Calculus

Problem 9301

Find the tangent line equation for the function f(x)=12x2+2x+5f(x)=12 x^{2}+2 x+5 at the point where x=5x=5.

See Solution

Problem 9302

Find the slope of the tangent line for the function f(x)=x2+12f(x)=x^{2}+12 at the point where x=2x=2.

See Solution

Problem 9303

Find the tangent line equation for f(x)=12ex+10xf(x)=12 e^{x}+10 x at x=0x=0.

See Solution

Problem 9304

Soit f(x)=x+3x6f(x)=\frac{x+3}{x-6}. Trouvez les intervalles de croissance et de décroissance, ainsi que les valeurs de xx pour les max et min relatifs.

See Solution

Problem 9305

Find the equivalent of u=04v=u2u2+v2dvdu\int_{u=0}^{4} \int_{v=\sqrt{u}}^{2} u^{2}+v^{2} d v d u after reversing integration order.

See Solution

Problem 9306

Given the equation xy=1x y=1, find dydx\frac{d y}{d x} using implicit differentiation and then solving for yy before differentiating. Are dydx\frac{d y}{d x} and yy^{\prime} equal?

See Solution

Problem 9307

Find the equivalent of u=04v=u2u2+v2dvdu\int_{u=0}^{4} \int_{v=\sqrt{u}}^{2} u^{2}+v^{2} d v d u after reversing integration order.

See Solution

Problem 9308

Evaluate the triple integral 020xxy3xyzdzdydx\int_{0}^{2} \int_{0}^{x} \int_{x}^{y} 3 x y z \, dz \, dy \, dx.

See Solution

Problem 9309

Déterminez les intervalles de croissance et de décroissance de f(x)=x+3x6f(x)=\frac{x+3}{x-6} et les points de maximums et minimums relatifs.

See Solution

Problem 9310

Determine the relative extrema and inflection points of the function y=x36x2+9x+3y=x^{3}-6x^{2}+9x+3.

See Solution

Problem 9311

Analyze the function f(x)=x2+1xf(x)=\frac{x^{2}+1}{x} for x0x \neq 0:
1) Find zero points.
2) Compute first and second derivatives.
3) Identify extreme points.
4) Determine asymptotes.
5) Sketch the graph with asymptotes.

See Solution

Problem 9312

Approximate (6.001)5(6.001)^{5} using f(x)f(x) and aa, then find L(x)=f(a)+f(a)(xa)L(x)=f(a)+f^{\prime}(a)(x-a) rounded to 2 decimals.

See Solution

Problem 9313

Find the differential dyd y for y=tan(x)y=\tan(x) at x=7π4x=\frac{7\pi}{4} and dx=π9d x=\frac{\pi}{9}.

See Solution

Problem 9314

Find the linear approximation of f(x)=7x23f(x)=7 x^{\frac{2}{3}} at a=27a=27 and use it to estimate f(29)f(29).

See Solution

Problem 9315

Find the differential dyd y for y=sin(2x)xy=\frac{\sin(2x)}{x} at x=πx=\pi and dx=0.25d x=0.25.

See Solution

Problem 9316

Is the function f(x)=x3x+3f(x)=\frac{x^{3}}{\sqrt{x+3}} continuous or discontinuous at x=2x=2? a) continuous b) discontinuous

See Solution

Problem 9317

Find the derivative of f(x)=4e9x+ex6f(x)=4 e^{9 x}+e^{-x^{6}}.

See Solution

Problem 9318

Find the average rate of change of M(t)M(t) over [1,4][1,4] given rates over [1,7][1,7] and [4,7][4,7]. Choices are:
1. 6.44mg/day\frac{6.4}{4} \mathrm{mg} / \mathrm{day}
2. 8.44mg/day\frac{8.4}{4} \mathrm{mg} / \mathrm{day}
3. 7.23mg/day\frac{7.2}{3} \mathrm{mg} / \mathrm{day}
4. 7.24mg/day\frac{7.2}{4} \mathrm{mg} / \mathrm{day}
5. 3mg/day3 \mathrm{mg} / \mathrm{day}

See Solution

Problem 9319

Find the line equation for the linear approximation of f(x)=62x2f(x)=6-2x^2 at a=3a=3, estimate f(3.1)f(3.1), and compute percent error.

See Solution

Problem 9320

Approximate the change in volume dVd V of a cube when its side increases from 12 to 12.1. Find dVd V.

See Solution

Problem 9321

Estimate Δy\Delta y for y=4x2+8x+3y=4x^2+8x+3 using linear approximation with Δx=0.4\Delta x=0.4 at x=5x=5.

See Solution

Problem 9322

A drug is given every 3 hours at 10mg10 \mathrm{mg}. It decays exponentially with rate k=0.4k=0.4. Find A(t)A(t) using A(t)=A0ektA(t)=A_{0} e^{-kt}.

See Solution

Problem 9323

Find the rate of change of f(x)=xx21f(x)=\frac{x}{x^{2}-1} at x=4x=4. Choose from the given limit options.

See Solution

Problem 9324

Find the relative maxima, minima, and inflection points of the function y=x3+12x4y=-x^{3}+12x-4.

See Solution

Problem 9325

Find the rate of change of the tumor volume V(r)=15πr3V(r)=\frac{1}{5} \pi r^{3} at r=1.3 cmr=1.3 \mathrm{~cm}. Round up the answer. Options: a) 3 cm23 \mathrm{~cm}^{2} b) 4 cm24 \mathrm{~cm}^{2} c) 5 cm25 \mathrm{~cm}^{2} d) 6 cm26 \mathrm{~cm}^{2}.

See Solution

Problem 9326

Estimate Δy\Delta y for y=sin(3x)y=\sin(3x) at x=0x=0 with Δx=0.2\Delta x=0.2 using linear approximation. Find error %.

See Solution

Problem 9327

Find the derivative dydt\frac{d y}{d t} of y=f(t)=et(x4+2x3)y=f(t)=e^{t}(x^{4}+2 x^{3}). Choose the correct option from a) to e).

See Solution

Problem 9328

Find the derivative dydx\frac{d y}{d x} of y=f(x)y=f(x) where f(x)=sin(x)2x3f(x)=\frac{\sin (x)}{2 x^{3}}. Choose correct option.

See Solution

Problem 9329

Find the line equation for the linear approximation of f(x)=62x2f(x)=6-2x^{2} at a=3a=3, estimate f(3.1)f(3.1), and compute percent error.

See Solution

Problem 9330

Find the first and second derivatives of y=2x8+7y=-2 x^{8}+7.

See Solution

Problem 9331

A plant pot falls for 2.24 seconds. Find the height of the balcony using h=12gt2h = \frac{1}{2}gt^2.

See Solution

Problem 9332

An object is dropped from 187 ft. Find its velocity, speed, acceleration at time tt, time to hit ground, and impact velocity.

See Solution

Problem 9333

Find the acceleration of a pendulum ride at 3.28 seconds, given y=cos(t5)y=\cos \left(\frac{t}{5}\right). Choose from options a) to e).

See Solution

Problem 9334

Find the derivative dydx\frac{d y}{d x} of f(x)=(4x4+10x2+4)5f(x)=(4 x^{4}+10 x^{2}+4)^{-5}. Choose the correct option.

See Solution

Problem 9335

An object falls from a tower 187 ft high.
a. Find velocity, speed, and acceleration at time tt. b. How long until it hits the ground? c. What is the velocity at impact?
Velocity at time tt is: v(t)=32tv(t) = -32t.

See Solution

Problem 9336

Find the second derivative of f(x)=3x5+2x2+8f(x)=3 x^{-5}+2 x^{2}+8. Which option is correct? a) 15x3+4x15 x^{-3}+4 x b) 90x7+490 x^{-7}+4 c) 20x+820 x+8 d) 90x3+490 x^{-3}+4 e) None.

See Solution

Problem 9337

Find the rate of area increase of a rash when r=4 cmr = 4 \mathrm{~cm} and dr/dt=0.1 cm/daydr/dt = 0.1 \mathrm{~cm/day}. Options: a) π\pi, b) 0.6π0.6 \pi, c) 0.7π0.7 \pi, d) 0.8π0.8 \pi, e) None.

See Solution

Problem 9338

Find the derivative dydx\frac{d y}{d x} of y=f(x)y=f(x) where f(x)=42xcot(x4)f(x)=4^{2 x} \cot \left(x^{4}\right).

See Solution

Problem 9339

Find the derivative of f(x)=ex3+2xx2f(x)=\frac{e^{x^{3}+2 x}}{x^{2}}. Choose the correct expression from the options given.

See Solution

Problem 9340

Find the marginal utility μx\mu_{x} from the utility function u(x,y)=x+2yu(x, y) = x + 2y.

See Solution

Problem 9341

Estimate the root of x3+3x15=0x^{3}+3 x-15=0 using Newton's method with initial guess x0=2x_{0}=2 for one iteration.

See Solution

Problem 9342

Find the derivative dydx\frac{d y}{d x} for the function y=4x332xy=\frac{4 x^{3}-3}{2 x}.

See Solution

Problem 9343

A particle is projected at 12 ms112 \mathrm{~ms}^{-1} up a slope with 5 ms25 \mathrm{~ms}^{-2} acceleration. Find time for displacement > 8 m.

See Solution

Problem 9344

Find the derivative f(4)f^{\prime}(4) for the function f(x)=x+2x2f(x)=\sqrt{x}+\frac{2}{x^{2}}.

See Solution

Problem 9345

Find the next approximation x1x_{1} using Newton's method for f(x)=0f(x)=0 with initial guess x0=5x_{0}=5 for y=4x5y=4x-5.

See Solution

Problem 9346

Calculate the average annual income from a 10000 PLN deposit at a continuous 8%8\% interest rate over 15 years.

See Solution

Problem 9347

Find the approximate value of x0x_{0} using the tangent line at (7,2)(7,2) for the function ff with given properties.

See Solution

Problem 9348

Find the tangent line equation for the function f(x)=x135x+6f(x)=\frac{x-13}{5x+6} at the point where x=3x=3.

See Solution

Problem 9349

Find the average rate of change of f(x)=4x2+6f(x)=4 x^{2}+6 from x=0x=0 to x=1x=1.

See Solution

Problem 9350

Find the derivative of P=(4+lnx)0.5P=(4+\ln x)^{0.5}.

See Solution

Problem 9351

Estimate the solution to e2x+x45=0e^{-2 x}+x-\frac{4}{5}=0 using Newton's method with initial guess x0=0x_{0}=0 for one iteration.

See Solution

Problem 9352

Find the average rate of change of f(x)=4x2+6f(x)=4 x^{2}+6 from x=0x=0 to x=12x=12.

See Solution

Problem 9353

Find the average rate of change of f(x)=4x2+6f(x)=4 x^{2}+6 from x=3x=3 to x=6x=6.

See Solution

Problem 9354

Find the approximate value of x0x_{0} using the tangent line at (3,3)(3,3) for the function ff with given properties.

See Solution

Problem 9355

Find the average rate of change of f(x)=4x2+6f(x)=4x^{2}+6 from x=1x=1 to x=3x=3.

See Solution

Problem 9356

Find the next approximation x1x_{1} using Newton's method for f(x)=0f(x)=0 with x0=2x_{0}=2 and tangent line y=5x2y=5x-2.

See Solution

Problem 9357

Find the limit as xx approaches 0 for e3x1x4+6x\frac{e^{3x}-1}{x^4+6x}.

See Solution

Problem 9358

Find the line equation for the linear approximation of f(x)=sinxf(x)=\sin x at a=π2a=\frac{\pi}{2}, estimate f(1.62)f(1.62), and compute percent error: 100 approximation - exact exact 100 \cdot \frac{\mid \text { approximation - exact} \mid}{\mid \text { exact } \mid}.

See Solution

Problem 9359

Find the linear approximation of f(x)=x34f(x)=x^{\frac{3}{4}} at a=1296a=1296 and estimate f(1389)f(1389). Is it an overestimate or underestimate?

See Solution

Problem 9360

Find the linear approximation to f(x)=x34f(x)=x^{\frac{3}{4}} at a=1296a=1296 and estimate f(1389)f(1389). Is it an underestimate or overestimate?

See Solution

Problem 9361

Find the next approximation x1x_{1} using Newton's method for f(x)=0f(x)=0 with x0=4x_{0}=4 and tangent line y=5x6y=5x-6.

See Solution

Problem 9362

Find the linear approximation for f(x)=secxf(x)=\sec x at a=0a=0 and estimate f(0.01)f(-0.01). Compute percent error: 100 |approximation - exact|  |exact |100 \cdot \frac{\text { |approximation - exact| }}{\text { |exact |}}.

See Solution

Problem 9363

Find the Laurent series for (ba)/((za)(zb))(b-a) / ((z-a)(z-b)) where 0<a<b0 < |a| < |b| in the region z>b|z| > |b|.

See Solution

Problem 9364

Find all points where the function x48x330x2+7x^{4}-8 x^{3}-30 x^{2}+7 is concave up: x=4,2,0,2,4,6x=-4, -2, 0, 2, 4, 6.

See Solution

Problem 9365

Find xx in [0,2π][0,2 \pi] where y=cosx2+sinxy=\frac{\cos x}{2+\sin x} has a horizontal tangent. List smaller xx first. x=x= 11h=11 h=

See Solution

Problem 9366

Find the fourth derivative of f(x)=3x1xf(x) = \frac{-3x}{1-x}.

See Solution

Problem 9367

Find the derivative of the inverse function at 76-76 for f(x)=3x3+5f(x)=-3x^3+5. What is (f1)(76)\left(f^{-1}\right)^{\prime}(-76)?

See Solution

Problem 9368

Find the derivative f(x)f'(x) for f(x)=4sinx4sinx+6cosxf(x)=\frac{4 \sin x}{4 \sin x+6 \cos x} and the tangent line at a=π2a=\frac{\pi}{2}, y=mx+by=mx+b. What are mm and bb?

See Solution

Problem 9369

Calculate the limit: limxx32x+42300x2+65x \lim _{x \rightarrow \infty} \frac{x^{3}-2 x+4}{2300 x^{2}+65 x}

See Solution

Problem 9370

Find the horizontal asymptote of f(x)=2(x+5)(3x1)(3x)(5x+2)f(x)=2 \frac{(x+5)(3x-1)}{(3-x)(5x+2)}. What is yy?

See Solution

Problem 9371

A chemist has a 20 mg sample of polonium-218. How long (in seconds) to decay to 16.3 mg? Half-life is 3.1 min. Describe the function type and behavior.

See Solution

Problem 9372

A chemist has a 20 mg sample of polonium-218. How long (in seconds) for it to decay to 16.3 mg? Half-life is 3.1 min. Also, describe the function's type, name, and behavior.

See Solution

Problem 9373

Find the general antiderivative of f(x)=7x26x+3x2f(x)=\frac{7 x^{2}-6 x+3}{x^{2}} for x>0x>0 and verify by differentiation. Use CC for the constant.

See Solution

Problem 9374

Find the antiderivative FF of f(x)=2ex8xf(x)=2 e^{x}-8 x with F(0)=6F(0)=6 and verify by graphing ff and FF.

See Solution

Problem 9375

Find the general antiderivative of f(θ)=5sin(θ)3sec(θ)tan(θ)f(\theta)=5 \sin (\theta)-3 \sec (\theta) \tan (\theta) and check by differentiation. Use CC for the constant.

See Solution

Problem 9376

Calculate the limit as xx approaches infinity for 2300x2+65xx32x+4\frac{2300 x^{2}+65 x}{x^{3}-2 x+4}.

See Solution

Problem 9377

Find the tangent line equation y=mx+by=mx+b for f(x)=4sinx4sinx+6cosxf(x)=\frac{4 \sin x}{4 \sin x+6 \cos x} at x=π2x=\frac{\pi}{2}.

See Solution

Problem 9378

Given the function f(x)=42xf^{\prime \prime}(x)=42 x, find f(x)f^{\prime}(x) and f(x)f(x) using constants CC and DD.

See Solution

Problem 9379

Find the function ff given that f(x)=2+12x12x2f''(x) = -2 + 12x - 12x^2, f(0)=8f(0) = 8, and f(0)=18f'(0) = 18.

See Solution

Problem 9380

Find the tangent line y=mx+by=m x+b to f(x)=4sinx4sinx+6cosxf(x)=\frac{4 \sin x}{4 \sin x+6 \cos x} at a=π2a=\frac{\pi}{2}. Determine mm and bb.

See Solution

Problem 9381

Gegeben ist f(x)=x32x28xf(x)=x^{3}-2 x^{2}-8 x.
1. Finde die Nullstellen von ff.
2. Ist 24f(x)dx\int_{-2}^{4} f(x) d x positiv, negativ oder null? Begründe.
3. Markiere den Flächeninhalt von 20f(x)dx\int_{-2}^{0} f(x) d x und gib einen Ansatz zur Berechnung.

See Solution

Problem 9382

Given a fish population with a carrying capacity of 1300 and a growth rate of 230%230\%, find p1p_{1} and p2p_{2} starting from p0=100p_{0}=100.

See Solution

Problem 9383

Given f(θ)=sin(θ)+cos(θ)f^{\prime \prime}(\theta)=\sin (\theta)+\cos (\theta), find ff^{\prime} and ff with conditions f(0)=4f^{\prime}(0)=4 and f(0)=1f(0)=1.

See Solution

Problem 9384

Find the limit: limx0+(x+7)\lim _{x \rightarrow 0^{+}}(|x|+7).

See Solution

Problem 9385

Find the derivative of f(a)=ax3+4axf(a) = -a x^{3} + 4 a x.

See Solution

Problem 9386

Find ff^{\prime} given f(θ)=sin(θ)+cos(θ)f^{\prime \prime}(\theta)=\sin(\theta)+\cos(\theta) and f(0)=4f^{\prime}(0)=4.

See Solution

Problem 9387

Differentiate the equation 2xyy2=42xy - y^2 = 4 using the product rule. Find dydx\frac{dy}{dx}.

See Solution

Problem 9388

Berechne die Fläche zwischen dem Graphen von ff und der xx-Achse für die Funktionen a) bis f).

See Solution

Problem 9389

A stone is dropped from a 100 m tower. Given g=9.8 m/s2g=9.8 \mathrm{~m/s}^2, find its velocity and height above ground at time tt.

See Solution

Problem 9390

Find the particle's position s(t)s(t) given a(t)=2t+3a(t)=2t+3, s(0)=6s(0)=6, and v(0)=9v(0)=-9.

See Solution

Problem 9391

Find the limit: limx32x6x3\lim _{x \rightarrow-3} \frac{-2 x-6}{|-x-3|}.

See Solution

Problem 9392

Find local max and min points of f(x)=ax3+4axf(x)=-ax^{3}+4ax.

See Solution

Problem 9393

Find the limits: 1) limx0+(x+7)\lim _{x \rightarrow 0^{+}}(|x|+7), 2) limx32x6x3\lim _{x \rightarrow-3} \frac{-2 x-6}{|-x-3|}, 3) limx23x2x2\lim _{x \rightarrow 2^{-}} \frac{3|x-2|}{x-2}.

See Solution

Problem 9394

Find the limit: limx23x2x2\lim _{x \rightarrow 2^{-}} \frac{3|x-2|}{x-2}.

See Solution

Problem 9395

Find the derivative of g(x)=(x21x)4g(x)=(x^{2}-\frac{1}{x})^{4}.

See Solution

Problem 9396

A stone is dropped from 100 m. Find the time to hit the ground and impact velocity. Also, time if thrown down at 7m/s7 \, \mathrm{m/s}.

See Solution

Problem 9397

Find xx and price pp that maximize revenue for the demand equation p=112x210x+300p=\frac{1}{12} x^{2}-10 x+300, where 0x600 \leq x \leq 60.

See Solution

Problem 9398

Finde die Funktion f(x)f(x) aus den Ableitungen f(x)f^{\prime}(x): a) f(x)=sin(x)+(x+2)cos(x)f^{\prime}(x)=\sin (x)+(x+2) \cos (x) b) f(x)=2sin(0,5x)+xcos(0,5x)f^{\prime}(x)=2 \sin (0,5 x)+x \cdot \cos (0,5 x)

See Solution

Problem 9399

Find the derivative of h(x)=x2(x2+3x)5h(x)=x^{2}(x^{2}+3x)^{5}.

See Solution

Problem 9400

Find the tangent line equation of y=x+xy=x+\sqrt{x} at the point (1,2)(1,2).

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord