Calculus

Problem 23501

Find the antiderivative FF of f(x)=2ex8xf(x)=2 e^{x}-8 x with F(0)=5F(0)=5. What is F(x)=F(x)=\square?

See Solution

Problem 23502

Find the general antiderivative of f(θ)=7sin(θ)6sec(θ)tan(θ)f(\theta)=7 \sin (\theta)-6 \sec (\theta) \tan (\theta) and check by differentiation.

See Solution

Problem 23503

Find the function f(t)f(t) given that f(t)=24+cos(t)f'''(t) = 24 + \cos(t), using constants CC, DD, and FF.

See Solution

Problem 23504

Calculate displacement and velocity at times (a) 0.500, (b) 1.00, (c) 1.50, (d) 2.00, (e) 2.50 s for a rock thrown down with initial velocity 14.0 m/s14.0 \mathrm{~m/s} from 70.0 m70.0 \mathrm{~m}.

See Solution

Problem 23505

Finden Sie die Stammfunktion von ff und berechnen Sie den Flächeninhalt zwischen dem Graphen und der x\mathrm{x}-Achse. d) f(x)=x2+6x+7f(x)=-x^{2}+6 x+7 e) f(x)=(x1)(x2)(x3)f(x)=(x-1)(x-2)(x-3) f) f(x)=x33x2x+3f(x)=x^{3}-3 x^{2}-x+3

See Solution

Problem 23506

Finde die Stammfunktion und berechne den Flächeninhalt zwischen dem Graphen und der xx-Achse für:
(d) f(x)=x2+6x+7f(x)=-x^{2}+6x+7,
(e) f(x)=(x1)(x2)(x3)f(x)=(x-1)(x-2)(x-3),
(f) f(x)=x33x2x+3f(x)=x^{3}-3x^{2}-x+3.

See Solution

Problem 23507

Evaluate the limit: limθ0θtan(3θ)\lim _{\theta \rightarrow 0} \theta \tan (3 \theta).

See Solution

Problem 23508

Finde die Stammfunktion von ff und berechne den Flächeninhalt unter dem Graphen von ff für die folgenden Funktionen: a) f(x)=4x2f(x)=4-x^{2}, b) f(x)=x(x1)(3x)f(x)=x(x-1)(3-x), c) f(x)=(x2)(4x)f(x)=(x-2)(4-x), d) f(x)=x2+6x+7f(x)=-x^{2}+6 x+7, e) f(x)=(x1)(x2)(x3)f(x)=(x-1)(x-2)(x-3), f) f(x)=x33x2x+3f(x)=x^{3}-3 x^{2}-x+3.

See Solution

Problem 23509

Evaluate the limit as xx approaches 0 from the right: limx0+(2x)x\lim _{x \rightarrow 0+}(2 x)^{x}.

See Solution

Problem 23510

Find the integral from 0 to 1 of the function 3x2ex33 x^{2} e^{x^{3}}.

See Solution

Problem 23511

Evaluate the integral 014t31+t8dt\int_{0}^{1} \frac{4 t^{3}}{\sqrt{1+t^{8}}} \mathrm{dt}.

See Solution

Problem 23512

Evaluate the limit: limx(13x)x\lim _{x \rightarrow \infty}\left(1-\frac{3}{x}\right)^{x}.

See Solution

Problem 23513

An object is dropped from 75.0 m75.0 \mathrm{~m}. Find: (a) distance in first second, (b) final velocity, (c) distance in last second.

See Solution

Problem 23514

An object is dropped from 75.0 m. Find: (a) distance in the first second, (b) final velocity, (c) distance in the last second.

See Solution

Problem 23515

Vereinfachen Sie 6x7+74x4\frac{6 x^{7}+7}{4 x^{4}} und bestimmen Sie die Stammfunktion des Integrals.

See Solution

Problem 23516

Evaluate the integral 01(1x2)1/2dx\int_{0}^{1}\left(1-x^{2}\right)^{1 / 2} d x.

See Solution

Problem 23517

Find the second derivative of y=ln(5x2+4x)y=\ln(5x^{2}+4x): d2ydx2\frac{d^{2}y}{dx^{2}}. Options: (a) 10x+45x2+4x\frac{10x+4}{5x^{2}+4x}, (b) 2(25x2+20x+8)(5x2+4x)2\frac{-2(25x^{2}+20x+8)}{(5x^{2}+4x)^{2}}, (c) 1(5x2+4x)2\frac{-1}{(5x^{2}+4x)^{2}}, (d) 1010x+4\frac{10}{10x+4}.

See Solution

Problem 23518

A coin is dropped from a balloon at 300 m300 \mathrm{~m} height, rising at 10.0 m/s10.0 \mathrm{~m/s}. Find (a) max height, (b) position & velocity after 4.00 s4.00 \mathrm{~s}, (c) time to hit the ground.

See Solution

Problem 23519

Find the temperature of a cup of tea at 80C80^{\circ} \mathrm{C} in a 20C20^{\circ} \mathrm{C} room after t=10t=10 using ee.

See Solution

Problem 23520

Find the limits using L'Hopital's rule: a. limx0(xsin(x)1cos(x))\lim _{x \rightarrow 0}\left(\frac{x \sin (x)}{1-\cos (x)}\right) b. limx(x2ex)\lim _{x \rightarrow \infty}\left(x^{2} e^{-x}\right) c. limx(1+3x2)x\lim _{x \rightarrow \infty}\left(1+\frac{3}{x^{2}}\right)^{x}

See Solution

Problem 23521

Calculate the integral 154(x3)2dx\int_{1}^{5} \sqrt{4-(x-3)^{2}} \, dx.

See Solution

Problem 23522

Find Δφ\Delta \varphi for φ=y2x+z\varphi=y^{2} x+z at (1,1,1)(1,1,1) with Δx=Δy=Δz=0.1\Delta x=\Delta y=\Delta z=0.1.

See Solution

Problem 23523

Calculate the integral 23(3x)dx\int_{-2}^{3}(3-|x|) d x.

See Solution

Problem 23524

Berechnen Sie das Integral von f(x)=18x332x2+92xf(x) = \frac{1}{8}x^3 - \frac{3}{2}x^2 + \frac{9}{2}x.

See Solution

Problem 23525

Find 24(f(x)+g(x))dx\int_{2}^{4}(f(x)+g(x)) \, dx given 40f(x)dx=5\int_{4}^{0} f(x) \, dx = 5, 20f(x)dx=3\int_{2}^{0} f(x) \, dx = -3, 40g(x)dx=1\int_{4}^{0} g(x) \, dx = -1, and 20g(x)dx=2\int_{2}^{0} g(x) \, dx = 2.

See Solution

Problem 23526

Find the temperature change 3 hours after sunrise using T(h)=4sin(π12h)+5T(h)=4 \sin \left(\frac{\pi}{12} h\right)+5. What is the rate?

See Solution

Problem 23527

Bestimme die Fläche zwischen f(x)=14x2f(x) = \frac{1}{4}x^2 und der xx-Achse im Intervall [0,4][0, 4].

See Solution

Problem 23528

Find dydx\frac{d y}{d x} for the curve y22xy4x=8y^{2}-2 x y-4 x=8. Choose the correct option from the given choices.

See Solution

Problem 23529

Find the derivative of the integral 0xtdt\int_{0}^{\sqrt{x}} t \, dt with respect to xx.

See Solution

Problem 23530

Find the age xx (16 ≤ xx ≤ 88) that minimizes the fatal-accident rate given by f(x)=0.0311x23.18x+116f(x)=0.0311 x^{2}-3.18 x+116.

See Solution

Problem 23531

Bestimme den Differenzenquotienten für die Punkte G(1)G(-1) und G(1)G(1) der Funktion G(x)=3x3+1G(x) = 3x^3 + 1.

See Solution

Problem 23532

Find T(3) T'(3) for T(h)=4sin(π12h)+5 T(h) = 4 \sin \left(\frac{\pi}{12} h\right) + 5 .

See Solution

Problem 23533

Find the derivative of the integral: ddx3xds16s2\frac{d}{d x} \int_{3}^{x} \frac{d s}{\sqrt{16-s^{2}}}.

See Solution

Problem 23534

Find the area between the curve y=25x2y=25-x^{2} and the x-axis from x=5x=-5 to x=5x=5. Options: a. 2503\frac{250}{3}, b. 5003\frac{500}{3}, c. 7003\frac{700}{3}, d. 1,4903\frac{1,490}{3}, e. 1,4003\frac{1,400}{3}.

See Solution

Problem 23535

Johanna lässt ihren Kaffee 2,43 Minuten stehen. a) Berechne die mittlere Abkühlgeschwindigkeit bis 8,5 Minuten. b) Welche Temperatur hat der Kaffee nach langer Zeit?

See Solution

Problem 23536

Bestimme die Ableitungen für die Funktionen: f(x)=1x2f(x)=\frac{1}{x^{2}}, f(x)=xf(x)=\sqrt{x}, f(x)=2(3x+1)10f(x)=-2(3x+1)^{10}, f(x)=(x2+1)ln(x)f(x)=(x^{2}+1) \cdot \ln(x). Analysiere den Graphen GfG_{f'} der Ableitung.

See Solution

Problem 23537

Approximate the area under cos(6x)\cos(6x) from 00 to π6\frac{\pi}{6} using 12 rectangles and left endpoints. Round to 4 decimals.

See Solution

Problem 23538

Gegeben ist die Kurvenschar fa(x)=x2axf_{a}(x)=x^{2}-a x. Bestimme Nullstellen, Extrema und die Kurve mit Steigung 1 bei x=3x=3.

See Solution

Problem 23539

Berechne die mittlere Abkühlgeschwindigkeit des Kaffees von T(2,43)T(2,43) bis T(8,5)T(8,5) mit der Funktion T(t)=60t2+247503t2+17,1t+219,6T(t)=\frac{60 t^{2}+24750}{3 t^{2}+17,1 t+219,6}.

See Solution

Problem 23540

Gegeben ist die Funktion f(x)=x412x2f(x)=x^{4}-\frac{1}{2} x^{2}.
1.1 Bestimme die Tangentengleichung an x0=1x_{0}=1. 1.2 Berechne den Flächeninhalt der im 4. Quadranten eingeschlossenen Fläche.
Für f(x)=4exf(x)=4 e^{x}, zeige, dass es keine Extrempunkte gibt.

See Solution

Problem 23541

Bestimme die waagrechten und schrägen Asymptoten der Funktionen für x±x \rightarrow \pm \infty und überprüfe sie grafisch. Funktionen:
f(x)=2x+1x2+1,h(x)=x2+44x+4,g(x)=x2+42x2+1,l(x)=x1x+1 f(x)=\frac{2 x+1}{x^{2}+1}, \quad h(x)=\frac{x^{2}+4}{4 x+4}, \quad g(x)=\frac{x^{2}+4}{2 x^{2}+1}, \quad l(x)=\frac{x-1}{x+1}

See Solution

Problem 23542

Berechnen Sie die Uhrzeit, bei der die Temperatur 6C6^{\circ} \mathrm{C} ist, den Tageshöchstwert und die Nullstellen von f(t)=0,03t2+0,48tf^{\prime}(t)=-0,03 t^{2}+0,48 t.

See Solution

Problem 23543

For projectile motion on level ground, answer: (a) Is velocity ever zero? (b) When is it minimum? Maximum? (c) Can velocity equal initial velocity at times other than t=0t=0? (d) Can speed equal initial speed at times other than t=0t=0?

See Solution

Problem 23544

Differentiate the integral cosx11t2dt\int_{\cos x}^{1} \sqrt{1-t^{2}} dt with respect to xx.

See Solution

Problem 23545

Find the derivative of the integral ddx1exlnu2du\frac{d}{d x} \int_{1}^{e^{x}} \ln u^{2} d u.

See Solution

Problem 23546

Analyze projectile motion on level ground: (a) Is velocity ever zero? (b) When is it minimum/maximum? (c) Can velocity equal initial at t0t \neq 0? (d) Can speed equal initial at t0t \neq 0?

See Solution

Problem 23547

Berechnen Sie den Inhalt des Intervalls für f(x)=6xx2f(x)=6 x-x^{2} im Bereich [2;5][2 ; 5]. Skizzieren Sie die Funktion.

See Solution

Problem 23548

Evaluate the limit: limx+exx2\lim _{x \rightarrow+\infty} \frac{e^{x}}{x^{2}}. Choose from: a) -\infty, b) ++\infty, c) 1, d) 0.

See Solution

Problem 23549

A triangle has legs of 3 cm3 \mathrm{~cm} and 4 cm4 \mathrm{~cm}. One leg decreases at 4 cm/s4 \mathrm{~cm/s}, the other increases at 3 cm/s3 \mathrm{~cm/s}. Find the rate of area change.

See Solution

Problem 23550

Evaluate limxxex\lim _{x \rightarrow-\infty} x e^{x}. Options: a) ++\infty b) -\infty c) 1 d) 0.

See Solution

Problem 23551

Calculate the integral from 1 to 16 of 1t1/4\frac{1}{t^{1/4}} dt.

See Solution

Problem 23552

Aufgabe:
a) Berechne die mittlere Abkühlgeschwindigkeit von T(2,43)T(2,43) bis T(8,5)T(8,5).
b) Bestimme die Temperatur T()T(\infty) des Kaffees nach langer Zeit und erkläre, warum diese Temperatur erreicht wird.

See Solution

Problem 23553

Find when the particle with position s(t)=t32t2+4t1s(t)=t^{3}-2 t^{2}+4 t-1 is decelerating for 0t80 \leq t \leq 8.

See Solution

Problem 23554

A biologist studies bacteria over 35 days with B(t)B(t) as the population model. Which statement is true? a) B(14)>B(13)B^{\prime}(14)>B^{\prime}(13) implies B(14)>B(13)B(14)>B(13). b) B(33)=0B^{\prime}(33)=0 implies B(33)=0B(33)=0. c) B(8)<0B^{\prime}(8)<0 implies B(8)<B(7)B(8)<B(7). d) B(t)=0B^{\prime}(t)=0 occurs at most once for 0t350 \leq t \leq 35.

See Solution

Problem 23555

A square's side grows at 4in/sec4 \mathrm{in} / \mathrm{sec}. Find area change rate when side length is 6 in.

See Solution

Problem 23556

Calculate the integral from 1 to 4 of 12x\frac{1}{2 \sqrt{x}} with respect to xx.

See Solution

Problem 23557

Untersuchen Sie die Funktionen auf lokale Extrempunkte und skizzieren Sie deren Graphen: a) f(x)=13x3x2+3xf(x)=-\frac{1}{3} x^{3}-x^{2}+3 x, b) f(x)=14x42x2+2f(x)=-\frac{1}{4} x^{4}-2 x^{2}+2, c) f(x)=313x3f(x)=3-\frac{1}{3} x^{3}, d) f(x)=16x31,5x+1f(x)=\frac{1}{6} x^{3}-1,5 x+1, e) f(x)=110x4+x22f(x)=\frac{1}{10} x^{4}+x^{2}-2, f) f(x)=110x4x22f(x)=\frac{1}{10} x^{4}-x^{2}-2.

See Solution

Problem 23558

Gegeben sei die Folge bn=Re((1+i2)n)b_{n}=\operatorname{Re}\left(\left(\frac{1+\mathrm{i}}{\sqrt{2}}\right)^{n}\right). Bestimme die Grenzwerte:
limkNb8k,limkNb8k+1,limkNb8k+2,limkNb8k+5 \lim _{k \in \mathbb{N}} b_{8 k}, \quad \lim _{k \in \mathbb{N}} b_{8 k+1}, \quad \lim _{k \in \mathbb{N}} b_{8 k+2}, \quad \lim _{k \in \mathbb{N}} b_{8 k+5}
und nenne die Häufungspunkte der Folge.

See Solution

Problem 23559

Gegeben ist f(x)=12x34x2+8xf(x)=\frac{1}{2}x^{3}-4x^{2}+8x. Bestimmen Sie die Schnittpunkte mit den Achsen, zeichnen Sie den Graphen für x[0,6]x \in [0, 6] und berechnen Sie den Flächeninhalt zwischen ff und der x-Achse.

See Solution

Problem 23560

Find the sum of the series S=n=1an2xnS = \sum_{n=1}^{\infty} a n^{2} x^{n} for a0a \neq 0 and x<1|x|<1.

See Solution

Problem 23561

Find the integral for the surface area change of a cube when the side length increases from ss to 2s2s and evaluate it.

See Solution

Problem 23562

Write and evaluate an integral for the perimeter increase P(s)P(s) of a square as side length ss goes from 2 to 4 units.

See Solution

Problem 23563

A sphere's radius increases at 0.04 cm/sec0.04 \mathrm{~cm/sec}. Find rates of volume and area changes at given conditions.

See Solution

Problem 23564

Evaluate the series: n=1(1)n+112n1\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{2 n-1}.

See Solution

Problem 23565

Bestimme die Ableitung von f(x)=2x+x3f(x)=2x+x^{3}.

See Solution

Problem 23566

Berechnen Sie die Ableitung von f(x)=(x6)2(x+1) f(x) = -(x-6)^{2} \cdot (x+1) .

See Solution

Problem 23567

Gegeben ist die Funktion f(x)=112x4+103x212f(x)=-\frac{1}{12} x^{4}+\frac{10}{3} x^{2}-12.
1) Berechne 66f(x)dx\int_{-6}^{6} f(x) \, dx und erkläre, warum dieser Wert nicht dem Flächeninhalt entspricht. 2) Bestimme den Flächeninhalt, die Nullstellen von ff, die Stammfunktion FF mit F(0)=0F(0)=0, und den Flächeninhalt AfA_{f}.

See Solution

Problem 23568

Berechnen Sie die Fläche zwischen der xx-Achse und den Graphen von ff in den Intervallen: a) [2;5][2 ; 5], b) [1;4][1 ; 4], c) [0;6][0 ; 6], d) [2;4][2 ; 4].

See Solution

Problem 23569

Aufgabe: Zeichnen Sie den Graphen der Funktion f(x)=0,5x25x7f(x)=-0,5 x^{2}-5 x-7 im Intervall I=[8;3]I=[-8;-3] und berechnen Sie die Fläche AfA_f zwischen Graph und xx-Achse.

See Solution

Problem 23570

Bestimme die Ableitungen für die Funktionen: a) f(x)=2x+x3f(x)=2 x+x^{3}, b) f(x)=5xf(x)=5 x, e) f(x)=2x2+4xf(x)=2 x^{2}+4 x, f) f(x)=12x2+5f(x)=\frac{1}{2} x^{2}+5, c) f(x)=ax2f(x)=a x^{2}, g) f(x)=2x33x2+2f(x)=2 x^{3}-3 x^{2}+2, h) f(x)=ax3+bxf(x)=a x^{3}+b x. Für Übung 6: Bestimme ff^{\prime} und zeichne die Graphen für a) f(x)=12x22x+2f(x)=\frac{1}{2} x^{2}-2 x+2, b) f(x)=4x2f(x)=4-x^{2}, c) f(x)=12x32xf(x)=\frac{1}{2} x^{3}-2 x, d) f(x)=3x13x3f(x)=3 x-\frac{1}{3} x^{3}.

See Solution

Problem 23571

Bestimmen Sie die Ableitungen ff^{\prime} für die Funktionen und zeichnen Sie die Graphen von ff und ff^{\prime}.

See Solution

Problem 23572

Find xx values that meet the Mean Value Theorem for f(x)=x3xf(x)=x^{3}-x on the interval [1,2][1,2].

See Solution

Problem 23573

Find the slope of the tangent line to x2+2y2=11x^{2}+2 y^{2}=11 at the point (3,1)(3,-1).

See Solution

Problem 23574

Finde die Punkte, wo die Steigung von f(x)=exx4f(x)=e^{x}-\frac{x}{4} und g(x)=x332x2x1g(x)=\frac{x^{3}}{3}-2 x^{2}-x-1 Null ist. Bestimme die Tangentengleichung t\mathrm{t} an ff bei x=5x=-5.

See Solution

Problem 23575

Untersuchen Sie die Funktionen a(x)=f(x)+g(x)a(x)=f(x)+g(x), b(x)=f(x)g(x)b(x)=f(x) \cdot g(x), c(x)=f(x)g(x)c(x)=\frac{f(x)}{g(x)} auf Asymptoten und Symmetrien. Berechnen Sie die Steigung von f(x)=exx4f(x)=e^{x}-\frac{x}{4} und g(x)=x332x2x1g(x)=\frac{x^{3}}{3}-2 x^{2}-x-1 und geben Sie die Tangentengleichung tt an.

See Solution

Problem 23576

A rare fish's population P(t)=375(1+0.5t3+0.02t)P(t)=375\left(\frac{1+0.5 t}{3+0.02 t}\right) after relocation. Find: A) initial count B) population after 5 years C) end behavior D) max sustainable population.

See Solution

Problem 23577

Bestimme die Bedeutung der mittleren Änderungsrate 0,005 für den Wanderweg zwischen Engelskirchen und Unterkaltenbach.

See Solution

Problem 23578

Find the areas under these curves between the given x-coordinates: (a) y=4x2y=4-x^{2} from x=2x=-2 to x=0x=0 (b) y=x(3x)y=x(3-x) from x=0x=0 to x=3x=3 (c) y=12x2y=\frac{1}{2} x^{2} from x=1x=1 to x=2x=2 (d) y=32xx2y=3-2x-x^{2} from x=3x=-3 to x=1x=1 (e) y=2x2y=2-x^{2} from x=1x=-1 to x=1x=1 (f) 2y=1+x22y=1+x^{2} from x=2x=-2 to x=1x=1 (g) y=x3+2y=x^{3}+2 from x=0x=0 to x=2x=2 (h) y=x2x2y=x^{2}-x-2 from x=3x=-3 to x=1x=-1

See Solution

Problem 23579

Graph the function y=x2+2y=x^{2}+2 and find the limit limx0f(x)\lim _{x \rightarrow 0} f(x). State if the limit does not exist.

See Solution

Problem 23580

If abg(x)=10\int_{a}^{b} g(x)=10, then find bag(x)\int_{b}^{a} g(x).

See Solution

Problem 23581

Find the area under the curve y=3x3y=\frac{3}{x^{3}} from x=1x=1 to x=4x=4.

See Solution

Problem 23582

Calculate the integral from 0 to 1 of the constant function 5: 015dx\int_{0}^{1} 5 \, dx.

See Solution

Problem 23583

Calculate the integral 113x2dx\int_{-1}^{1} 3 x^{2} \, dx.

See Solution

Problem 23584

Find the derivatives of these functions: 1. g(t)=(5t20)3g(t)=(5 t-20)^{3}, 2. y=e41+5y=e^{4-1}+5, 3. f(x)=52tln(3t3+4t2)f(x)=5^{2 t} \ln(3 t^{3}+4 t^{2}), 4. g(θ)=e2θ(cot(θ)θ)g(\theta)=e^{2 \theta}(\cot(\theta)-\theta).

See Solution

Problem 23585

Find the derivatives of these functions:
1. g(t)=(5t20)3g(t)=(5 t-20)^{3}
2. y=et6+5y=e^{t-6}+5
3. f(x)=52tln(3t3+4t2)f(x)=5^{2 t} \ln(3 t^{3}+4 t^{2})
4. θ(θ)=e2θ(cot(θ)θ)\theta(\theta)=e^{2 \theta}(\cot(\theta)-\theta)
5. f(t)=(tx+2)3f(t)=\left(\frac{t}{x+2}\right)^{3}

See Solution

Problem 23586

Find the derivative of f(t)=(43t+2)3f(t) = \left(\frac{4}{3t+2}\right)^3 with respect to tt.

See Solution

Problem 23587

Find f(2)f^{\prime}(2) if f(x)=(x24)3f(x)=(x^{2}-4)^{3}. Options: 0, 1, 2, 3.

See Solution

Problem 23588

Insect population P(t)=200e0.01tP(t)=200 e^{0.01 t}: (a) Find P(0)P(0). (b) What is the growth rate? (c) Find P(10)P(10). (d) When is P=260P=260? (e) When does PP double?

See Solution

Problem 23589

Evaluate the integral 104x4(12x5)3dx\int_{-1}^{0} \frac{4 x^{4}}{\left(1-2 x^{5}\right)^{3}} d x.

See Solution

Problem 23590

Evaluate the integral 01y3(x+y)dx\int_{0}^{1-y} 3(x+y) \, dx.

See Solution

Problem 23591

Evaluate the integral: 4(2x+9)4dx=\int 4(2 x+9)^{4} d x=

See Solution

Problem 23592

Is the integral 3dxx9/4\int_{3}^{\infty} \frac{d x}{x^{9 / 4}} convergent or divergent?

See Solution

Problem 23593

Find the area between the curves f(x)=x48x3+18x2f(x)=x^{4}-8x^{3}+18x^{2} and g(x)=25x+102g(x)=-25x+102 from points (2,152)(-2,152) to (3,27)(3,27). Area = \square.

See Solution

Problem 23594

Find the first and second derivatives of the function f(x)=8sin(π12xπ2)+6f(x)=8 \cdot \sin \left(\frac{\pi}{12} x-\frac{\pi}{2}\right)+6.

See Solution

Problem 23595

Find the marginal profit in 2020 using P(t)=200000(ln(t+1)+0.01t2et)P(t)=200000\left(\ln (t+1)+0.01 t^{2}-e^{-t}\right).

See Solution

Problem 23596

Find the limit: limx33xx21+1+x\lim _{x \rightarrow 3} \frac{3 x-x^{2}}{1+\sqrt{1+x}}.

See Solution

Problem 23597

Evaluate the integral ex2+y22dy\int_{-\infty}^{\infty} e^{-\frac{x^{2}+y^{2}}{2}} dy.

See Solution

Problem 23598

Calculate the areas under these curves: (g) y=x3+2y=x^3+2 from x=0x=0 to x=2x=2 and (h) y=x2x2y=x^2-x-2 from x=3x=-3 to x=1x=-1.

See Solution

Problem 23599

Find the limit as tt approaches -1 for the expression t2+t2t+13+t+23\frac{t^{2}+t}{\sqrt[3]{2 t+1}+\sqrt[3]{t+2}}.

See Solution

Problem 23600

Find the limit: limt1t2+t2t+13+t+23\lim _{t \rightarrow-1} \frac{t^{2}+t}{\sqrt[3]{2 t+1}+\sqrt[3]{t+2}}

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord