Calculus

Problem 901

Find f(3)f(3) given that f(x)=x8x4f^{\prime}(x) = \frac{x-8}{x-4} for x4x \neq 4.

See Solution

Problem 902

Find the derivative of the function f(x)=2x10+7x2f(x)=2 x^{-10}+7 x^{-2}. What is f(x)f^{\prime}(x)?

See Solution

Problem 903

Simplify the expression: (x+Δx)29(x+Δx)+8(x29x+8)Δx\frac{(x+\Delta x)^{2}-9(x+\Delta x)+8-(x^{2}-9 x+8)}{\Delta x}.

See Solution

Problem 904

Find the net electric flux from a cube with edge 6.6 m6.6 \mathrm{~m} in the field E=2yj^\vec{E}=2 y \hat{j} N/C. Options: a. 1030, b. 575, c. 862, d. 287, e. 460 N.m²/C.

See Solution

Problem 905

1. Calculate the volume of a solid with a base between y=x2y=x^{2} and the xx-axis from x=0x=0 to x=2x=2, with square cross sections.
2. Calculate the volume of a solid with a base between y=secxy=\sec x and the xx-axis from x=π/4x=\pi / 4 to x=π/3x=\pi / 3, with square cross sections.

See Solution

Problem 906

Find the limit as xx approaches infinity: x{tan1[(x+1)(x2)]π4}x\left\{\tan ^{-1}\left[\frac{(x+1)}{(x-2)}\right]-\frac{\pi}{4}\right\}.

See Solution

Problem 907

Find the volume when the regions are revolved around the yy-axis for the curves: (a) y=lnxy=\ln x, x=0x=0, y=0y=0, y=1y=1. (b) x=1y2x=1-y^{2}, x=2+y2x=2+y^{2}, y=1y=-1, y=1y=1. (c) x=y2x=y^{2}, x=y+2x=y+2. (d) x=cscyx=\csc y, y=π/4y=\pi / 4, x=0x=0, y=3π/4y=3\pi / 4.

See Solution

Problem 908

Find the limit as nn \to \infty of x+22x++n2xn3\frac{\lfloor x \rfloor + \lfloor 2^2 x \rfloor + \ldots + \lfloor n^2 x \rfloor}{n^3}.

See Solution

Problem 909

Find bb (0 < bb < 2) such that the volume VV of the solid formed by revolving the region bounded by y=1/xy=1/x, y=0y=0, x=2x=2, and x=bx=b about the xx-axis equals 3.

See Solution

Problem 910

Find the limit: limn(1+x)(1+x2)(1+x4)(1+x2n)\lim _{n \rightarrow \infty}(1+x)(1+x^{2})(1+x^{4}) \cdots(1+x^{2^{n}}) for x<1|x|<1.

See Solution

Problem 911

Find the integrals:
1. (x4+3x9)dx\int (x^{4}+3x-9) \, dx
2. (x4+3x)dx9\int (x^{4}+3x) \, dx - 9
3. x4dx+3x9\int x^{4} \, dx + 3x - 9

See Solution

Problem 912

Find the partial derivative of f(x,y)=x3y2+3xeyf(x, y)=x^3 y^2+3x e^y with respect to yy. Options: a, b, c.

See Solution

Problem 913

Find the first order partial derivative of f(x,y)=x3y2+3xeyf(x, y)=x^3 y^2 + 3x e^y with respect to yy.

See Solution

Problem 914

Calculate the integral: 1+x1+x2dx\int \frac{1+x}{1+x^{2}} \, dx

See Solution

Problem 915

Evaluate the integral 0π/6sintcos2tdt\int_{0}^{\pi / 6} \frac{\sin t}{\cos ^{2} t} d t.

See Solution

Problem 916

곡선 y=4xy=\frac{4}{x} 위의 점 A(1,4)와 B(t, 4t\frac{4}{t})를 지나는 직선의 삼각형 OPB 넓이 S(t)S(t)limtS(t)\lim _{t \rightarrow \infty} S(t) 값은?

See Solution

Problem 917

Evaluate the integral 0axa2x2dx\int_{0}^{a} x \sqrt{a^{2}-x^{2}} \, dx.

See Solution

Problem 918

Find the time tt for a vehicle to accelerate from 50 km/h50 \mathrm{~km/h} to 140 km/h140 \mathrm{~km/h} using t=5014027003tdtt=\int_{50}^{140} \frac{2}{700-3t} dt.

See Solution

Problem 919

Find the integral x2x3+9dx\int \frac{x^{2}}{x^{3}+9} d x and provide the result in terms of cc.

See Solution

Problem 920

Find the integral of xlnx\sqrt{x} \ln x with respect to xx: xlnxdx\int \sqrt{x} \ln x \, dx.

See Solution

Problem 921

Find the limit: limxπcosx+sin(2x)+1x2π2\lim _{x \rightarrow \pi} \frac{\cos x+\sin (2 x)+1}{x^{2}-\pi^{2}}. Options: (A) 12π\frac{1}{2 \pi} (B) 1π\frac{1}{\pi} (C) 1 (D) nonexistent.

See Solution

Problem 922

Find the derivative of y=(2x+9)(x31)y=(2 x+9)(x^{3}-1), i.e., calculate dydx\frac{d y}{d x}.

See Solution

Problem 923

Calculate the derivative dydx\frac{d y}{d x} for the function y=x15xy=\frac{x}{1-5 x}.

See Solution

Problem 924

Find the derivative dydx\frac{d y}{d x} for y=(3x2+5)10y=(3 x^{2}+5)^{10}.

See Solution

Problem 925

Find the derivative of y=3(2x1)4y=\frac{3}{(2 x-1)^{4}} with respect to xx: dydx\frac{d y}{d x}.

See Solution

Problem 926

Differentiate the function y=(3x+1)5y=(3x+1)^{5}.

See Solution

Problem 927

Differentiate y=(3x32x)2y=\left(3 x^{3}-\frac{2}{x}\right)^{2} with respect to xx.

See Solution

Problem 928

Calculate the integral: t2(t33)3dt\int t^{2}(t^{3}-3)^{3} dt

See Solution

Problem 929

Find the integral of the inverse cosine function: cos1xdx\int \cos^{-1} x \, dx.

See Solution

Problem 930

Evaluate the integral e2θsin3θdθ\int e^{2 \theta} \sin 3 \theta d \theta.

See Solution

Problem 931

Find the tangent line equation for f(x)=3xf(x)=\sqrt{3-x} at a given point.

See Solution

Problem 932

Find the derivative of the function y=x4+12xy=x^{4}+12x. What is dydx\frac{dy}{dx}?

See Solution

Problem 933

Find limxcos(1+πxx)\lim _{x \rightarrow \infty} \cos \left(\frac{1+\pi x}{x}\right).

See Solution

Problem 934

Find the limit as xx approaches 0 for cos(1+πxx)\cos \left(\frac{1+\pi x}{x}\right).

See Solution

Problem 935

Calculate the integral 02(x2+1)exdx\int_{0}^{2}\left(x^{2}+1\right) e^{-x} dx.

See Solution

Problem 936

Calculate the integral from 0 to 7 of (x2+1)ex(x^{2}+1) e^{-x}.

See Solution

Problem 937

Find the limit as xx approaches 4 for the piecewise function f(x)f(x) defined as: f(x)=7x+46f(x) = -7x + 46 if x<4x < 4, 1212 if x=4x = 4, 2x2142x^2 - 14 if x>4x > 4. What is limx4f(x)\lim_{x \rightarrow 4} f(x)?

See Solution

Problem 938

A ball is thrown with a velocity of 41ft/s41 \mathrm{ft} / \mathrm{s}. Its height is y=41t22t2y=41 t-22 t^{2}. Find average velocity from t=2t=2 and instantaneous velocity at t=2t=2.

See Solution

Problem 939

Find the rate of change of the city's population modeled by P(t)=22e0.08tP(t)=22 e^{0.08 t} from 2025 to 2034.

See Solution

Problem 940

Calculate the integral from 1 to 2 of w2lnwdww^{2} \ln w \, dw.

See Solution

Problem 941

Calculate the integral 02πt2sin2tdt\int_{0}^{2 \pi} t^{2} \sin 2 t \, dt.

See Solution

Problem 942

Find the average rate of change of COVID-19 infections from 0 to 8 days, assuming 0 at day 0. Round to two decimals.

See Solution

Problem 943

Find the integral of the function exe^{\sqrt{x}} with respect to xx: exdx\int e^{\sqrt{x}} d x.

See Solution

Problem 944

A ball is thrown with a velocity of 41ft/s41 \mathrm{ft/s}. Height after tt seconds is y=41t22t2y=41t-22t^2. Find average velocity from t=2t=2 for 0.01, 0.005, and 0.002 seconds. What is the instantaneous velocity at t=2t=2?

See Solution

Problem 945

Encuentra la derivada de f(x)=3x3xf(x) = 3x^3 - x.

See Solution

Problem 946

Approximate the average rate of change of COVID-19 infections in Minnesota from 0 to 8 days after April 1, 2020.

See Solution

Problem 947

Find the integral: x2ln(x)dx\int x^{2} \ln (x) \, dx.

See Solution

Problem 948

Find the rate of change of the city's population, modeled by P(t)=10e0.04tP(t)=10 e^{0.04 t}, from 2021 to 2030 in thousand persons/year.

See Solution

Problem 949

Calculate the average rates of change for COVID-19 infections in Minnesota over these intervals using ΔyΔx\frac{\Delta y}{\Delta x}:
1. 0 to 8 days: (calculate)
2. 8 to 16 days: 0.59 thousand/day
3. 0 to 16 days: 0.46 thousand/day

See Solution

Problem 950

Find the average velocity of a ball thrown with y=41t22t2y=41t-22t^{2} at t=2t=2 for intervals of 0.01, 0.005, 0.002, and 0.001 seconds.

See Solution

Problem 951

Calculate the average rate of change of the function k(x)=16xk(x)=-16 \sqrt{x} from x=12x=12 to x=15x=15.

See Solution

Problem 952

Two engines start at the origin and meet at t=e1t=e-1. Thomas' equation is x=300ln(t+1)x=300 \ln(t+1) and Henry's is x=ktx=kt.
a. Sketch the graphs. b. Show k=300e1k=\frac{300}{e-1}. c. Find the max distance between them in the first e1e-1 minutes and when it occurs.

See Solution

Problem 953

A particle PP has a velocity of v=244t2v=24-4 t^{2} m/s. Find: (a) distance in the first second, (b) when it changes direction, (c) when it returns to start.

See Solution

Problem 954

A particle PP moves along a line with displacement x=13t34t2+15tx = \frac{1}{3} t^{3} - 4 t^{2} + 15 t. Find: (a) when PP is at rest, (b) distance in 5 seconds.

See Solution

Problem 955

Find the distance from the origin when the particle stops, given v=9t3t2v=9t-3t^{2} m/s and starts at t=0t=0.

See Solution

Problem 956

Does the function f(x)=xf(x)=x have a limit as xx approaches 3 from all real numbers except 3?

See Solution

Problem 957

A ball is thrown with a velocity of 41ft/s41 \mathrm{ft/s}. Its height after tt seconds is y=41t22t2y=41t-22t^2. Find average velocity for t=2t=2 over 0.01, 0.005, 0.002, and 0.001 seconds, then determine instantaneous velocity at t=2t=2.

See Solution

Problem 958

A ball is thrown with a velocity of 41ft/s41 \mathrm{ft/s}. Its height is y=41t22t2y=41t-22t^2. Find average velocity from t=2t=2 for given intervals and the instantaneous velocity at t=2t=2.

See Solution

Problem 959

Calculate the integral 054x28xdx\int_{0}^{5} 4 x^{2} 8 x \, dx.

See Solution

Problem 960

Find limx2f(x)\lim _{x \rightarrow 2} f(x) given that limx2[f(x)]28x+3x+1=9\lim _{x \rightarrow 2} \sqrt{\frac{[f(x)]^{2}-8 x+3}{x+1}}=9 and f(x)0f(x) \geq 0.

See Solution

Problem 961

Find the limit as xx approaches 3 for the expression x1/2(5x7)1/3x^{-1/2}(5x-7)^{1/3}.

See Solution

Problem 962

Find the limit: limx3x2x6x3\lim _{x \rightarrow 3} \frac{x^{2}-x-6}{x-3}.

See Solution

Problem 963

Find the limit: limx0(3+x)29x\lim _{x \rightarrow 0} \frac{(3+x)^{2}-9}{x}.

See Solution

Problem 964

Find the limit: limx04+x2x\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{x}.

See Solution

Problem 965

Find the limit as xx approaches 0 for the expression sinxx\frac{\sin x}{x}.

See Solution

Problem 966

Find the limit: limx015+x15x\lim _{x \rightarrow 0} \frac{\frac{1}{5+x}-\frac{1}{5}}{x}.

See Solution

Problem 967

Find the limit as xx approaches -1 for the expression 2x3x+5-2x^3 - x + 5.

See Solution

Problem 968

Find the limit as xx approaches -1 for the expression x2x2x+1\frac{x^{2}-x-2}{x+1}.

See Solution

Problem 969

Find the limit: limx41+2x\lim _{x \rightarrow 4} \sqrt{1+2 x}.

See Solution

Problem 970

Find the limit as xx approaches 0 for the expression excosxe^{-x} \cos x.

See Solution

Problem 971

Find the limit: limx0+x+11x\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x+1}-1}{x}

See Solution

Problem 972

Find the limit: limh0(x+h)2x2h\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}.

See Solution

Problem 973

Find the limit: limh0x+hxh\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}.

See Solution

Problem 974

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=3x2f(x)=\frac{3}{x^{2}}, where h0h \neq 0.

See Solution

Problem 975

Find the limit: limx0(e3x1x)\lim _{x \rightarrow 0}\left(\frac{e^{3 x}-1}{x}\right).

See Solution

Problem 976

Bestimme die erste und zweite Ableitung der Funktionen: a) f(x)=ex+1f(x)=e^{x}+1, b) f(x)=ex+xf(x)=e^{x}+x, c) f(x)=ex+2x2f(x)=e^{x}+2 x^{2}, d) f(x)=ex+1f(x)=-e^{x}+1, e) f(x)=2ex+3x2f(x)=2 e^{x}+3 x^{2}, f) f(x)=5ex0,5x3f(x)=-5 e^{x}-0,5 x^{3}, g) f(x)=12(exx3)f(x)=-\frac{1}{2}(e^{x}-x^{3}), h) f(x)=14ex+sin(x)f(x)=\frac{1}{4}e^{x}+\sin(x).

See Solution

Problem 977

Bestimmen Sie die erste Ableitung für die folgenden Funktionen und überprüfen Sie mit dem GTR: a) 2x(4x1)2 x \cdot(4 x-1), b) (5x+3)(x+2)(5 x+3) \cdot(x+2), c) (25x)(x+2)(2-5 x) \cdot(x+2), d) 2xex2 x \cdot e^{x}, e) (4x+2)ex(4 x+2) \cdot e^{x}, f) (6x+1)ex(6 x+1) \cdot e^{x}.

See Solution

Problem 978

Find the marginal cost MCM C and average cost ACA C from the total cost function TC=300ln(q+30)+150T C=300 \ln (q+30)+150.

See Solution

Problem 979

Find the tangent line equation for f(x)=xf(x) = \sqrt{x} at the point (1,1).

See Solution

Problem 980

Find the limit: limΔx0[89(4+Δx)](28)Δx\lim _{\Delta x \rightarrow 0} \frac{[8-9(4+\Delta x)]-(-28)}{\Delta x}.

See Solution

Problem 981

Find the function f(x)f(x) and the number cc given the limit: limΔx0[89(4+Δx)](28)Δx\lim _{\Delta x \rightarrow 0} \frac{[8-9(4+\Delta x)]-(-28)}{\Delta x}

See Solution

Problem 982

An object is launched with an initial velocity of 48 ft/s from 80 ft. Find average velocity from t=0t=0 to t=2t=2 and t=2t=2 to t=4t=4. Use h(t)=16t2+48t+80h(t)=-16 t^{2}+48 t+80.

See Solution

Problem 983

연속 함수 f(x)f(x)가 주어지고, g(x)=0xf(t)dtx4f(t)dtg(x)=\int_{0}^{x} f(t) d t-\int_{x}^{4} f(t) d tx=2x=2에서 0일 때, 124f(x)dx\int_{\frac{1}{2}}^{4} f(x) d x의 값은?

See Solution

Problem 984

Find the limit as xx approaches 1110\frac{11}{10} from the right: limx1110+(15x1110x)\lim _{x \rightarrow \frac{11}{10}^{+}}\left(\frac{15 x}{11-10 x}\right).

See Solution

Problem 985

Find F(x)F^{\prime}(x) using the first principle if F(x)=x23xF(x)=x^{2}-3x.

See Solution

Problem 986

Find the average rate of change of h(t)=cotth(t)=\cot t over the intervals: a. [3π4,5π4]\left[\frac{3 \pi}{4}, \frac{5 \pi}{4}\right] b. [5π6,3π2]\left[\frac{5 \pi}{6}, \frac{3 \pi}{2}\right]

See Solution

Problem 987

Calculate the average rate of change of h(t)=cotth(t)=\cot t over the intervals: a. [3π4,5π4]\left[\frac{3 \pi}{4}, \frac{5 \pi}{4}\right], b. [5π6,3π2]\left[\frac{5 \pi}{6}, \frac{3 \pi}{2}\right].

See Solution

Problem 988

Find the limits: 1) limx3x29x23x \lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{2}-3 x} 2) limx33x46x+12x5+4x3 \lim _{x \rightarrow 3} \frac{3 x^{4}-6 x+12}{x^{5}+4 x^{3}}

See Solution

Problem 989

Find the average rate of change of h(t)=cotth(t)=\cot t over [5π6,3π2]\left[\frac{5 \pi}{6}, \frac{3 \pi}{2}\right].

See Solution

Problem 990

Find the limit as xx approaches 3 for the expression x29x23x\frac{x^{2}-9}{x^{2}-3x}.

See Solution

Problem 991

Simplify the expression: 3x46x+12x5+4x3\frac{3 x^{4}-6 x+12}{x^{5}+4 x^{3}}

See Solution

Problem 992

Differentiate 3xy=16x3x33xy = \sqrt{16x} - \frac{3}{x^3} with respect to xx.

See Solution

Problem 993

Differentiate y=6x4x+53x2y=\frac{6 x^{4}-x+5}{3 x^{2}} and express the answer with positive exponents.

See Solution

Problem 994

Find limx3f(x)\lim _{x \rightarrow 3} f(x) for the piecewise function: f(x)=9+4xf(x) = -9 + 4x (for x<3x<3) and f(x)=6+x2f(x) = -6 + x^{2} (for x>3x>3).

See Solution

Problem 995

Find limx3f(x)\lim _{x \rightarrow 3} f(x) for the piecewise function f(x)={x27x>34+2xx<3f(x)=\begin{cases} x^{2}-7 & x>3 \\ -4+2x & x<3 \end{cases}.

See Solution

Problem 996

You have \$400,000 saved at 4\% interest. How much can you withdraw monthly for 20 years?

See Solution

Problem 997

Test if the integral 12+cosxxdx\int_{1}^{\infty} \frac{2+\cos x}{x} d x converges.

See Solution

Problem 998

Find the sum of the series: n=0n1010n\sum_{n=0}^{\infty} \frac{n^{10}}{10^{n}}.

See Solution

Problem 999

Find the limit: limx0+xx\lim _{x \rightarrow 0^{+}} x^{x}.

See Solution

Problem 1000

Find the volume of the solid formed by rotating the area between y=x3+1y=x^{3}+1 and y=1y=1 around the yy-axis.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord