Calculus

Problem 11801

Evaluate the integral: (2x+2x)dx\int\left(\frac{2}{\sqrt{x}}+2 \sqrt{x}\right) d x

See Solution

Problem 11802

Calculate the integral: (5x+5x)dx\int\left(\frac{5}{\sqrt{x}}+5 \sqrt{x}\right) dx.

See Solution

Problem 11803

Das Profil einer Skischanze wird durch f(x)=1120x2x+60f(x)=\frac{1}{120} x^{2}-x+60 (für 0x300 \leq x \leq 30) beschrieben. Berechne die mittlere Steigung.

See Solution

Problem 11804

Find the first and second derivatives of f(x)=ln(x2+1)f(x)=\ln(x^{2}+1), its domain, critical numbers, concavity intervals, and inflection points.

See Solution

Problem 11805

Find the integral: (4x13+2x23+11)dx\int\left(4 x^{\frac{1}{3}}+2 x^{-\frac{2}{3}}+11\right) d x.

See Solution

Problem 11806

Find the indefinite integral: 3x3+4x2xdx\int \frac{3 x^{3}+4 x^{2}}{x} d x.

See Solution

Problem 11807

Given f(x)=16xf(x)=\frac{1}{6-x}, find critical points, intervals of increase/decrease, asymptotes, and concavity for graphing.

See Solution

Problem 11808

Given f(x)=16xf(x)=\frac{1}{6-x}, find its derivatives, critical numbers, domain, asymptotes, and graph f(x)f(x).

See Solution

Problem 11809

Ein ICE hat das Weg-Zeit-Gesetz s(t)=0,7t2s(t)=0,7 t^{2}. Berechne: a) Weg in 20 s und mittlere Geschwindigkeit, b) mittlere Geschwindigkeit in [19; 20], c) in [19,99; 20], d) Zeit für 300 km/h.

See Solution

Problem 11810

Calculate the volume of the solid formed by rotating the area between y=Vx+1y = Vx + 1, y=0y = 0, x=0x=0, x=3x=3 around the x-axis.

See Solution

Problem 11811

Berechnen Sie das Volumen des Rotationskörpers, der durch y=x+1y=\sqrt{x+1}, y=0y=0, x=0x=0, und x=3x=3 um die x-Achse entsteht.

See Solution

Problem 11812

Find where the function f(x)=x235x6,x6f(x)=\frac{x^{2}-35}{x-6}, x \neq 6 is increasing/decreasing and identify local extrema.

See Solution

Problem 11813

How many years for Strontium-90 from Chernobyl to reduce by 98.7%98.7\%? Use its half-life of 3030 years. Round to the nearest year.

See Solution

Problem 11814

Given that f(x)f^{\prime}(x) is continuous and f(x)f(x) has a local extreme at x=9x=9, find f(2)f^{\prime}(2), f(9)f^{\prime}(9), f(15)f^{\prime}(15). Is f(x)f(x) increasing or decreasing before and after x=9x=9, and is it a max or min?

See Solution

Problem 11815

Find the first and second derivatives of f(x)=x3+3x2105x+24f(x)=x^{3}+3x^{2}-105x+24. Determine intervals where ff is increasing, decreasing, concave up, and concave down.

See Solution

Problem 11816

Analyze the function with derivative f(x)=(x+3)e2xf'(x)=(x+3)e^{-2x} to find where ff is increasing or decreasing and locate local max/min points.

See Solution

Problem 11817

Find the derivative of the function f(t)=12etf(t) = 12 e^{-t}.

See Solution

Problem 11818

Find the derivative f(x)f^{\prime}(x) of the function f(x)=(sin1(x+3))5f(x)=\left(\sin ^{-1}(x+3)\right)^{5}.

See Solution

Problem 11819

Find the local minimum and maximum of f(x)=2x333x2+60x+2f(x)=2 x^{3}-33 x^{2}+60 x+2. Calculate f(x)f^{\prime}(x) and find xx and yy values.

See Solution

Problem 11820

Find (f1)(1)\left(f^{-1}\right)^{\prime}(1) for the one-to-one function f(x)=2x+cos(x)f(x)=2 x+\cos (x) using the formula (f1)(x)=1f(f1(x))\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}.

See Solution

Problem 11821

Find the first time t>0t > 0 when the velocity of the particle, given by x(t)=12etsintx(t)=12 e^{-t} \sin t, is zero.

See Solution

Problem 11822

Find the acceleration of a particle at t=3t=3 given its velocity v(t)=7(1.01)t2v(t)=7-(1.01)^{-t^{2}}.

See Solution

Problem 11823

Find the local minimum and maximum of f(x)=2x339x2+216x+4f(x)=2 x^{3}-39 x^{2}+216 x+4. Calculate f(x)f^{\prime}(x) and the values at those points.

See Solution

Problem 11824

Find the lengths of two curves from the list below. Only submit two.
(a) y=x36+12xy=\frac{x^{3}}{6}+\frac{1}{2 x} for 1x21 \leq x \leq 2. (b) y=x22lnx4y=\frac{x^{2}}{2}-\frac{\ln x}{4} for 2x42 \leq x \leq 4. (c) y=ln(1x2)y=\ln(1-x^{2}) for 0x120 \leq x \leq \frac{1}{2}. (d) x=43t32,y=12(t1)2x=\frac{4}{3} t^{\frac{3}{2}}, y=\frac{1}{2}(t-1)^{2} for 0t40 \leq t \leq 4. (e) x=r(tsint),y=r(1cost)x=r(t-\sin t), y=r(1-\cos t) for 0t2π0 \leq t \leq 2 \pi. (rr is a constant.)

See Solution

Problem 11825

Find when the speed of the particle, given by s(t)=2t324t2+90t+7s(t)=2 t^{3}-24 t^{2}+90 t+7, is increasing for t0t \geq 0.

See Solution

Problem 11826

Find when the speed of a particle, with velocity v(t)=t3+2t2+2tv(t)=-t^{3}+2 t^{2}+2^{-t} for t0t \geq 0, is increasing.

See Solution

Problem 11827

Verify Theorem 1 for f=2z2x2y2f=2z^2-x^2-y^2 over the box 0x1,0y2,0z40 \leq x \leq 1, 0 \leq y \leq 2, 0 \leq z \leq 4 and for f=x2y2f=x^2-y^2 over the cylinder x2+y24x^2+y^2 \leq 4, 0z10 \leq z \leq 1.

See Solution

Problem 11828

Show that for harmonic functions ff and gg in domain DD, SggndA=Tgradg2dV\iint_{S} g \frac{\partial g}{\partial n} d A = \iiint_{T} |\operatorname{grad} g|^{2} d V.

See Solution

Problem 11829

Find the moment of inertia for a rectangle (0xL0 \leq x \leq L, 0y2L0 \leq y \leq 2L) rotated about the zz-axis. Calculate MM, dIdI, integrate for II, and express II as I=CML2I = C M L^2. What is CC (to two decimal places)?

See Solution

Problem 11830

Sand leaks from a bag modeled by S(t)=K(1t2μ)3S(t)=K\left(1-\frac{t^{2}}{\mu}\right)^{3}.
1. (a) Find initial sand amount. (b) Determine leak rate at time tt. (c) For μ=6\mu=6, analyze leak rate at t=2t=2 (speeding up or slowing down).

See Solution

Problem 11831

Calculate the limit as nn approaches infinity: Limn7n3+8n5n2+12n23n3+4n45n5\operatorname{Lim}_{n \rightarrow \infty} \frac{7 n^{3}+8 n^{5}-n^{2}+1}{2-n^{2}-3 n^{3}+4 n^{4}-5 n^{5}}

See Solution

Problem 11832

Find where the function f(x)=ex2/32f(x)=e^{-x^{2} / 32} is concave up or down and identify inflection points.

See Solution

Problem 11833

A circular pool expands at 16πin2/sec16 \pi \mathrm{in}^{2} / \mathrm{sec}. Find the radius expansion rate when the radius is 4 inches.

See Solution

Problem 11834

Gegeben ist die Funktion f(x)=x23xf(x)=x^{2}-3 x. Skizzieren Sie den Graphen für 1x4-1 \leq x \leq 4 und bestimmen Sie Steigung und Winkel bei x=2x=2.

See Solution

Problem 11835

A balloon expands at 60πin3/sec60 \pi \mathrm{in}^{3}/\mathrm{sec}. Find the surface area growth rate when the radius is 4 in.

See Solution

Problem 11836

Evaluate the triple integral Ef(x,y,z)dV\iiint_{E} f(x, y, z) d V where f(x,y,z)=ex2+y2f(x, y, z)=e^{\sqrt{x^{2}+y^{2}}} over E={(x,y,z)1x2+y29,y0,xy3,4z5}E=\{(x, y, z) \mid 1 \leq x^{2}+y^{2} \leq 9, y \leq 0, x \leq y \sqrt{3}, 4 \leq z \leq 5\}.

See Solution

Problem 11837

Rewrite the function f(x,y,z)=x+yf(x, y, z)=x+y and region EE in spherical coordinates, then convert and evaluate the integral EfdV\iiint_{E} f dV.

See Solution

Problem 11838

Evaluate the integral 0π53cos27xdx\int_{0}^{\frac{\pi}{5}} \frac{3}{\cos ^{2} 7 x} d x.

See Solution

Problem 11839

Convert the integral to spherical coordinates:
99081x281x281x2y2(x2+y2+z2)2dzdydx\int_{-9}^{9} \int_{0}^{\sqrt{81-x^{2}}} \int_{-\sqrt{81-x^{2}}}^{\sqrt{81-x^{2}}-y^{2}} (x^{2}+y^{2}+z^{2})^{2} dz \, dy \, dx
using x=ρsinφcosθx = \rho\sin\varphi\cos\theta, y=ρsinφsinθy = \rho\sin\varphi\sin\theta, z=ρcosφz = \rho\cos\varphi, and dV=ρ2sinφdρdφdθdV = \rho^2\sin\varphi d\rho d\varphi d\theta.

See Solution

Problem 11840

Is the integral range from 0 to 5 correct for the potential v=2πσ05RRdRv=2 \pi \sigma \int_{0}^{5} \frac{R}{R} d R with σ=1.25\sigma=1.25 and r=0.025 mr=0.025 \mathrm{~m}?

See Solution

Problem 11841

1. A moving object's kinetic energy is E=12mv2E=\frac{1}{2} m v^{2}. Find P=dEdtP=\frac{dE}{dt} using dmdt\frac{dm}{dt}, units of PP? Show P=12ρAv3P=\frac{1}{2} \rho A v^{3}, then calculate PP for a turbine with blades 3 m3 \mathrm{~m} and v=10 m/sv=10 \mathrm{~m/s}.

See Solution

Problem 11842

Calculate the integral for the electrostatic potential on a disc:
v=2πσ05RR2+0.0252dR v=2 \pi \sigma \int_{0}^{5} \frac{R}{\sqrt{R^{2}+0.025^{2}}} d R
with σ=1.25\sigma=1.25.

See Solution

Problem 11843

Estimate 2.00452.004^{5} using the linearization of f(x)=x5f(x)=x^{5} at x=2x=2. What is the slope and linearization?

See Solution

Problem 11844

Estimate 200452004^{5} using the linearization of f(x)=x5f(x)=x^{5} at 2. Find the slope and tangent line. Then estimate.

See Solution

Problem 11845

Evaluate the integral R(x2+16y2)2dA\iint_{R}(x^{2}+16 y^{2})^{2} d A over the region RR bounded by the ellipse x2+16y2=1x^{2}+16 y^{2}=1 using the transformation x=u,4y=vx=u, 4y=v.

See Solution

Problem 11846

Find the derivative of f(x)=x(2x7)3f(x)=x(2x-7)^{3}. What is f(x)f^{\prime}(x)?

See Solution

Problem 11847

Find the derivative of f(t)=et5+3+3e3tf(t)=\frac{e^{t^5+3}+3}{e^{3t}}.

See Solution

Problem 11848

Find the derivative of the function f(t)=e5+3+3e5f(t)=\frac{e^{5+3}+3}{e^{5}}.

See Solution

Problem 11849

Find the price pp that maximizes revenue using the elasticity of demand E=p3605pE=\frac{p}{360-5 p}. Round to the nearest dollar.

See Solution

Problem 11850

A lighthouse is 500 m500 \mathrm{~m} from shore, rotating at 4 rev/min. Find the beam's speed at point QQ (200 m200 \mathrm{~m} left of PP). How does this speed change between PP and QQ?

See Solution

Problem 11851

A 48 cm wire is cut into two pieces to form squares.
(a) Find the area function A(x)A(x) for side length xx. (b) What side length xx minimizes the area? (c) What is the minimum area?

See Solution

Problem 11852

Find the limit as x x approaches -1 for x212x2+3x+1 \frac{x^{2}-1}{2x^{2}+3x+1} .

See Solution

Problem 11853

Find the derivative of the function f(t)=4tln(4t)f(t)=\frac{4t}{\ln(4t)}. What is f(t)f'(t)?

See Solution

Problem 11854

Find the limit as xx approaches -1 for x212x2+3x+1\frac{x^{2}-1}{2 x^{2}+3 x+1}. Enter the result or "inf"/"-inf".

See Solution

Problem 11855

Find the derivative of the function f(t)=t7t2+4tln(4t)f(t)=\frac{t^{7}-t^{2}+4 t}{\ln (4 t)}. What is f(t)f^{\prime}(t)?

See Solution

Problem 11856

Show that the equation 5esin(3x)=2x25-e^{\sin(3x)}=2x^2 has a solution using the Intermediate Value Theorem. Define f(x)f(x) and find [a,b][a, b] where f(a)<0f(a)<0 and f(b)>0f(b)>0.

See Solution

Problem 11857

Find the limit: limx47x(x4)2\lim _{x \rightarrow 4} \frac{7-x}{(x-4)^{2}}.

See Solution

Problem 11858

Find the limit as xx approaches 4 for the expression 7x(x4)2\frac{7-x}{(x-4)^{2}}.

See Solution

Problem 11859

Find where the function f(x)=2x4+48x3+432x212x7f(x)=2 x^{4}+48 x^{3}+432 x^{2}-12 x-7 is concave up or down and identify inflection points.

See Solution

Problem 11860

Compute the derivatives: a) f(x)=sin(2x+3)f(x)=\sin(2x+3), b) g(x)=e3xx2+1g(x)=\frac{e^{3x}}{x^2+1}, c) h(x)=(2x+3)2x+3h(x)=(2x+3)^{2x+3}.

See Solution

Problem 11861

Find where the function f(x)=2x4+48x3+432x212x7f(x)=2 x^{4}+48 x^{3}+432 x^{2}-12 x-7 is concave up or down, and identify inflection points.

See Solution

Problem 11862

Estimate ln(6.007)\ln(6.007) using the linearization of f(x)=ln(x)f(x)=\ln(x) at x=6x=6. Find the slope and tangent line equation.

See Solution

Problem 11863

Find where the function f(x)=2x4+48x3+432x212x7f(x)=2 x^{4}+48 x^{3}+432 x^{2}-12 x-7 is concave up or down and identify inflection points.

See Solution

Problem 11864

Find where the function f(x)=2x4+24x3+108x224x5f(x)=2 x^{4}+24 x^{3}+108 x^{2}-24 x-5 is concave up or down and identify inflection points.

See Solution

Problem 11865

Find local maxima and minima, and determine intervals of increase and decrease for y=x312x+2y=x^{3}-12x+2.

See Solution

Problem 11866

Estimate ln(6.007)\ln(6.007) using the linearization of f(x)=ln(x)f(x)=\ln(x) at x=6x=6.
a) Find the slope at x=6x=6. b) Determine the tangent line equation: L(x)=L(x)=. c) Estimate ln(6.007)\ln(6.007) using L(6+71000)=L\left(6+\frac{7}{1000}\right)=.
The variables found in your answer wire [x][x].

See Solution

Problem 11867

Cost Function: Given C(x)=5x2+5x+125C(x)=5 \cdot x^{2}+5 \cdot x+125, find C^n\hat{C}_{n}, C(x)C^{\prime}(x), and estimate cost for 6th item.

See Solution

Problem 11868

Differentiate implicitly to find dydx\frac{d y}{d x} for the equation x4+y4=16xyx^{4}+y^{4}=16 x y.

See Solution

Problem 11869

Given the function f(x)=e9x+exf(x)=e^{9 x}+e^{-x}, find where ff is increasing and decreasing, and determine its local minimum value.

See Solution

Problem 11870

Find aa such that aa2(ax27a2x7a33)dx=0\int_{a}^{a^{2}} (a x^{2}-7 a^{2} x-\frac{7 a^{3}}{3}) \, dx = 0, with aa not an integer.

See Solution

Problem 11871

Given the demand function q=D(p)=600(p+8)5q=D(p)=\frac{600}{(p+8)^{5}}, find: a) elasticity, b) elasticity at p=6p=6 (elastic, inelastic, unit), c) pp for max total revenue.

See Solution

Problem 11872

Déterminez la dérivée C(t)C^{\prime}(t) de la fonction de coût C(t)C(t) pour la publicité télévisée pendant 1980-2010.

See Solution

Problem 11873

Coût d'une pub télé de 30s de 1980 à 2010 : C(t)={50t+3250t<15150t117515t30C(t)=\begin{cases}50t+325 & 0 \leq t<15 \\ 150t-1175 & 15 \leq t \leq 30\end{cases}. a) C(t)C(t) est-elle continue? b) Trouver C(t)C'(t).

See Solution

Problem 11874

Déterminez la longévité à long terme s(t)s(t) donnée par s(t)=110514+13×20.04ts(t)=\frac{1105}{14+13 \times 2^{-0.04 t}} pour t0t \geq 0.

See Solution

Problem 11875

Fonction de coût C(q)=mq+bC(q)=m q+b. Trouvez limqCˉ(q)=limqC(q)q\lim_{q \to \infty} \bar{C}(q)=\lim_{q \to \infty} \frac{C(q)}{q}. Est-ce que la règle de l'Hôpital s'applique ? Justifiez. Interprétez le résultat.

See Solution

Problem 11876

Evaluate f(1)f(1) and f(2)f(2) for f(x)=x3+2x22x+7f(x)=-x^{3}+2x^{2}-2x+7. Does the Intermediate Value Theorem confirm a zero between 1 and 2? YES \bigcirc NO

See Solution

Problem 11877

Find f(2)f(2) and f(3)f(3) for f(x)=x35x2+8x8f(x)=x^{3}-5x^{2}+8x-8. Does the IVT ensure a zero between x=2x=2 and x=3x=3?  YES  NO \text { YES } \bigcirc \text { NO }

See Solution

Problem 11878

Evaluate f(1)f(1) and f(2)f(2) for f(x)=x3+2x22x+7f(x)=-x^{3}+2x^{2}-2x+7. Does the IVT confirm a zero between 1 and 2?

See Solution

Problem 11879

Calculate the area under the curve y=5xy=\frac{5}{\sqrt{x}} from x=1x=1 to x=25x=25.

See Solution

Problem 11880

Find the area between y=exy=e^{x}, y=0y=0, x=1x=1, and x=6x=6. Use a graphing tool to check your answer.

See Solution

Problem 11881

Calculate the area under the curve y=5xy=\frac{5}{\sqrt{x}} for all values of xx on the x-axis.

See Solution

Problem 11882

Find the critical point of the function f(x)=ex(x3)f(x)=e^{x}(x-3). Enter the value of xx.

See Solution

Problem 11883

Find the absolute maximum and minimum of f(x)=x64xx+4f(x)=x-\frac{64 x}{x+4} on [0,13][0,13]. What are the values of xx?

See Solution

Problem 11884

Find the change in revenue RR when xx increases by 4 from x=13x=13, given dRdx=834x\frac{d R}{d x}=83-4x.

See Solution

Problem 11885

Given f(x)=2x1f^{\prime \prime}(x)=2 x-1 and x=1x=1 is critical, determine if it's a local/absolute min/max using the Second Derivative Test.

See Solution

Problem 11886

Find the net change and average rate of change between points (1,1)(-1,1) and (5,4)(5,4).
(a) Net change: 414 - 1
(b) Average rate: 415(1)\frac{4 - 1}{5 - (-1)}

See Solution

Problem 11887

Find the intervals where the function f(x)=x443x31f(x)=\frac{x^{4}}{4}-3 x^{3}-1 is concave down: (0,6)(0,6), (,0)(-\infty, 0), (,6)(-\infty, 6), (6,)(6, \infty), or never.

See Solution

Problem 11888

If f(x)f(x) has a local minimum at x=cx=c with f(x)<0f^{\prime}(x)<0 for x<cx<c and f(x)>0f^{\prime}(x)>0 for x>cx>c, then x=cx=c is: - an absolute minimum - an absolute maximum - a local maximum - a local minimum

See Solution

Problem 11889

Is it TRUE or FALSE that f(p)=0f^{\prime \prime}(p)=0 implies pp is an inflection point of ff?

See Solution

Problem 11890

Find the inflection point(s) of f(x)=x3/5(x3)f(x)=x^{3/5}(x-3): x=34x=\frac{-3}{4}, x=0x=0, x=3x=3, x=98x=\frac{9}{8}, or none?

See Solution

Problem 11891

Find the critical numbers of the function g(x)=x1/9x8/9g(x)=x^{1/9}-x^{-8/9} at x=8x=-8.

See Solution

Problem 11892

Find the absolute max and min of f(x)=x64xx+4f(x)=x-\frac{64 x}{x+4} on [0,13][0,13]. What are the xx values for each?

See Solution

Problem 11893

Given a twice differentiable function g(x)g(x), which statement about f(x)=g(x)x3f(x)=g(x)-x^{3} is TRUE?

See Solution

Problem 11894

Given g(0)=2g(0)=2, g(0)=1g'(0)=-1, g(0)=3g''(0)=-3, determine the truth about f(0)=sin(0)+g(0)f(0) = \sin(0) + g(0).

See Solution

Problem 11895

Find the inflection point(s) of f(x)=x3/5(x3)f(x)=x^{3/5}(x-3). Choose from: x=34x=\frac{-3}{4}, x=0x=0, x=3x=3, x=98x=\frac{9}{8}, or none.

See Solution

Problem 11896

Find the local maximum and minimum of the function f(x)=x348xf(x)=x^{3}-48x. What are the xx values for each?

See Solution

Problem 11897

Find the absolute max and min of f(x)=x64xx+4f(x)=x-\frac{64 x}{x+4} on [0,13][0,13]. What are the xx values?

See Solution

Problem 11898

Show why 00 is a critical number for h(t)=t3/46t1/4h(t)=t^{3/4}-6t^{1/4}. Should you test 00 in the function or its derivative? Explain the exponent's sign role.

See Solution

Problem 11899

Find the tangent line equation to y=3x22x+5y=3 x^{2}-2 x+5 at x=1x=1. Choose from the options given.

See Solution

Problem 11900

Find the derivative of f(x)=x5e7xf(x) = x^{5} e^{-7x} and show that the derivative is undefined at x=0x=0.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord