution

Problem 2767

Find the limit and compute f(x)=14x+14x2+9f(x)=\frac{14 x+1}{\sqrt{4 x^{2}+9}} for x=±100x=\pm 100. Show f(100)=f(-100)=.

See Solution

Problem 2768

Determine the limits of the function f(x)f(x) at x=7x=7:
(a) limx7+f(x)\lim _{x \rightarrow 7^{+}} f(x),
(b) limx7f(x)\lim _{x \rightarrow 7^{-}} f(x),
(c) limx7f(x)\lim _{x \rightarrow 7} f(x).
Enter DNE if an answer does not exist.

See Solution

Problem 2769

Given f(x)=12x+1f(x)=\frac{1}{-2 x+1}, simplify f(x+h)f(x+h) and the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}. Find f(x)f^{\prime}(x).

See Solution

Problem 2770

Finde die Stammfunktion von f. a) f(x)=(2x+8)3f(x)=(2x+8)^{3} b) f(x)=5(23x)7f(x)=5 \cdot(2-3x)^{7}

See Solution

Problem 2771

Find the derivative f(x)f^{\prime}(x) for f(x)=7x33f(x)=7 x^{3}-3 using the four-step definition of the derivative.

See Solution

Problem 2772

Étudier la dérivabilité de ff sur [0,2][0,2] et la continuité au point x=1x=1 pour f(x)=x21x1f(x)=\frac{x^{2}-1}{x-1} et g(x)=x+1x1g(x)=\frac{x+1}{x-1}.

See Solution

Problem 2773

Étudiez si les fonctions f(x)=x21x1f(x)=\frac{x^{2}-1}{x-1} et g(x)=x+1x1g(x)=\frac{x+1}{x-1} peuvent être prolongées par continuité en x=1x=1.

See Solution

Problem 2774

Find the derivative of f(x)=4x2+13x5f(x)=4 x^{2}+13 x-5 using f(x)=limh0f(x+h)f(x)hf^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}.

See Solution

Problem 2775

Find the slope of the tangent line to f(x)=2x2f(x)=2 x^{2} at x=3x=3 using the limit definition of the derivative.

See Solution

Problem 2776

Integriere: a) 2x23\frac{2 x^{2}}{3}, b) 23x2\frac{2}{3 x^{2}}

See Solution

Problem 2777

Exercice 5 : Trouvez une valeur de bb pour que f(x)={sin23xx2,x0b,x=0f(x)=\left\{\begin{array}{ll}\frac{\sin ^{2} 3 x}{x^{2}}, & x \neq 0 \\ b, & x=0\end{array}\right. soit continue en x=0x=0.

See Solution

Problem 2778

Find the velocity of a wrench dropped from 900 feet after 4 seconds using s(t)=16t2+900s(t)=-16 t^{2}+900.

See Solution

Problem 2779

Find the expression for the derivative of f(x)=3x2+13x4f(x)=3 x^{2}+13 x-4 using f(x)=limh0f(x+h)f(x)hf^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}.

See Solution

Problem 2780

Find the expression for the derivative of f(x)=3x2+13x4f(x)=3 x^{2}+13 x-4 using f(x)=limh0f(x+h)f(x)hf^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}.

See Solution

Problem 2781

Bestimme den Wendepunkt und die Wendetangente für die Funktionen a) bis f) mit f(x)f(x) als gegeben.

See Solution

Problem 2782

Finde den Wendepunkt und die Wendetangente für die Funktionen: a) f(x)=0,5x33x2+5xf(x)=0,5 x^{3}-3 x^{2}+5 x b) f(x)=x3+3x2+x+2f(x)=x^{3}+3 x^{2}+x+2 c) f(x)=0,5x31,5x2f(x)=-0,5 x^{3}-1,5 x^{2} d) f(x)=x3+9x2+7x18f(x)=x^{3}+9 x^{2}+7 x-18 e) f(x)=x33x2+4x+4f(x)=-x^{3}-3 x^{2}+4 x+4 f) f(x)=x36x2+11xf(x)=x^{3}-6 x^{2}+11 x

See Solution

Problem 2783

Evaluate the limit: limx14x2+4x13x27=\lim _{x \rightarrow \infty} \frac{14 x^{2}+4 x}{13 x^{2}-7}=

See Solution

Problem 2784

Evaluate the limit:
limx2x2+6x5x45x3+8= \lim _{x \rightarrow \infty} \frac{2 x^{2}+6 x}{5 x^{4}-5 x^{3}+8}=

See Solution

Problem 2785

Find the limit as xx approaches infinity: limx44x+5=\lim _{x \rightarrow \infty} \frac{4}{4 x+5}=

See Solution

Problem 2786

Find local max/min of f(x)=x39xf(x)=x^{3}-9x and intervals of increase/decrease. Answers to two decimal places.

See Solution

Problem 2787

Evaluate the limit: limx13x+414x9=\lim _{x \rightarrow \infty} \frac{13 x+4}{14 x-9}=

See Solution

Problem 2788

Evaluate the limit: limx2x2545x\lim _{x \rightarrow \infty} \frac{2 x^{2}-5}{4-5 x}.

See Solution

Problem 2789

Find the limit as xx approaches \infty: limx2x2545x=\lim _{x \rightarrow \infty} \frac{2 x^{2}-5}{4-5 x} =

See Solution

Problem 2790

Determine the horizontal asymptotes of f(x)=3x22x4x2+2f(x)=\frac{3 x^{2}-2 x}{4 x^{2}+2}. List them if there are multiple.

See Solution

Problem 2791

Berechne das Integral 121x2dx\int_{1}^{2} \frac{1}{x^{2}} d x.

See Solution

Problem 2792

Find the horizontal asymptotes of f(x)=10x312x2810x6x4f(x)=\frac{10x^{3}-12x^{2}}{8-10x-6x^{4}}.

See Solution

Problem 2793

Berechnen Sie eine Stammfunktion F für die folgenden Funktionen: a) f(x)=3x2+6f(x)=3 x^{2}+6, b) f(x)=6x2f(x)=\frac{6}{x^{2}}, c) f(x)=4exf(x)=4 e^{-x}, d) f(x)=2cosxf(x)=-2 \cos x, e) f(x)=sin(x)f(x)=\sin (-x), f) f(x)=e12xf(x)=e^{\frac{1}{2} x}, g) f(x)=4x3f(x)=4 x^{-3}, h) f~(x)=ekx\tilde{f}(x)=e^{-k x}.

See Solution

Problem 2794

Calculate the limit as xx approaches 3 for 10x+310x + 3. Then, find δ\delta for f(x)L<0.01|f(x)-L|<0.01 and f(x)L<0.005|f(x)-L|<0.005.

See Solution

Problem 2795

Berechnen Sie die dritte Ableitung von f(x)=x8f(x)=x^{8}. Was ist f(x)f^{\prime \prime \prime}(x)?

See Solution

Problem 2796

Find the slope of the tangent line to f(x)=2x2f(x)=2x^{2} at x=3x=3 using the limit definition of the derivative. Evaluate f(3+h)=f(3+h)=.

See Solution

Problem 2797

Determine the horizontal asymptotes of f(t)=et1+etf(t)=\frac{e^{t}}{1+e^{-t}}. List them if there are multiple.

See Solution

Problem 2798

Bestimme b>0b>0 für die folgenden Integrale: a) 60(x23)dx=0\int_{6}^{0}(x^{2}-3) dx=0, b) 1b(4x)dx=4\int_{1}^{b}(4-x) dx=-4, c) 1bx3dx=154\int_{-1}^{b} x^{3} dx=\frac{15}{4}.

See Solution

Problem 2799

Evaluate the limit: limx4x3+3x7x8=\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{3}+3 x}}{7 x-8}=

See Solution

Problem 2800

Berechnen Sie die zweite Ableitung von f(x)=4(x33x2+1)2f(x)=4\left(x^{3}-3 x^{2}+1\right)-2: f(x)=?f^{\prime \prime}(x)=?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord