Calculus

Problem 32401

Finde die Ableitung von f(t)=(62t)9f(t) = (6 - 2t)^9 mit der Kettenregel.

See Solution

Problem 32402

Find the limit using L'Hôpital's Rule: limx0sin(11x)x=\lim _{x \rightarrow 0} \frac{\sin (11 x)}{x}=\square

See Solution

Problem 32403

Find the limit using L'Hôpital's Rule: limt10t21005t2+49t10=\lim _{t \rightarrow-10} \frac{t^{2}-100}{5 t^{2}+49 t-10}=\square

See Solution

Problem 32404

Find the derivative of the function f(x)=23x3f(x)=\frac{2}{3} x^{3}. What is f(x)f^{\prime}(x)?

See Solution

Problem 32405

Find the limit as xx approaches 0 for the expression x23sin(x)x\frac{x^{2}-3 \sin (x)}{x}. Enter I for \infty, -I for -\infty, or DNE if it doesn't exist.

See Solution

Problem 32406

Find the limit using L'Hospital's rule: limx0exx15x2\lim _{x \rightarrow 0} \frac{e^{x}-x-1}{5 x^{2}}.

See Solution

Problem 32407

Find the limit as x x approaches -\infty: limxx2ex \lim _{x \rightarrow-\infty} x^{2} e^{x} . Use I'Hospital's Rule if necessary.

See Solution

Problem 32408

Find the limit as tt approaches 0 for tan9ttsect\frac{\tan 9 t}{t \sec t}.

See Solution

Problem 32409

Evaluate the integral from 0 to 8: 0820zdz=\int_{0}^{8} \sqrt{\frac{20}{z}} \, dz =

See Solution

Problem 32410

Find the limit: limt0sin4tsin6t\lim _{t \rightarrow 0} \frac{\sin 4 t}{\sin 6 t}. Enter DNE if it doesn't exist.

See Solution

Problem 32411

Find the limit as x x approaches 0 for tan(7x)sin(3x) \frac{\tan(7x)}{\sin(3x)} .

See Solution

Problem 32412

Find the normal line equation for f(x)=x3+3f(x)=\sqrt[3]{x}+3 at the point where x=8x=8.

See Solution

Problem 32413

Find the limit as xx approaches 0: limx0tan5xtan8x=\lim _{x \rightarrow 0} \frac{\tan 5 x}{\tan 8 x}=\square

See Solution

Problem 32414

Find the limit: limx0ex(1+x)2x2=\lim _{x \rightarrow 0}-\frac{e^{x}-(1+x)}{2 x^{2}}=\square

See Solution

Problem 32415

Find the limit as xx approaches infinity: limx2ln(x)x2=\lim _{x \rightarrow \infty} \frac{2 \ln (x)}{x^{2}}=\square

See Solution

Problem 32416

Find the limit: limx5xsin(1x)=\lim _{x \rightarrow \infty}-5 x \sin \left(\frac{1}{x}\right)=\square

See Solution

Problem 32417

Gegeben ist fa(x)=(lnx)2+alnx34a2f_{a}(x)=(\ln x)^{2}+a \cdot \ln x-\frac{3}{4} a^{2}. Zeigen Sie, dass faf_{a} einen Extrempunkt hat und bestimmen Sie dessen Koordinaten. Finden Sie aa, damit Extremstelle Nullstelle ist. Bestimmen Sie die Tangente tat_{a} und den Wert von aa, für den das Dreieck im IV. Quadranten gleichschenklig ist.

See Solution

Problem 32418

Which limit shows the derivative of f(x)=1x1f(x)=\frac{1}{x-1} at x=2x=2? Choose from the options given.

See Solution

Problem 32419

Evaluate the limit using L'Hôpital's Rule:
limxπ14sinxxπ \lim _{x \rightarrow \pi} \frac{14 \sin x}{x-\pi}
Enter INF, -INF, or DNE if it doesn't exist.

See Solution

Problem 32420

Find expressions for f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} and limh0f(x+h)f(x)h\lim_{h \to 0} \frac{f(x+h)-f(x)}{h} for f(x)=x3f(x)=x^{3}.

See Solution

Problem 32421

Gegeben ist die Funktion f(x)=e2x+1f(x)=e^{2 x}+1. Skizzieren Sie den Graphen für 3x0,5-3 \leq x \leq 0,5 und analysieren Sie die Wertemenge.

See Solution

Problem 32422

Gegeben ist die Funktion f(x)=e2x+1f(x)=e^{2 x}+1. Skizzieren Sie den Graphen für 3x0,5-3 \leq x \leq 0,5 und untersuchen Sie die Wertemenge.

See Solution

Problem 32423

What does the limit limx52x2252x5\lim _{x \rightarrow 5} \frac{\frac{2}{x^{2}}-\frac{2}{5^{2}}}{x-5} represent?

See Solution

Problem 32424

Find the slope of the tangent line to f(x)=x3+xf(x)=x^{3}+x at the point (2,10)(2,10). Enter the exact value.

See Solution

Problem 32425

Untersuchen Sie die Funktion N(t)=242+10e0,5tN(t)=\frac{24}{2+10 \cdot e^{-0,5 t}}: a) Graph für 4<t10-4<t \leq 10 (Schrittweite 2). b) Anfangs- und Grenzbestand? c) Bestimmen Sie NN' und skizzieren Sie den Graphen.

See Solution

Problem 32426

Berechnen Sie die Flächeninhaltsfunktion A0(x)\mathrm{A}_{0}(\mathrm{x}) für die Funktionen: a) f(x)=xf(x)=x, b) f(x)=2f(x)=2, c) f(x)=x+2f(x)=x+2.

See Solution

Problem 32427

Zeigen Sie, dass die Funktion A0(x)=x2+3x\mathrm{A}_{0}(x)=x^{2}+3x die Flächeninhaltsfunktion von f(x)=2x+3f(x)=2x+3 für x[0,a]x \in [0, a] ist.

See Solution

Problem 32428

Bestimme die Seitenlängen aa und bb eines Rechtecks mit Umfang u=40 cmu=40 \mathrm{~cm} für maximalen Flächeninhalt.

See Solution

Problem 32429

Ein Land hat 20 Millionen Einwohner. Nach 5 Jahren sind es 23 Millionen. Bestimme die Wachstumsfunktion N(t)N(t) und skizziere den Graphen. Berechne den Prozentsatz des Grenzbestands nach 50 Jahren und wann 95\% erreicht sind.

See Solution

Problem 32430

Q24 Given y=f(x)y=f(x) and y=g(x)y=g(x) intersecting at x=ax=a and x=bx=b, show why abg(x)f(x)dx\int_{a}^{b}|g(x)-f(x)| dx finds the area. Discuss its limitations.

See Solution

Problem 32431

Bestimme die Flächeninhaltsfunktion von ff mit unterer Grenze 0 für die Funktionen: a) f(x)=x+1f(x)=x+1, b) f(x)=x2+2x+3f(x)=x^{2}+2x+3, c) f(x)=2x3+4x+1f(x)=2x^{3}+4x+1, d) f(x)=ax2,a>0f(x)=ax^{2}, a>0.

See Solution

Problem 32432

Übung 3: a) Bestimme die Flächeninhaltsfunktion A0(x)\mathrm{A}_{0}(\mathrm{x}) für f(x)=13x2\mathrm{f}(\mathrm{x})=\frac{1}{3} \mathrm{x}^{2}. b) Berechne die Flächeninhalte für [0;1][0; 1] und [0;2][0; 2]. c) Finde den Flächeninhalt für [1;2][1; 2].

See Solution

Problem 32433

Find the derivative of the integral: ddx(2xsin(t4)dt)\frac{d}{d x}\left(\int_{2}^{x} \sin \left(t^{4}\right) d t\right). What is it? (A) sin(x4)\sin \left(x^{4}\right) (B) 4x3cos(x4)4 x^{3} \cos \left(x^{4}\right) (C) sin(x4)sin(16)\sin \left(x^{4}\right)-\sin (16) (D) 4x3cos(x4)32cos(16)4 x^{3} \cos \left(x^{4}\right)-32 \cos (16)

See Solution

Problem 32434

Identify the right Riemann sum for 381+xdx\int_{3}^{8} \sqrt{1+x} d x from the options given.

See Solution

Problem 32435

Find h(x)h'(x) if h(x)=1x32+t2dth(x)=\int_{-1}^{x^{3}} \sqrt{2+t^{2}} dt for x0x \geq 0. Options: A) 2+x2\sqrt{2+x^{2}}, B) 2+x6\sqrt{2+x^{6}}, C) 3x22+x23 x^{2} \sqrt{2+x^{2}}, D) 3x22+x63 x^{2} \sqrt{2+x^{6}}.

See Solution

Problem 32436

Bestimme die Nullstelle von f(x)=x3+2x2f(x) = x^{3} + 2x - 2 und f(x)=x5x+6f(x) = x^{5} - x + 6 mit dem Newton-Verfahren.

See Solution

Problem 32437

Berechnen Sie die Flächeninhaltsfunktion von ff mit unterer Grenze 0 für: a) f(x)=x+1f(x)=x+1, b) f(x)=x2+2x+3f(x)=x^{2}+2x+3, c) f(x)=2x3+4x+1f(x)=2x^{3}+4x+1, d) f(x)=ax2,a>0f(x)=ax^{2}, a>0.

See Solution

Problem 32438

Bestimme die Flächeninhaltsfunktion von ff mit unterer Grenze 0 für: a) f(x)=x+1f(x)=x+1, b) f(x)=x2+2x+3f(x)=x^{2}+2x+3, c) f(x)=2x3+4x+1f(x)=2x^{3}+4x+1, d) f(x)=ax2,a>0f(x)=ax^{2}, a>0.

See Solution

Problem 32439

Find the derivative of the integral ddxx2(cost6)dt\frac{d}{d x} \int_{x}^{2}(\cos \sqrt[6]{t}) d t.

See Solution

Problem 32440

Find the average rate of change of g(x)=4x3+4g(x)=4x^3+4 from x=1x=-1 to x=2x=2.

See Solution

Problem 32441

Differentiate the integral ex6sin6tdt\int_{e^{x}}^{6} \sin^{6} t \, dt with respect to xx.

See Solution

Problem 32442

Find the derivative of the integral e6x(sin6t)dt \int_{e}^{6} x\left(\sin^{6} t\right) dt with respect to x x .

See Solution

Problem 32443

Calculate the average rate of change of g(x)=3x2+8x3g(x)=3 x^{2}+\frac{8}{x^{3}} over the interval [4,3][-4,3].

See Solution

Problem 32444

Find the derivative of the integral ddx0x41+t6dt\frac{d}{d x} \int_{0}^{x^{4}} \sqrt{1+t^{6}} \, dt.

See Solution

Problem 32445

Ein Land hat 20 Millionen Einwohner, wächst auf 23 Millionen in 5 Jahren und hat eine Grenze von 100 Millionen.
a) Bestimme die Wachstumsfunktion: N(t)=N0GN0+(GN0)eGkt N(t) = \frac{N_{0} \cdot G}{N_{0} + (G - N_{0}) \cdot e^{-G \cdot k \cdot t}} Skizziere den Graphen für 0<t1000 < t \leq 100.
b) Wie viel Prozent des Grenzbestands sind nach 50 Jahren erreicht? Wann sind 95%95\% des Grenzbestands erreicht?

See Solution

Problem 32446

1. Find the limits: (a) limx0+xx\lim _{x \rightarrow 0^{+}} x^{x}, (b) limx0+tg(x)ln(x)\lim _{x \rightarrow 0^{+}} \operatorname{tg}(x) \ln (x).
2. Show there exists yRy \in \mathbb{R} such that f(y)=110k=110f(xk)f(y)=\frac{1}{10} \sum_{k=1}^{10} f(x_{k}) for continuous ff.
3. Derive ff: (a) f(x)=sin(x)sin(x)f(x)=\sin (x)^{\sin (x)}, (b) f(x)=xcos(x)ln(x)f(x)=x \cos (x) \ln (x).
4. Prove inequalities for x>0x>0: (a) 1x22cos(x)1-\frac{x^{2}}{2} \leqslant \cos (x), (b) xx36sin(x)x-\frac{x^{3}}{6} \leqslant \sin (x).

See Solution

Problem 32447

Find f(e)f^{\prime}(e) if f(x)=xlnxf(x)=x^{\ln x}. Choices: ee, 0, 1, 2.

See Solution

Problem 32448

Given f(x)=3x2+Cf(x)=3 x^{2}+C, find BB in f(2+h)f(2)h=Ah+B(2)\frac{f(2+h)-f(2)}{h} = A h + B(2), where A=3A=3.

See Solution

Problem 32449

Vergleich des Wachstums von zwei Staaten A und B mit den Funktionen NA(t)=120020+40e0,048tN_{A}(t)=\frac{1200}{20+40 \cdot e^{-0,048 t}} und NB(t)=60010+50e0,084tN_{B}(t)=\frac{600}{10+50 \cdot e^{-0,084 t}}. a) Graphen skizzieren für 0<t1000<t \leq 100. b) Anfangs- und Grenzbestände bestimmen. c) Zeit finden, wann NA=NBN_{A} = N_{B}.

See Solution

Problem 32450

Find the limit: limx(5x158x12+36x15)\lim _{x \rightarrow \infty}\left(\frac{5 x^{15}}{8 x^{12}+36 x^{15}}\right).

See Solution

Problem 32451

Find the derivative of f(x)=2x2+5x+7f(x)=2 x^{2}+5 x+7 using the limit definition. Simplify f(x+h)f(x)f(x+h)-f(x).

See Solution

Problem 32452

Gegeben ist fa(x)=(lnx)2+alnx34a2f_{a}(x)=(\ln x)^{2}+a \cdot \ln x-\frac{3}{4} a^{2}. Zeigen Sie, dass faf_{a} einen lokalen Extrempunkt hat. Bestimmen Sie aa, wenn Extremstelle Nullstelle ist. Finden Sie die Tangente tat_{a}, die ein gleichschenkliges Dreieck im vierten Quadranten bildet.

See Solution

Problem 32453

Find the derivative of f(x)=2x10x6+8f(x)=2 x^{10}-x^{6}+8. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 32454

Find the derivative of f(w)=w56+4wf(w)=w^{\frac{5}{6}}+4w and determine the domain of f(w)f^{\prime}(w) in interval notation.

See Solution

Problem 32455

Find the derivative of f(w)=(w(5/6))+4wf(w)=(w^{(5/6)})+4w and state the domain of f(w)f^{\prime}(w) in interval notation.

See Solution

Problem 32456

Find (fg)(10)(f g)^{\prime}(10) and (fg)(10)\left(\frac{f}{g}\right)^{\prime}(10) given f(10)=5,f(10)=11,g(10)=1,g(10)=8f(10)=5, f^{\prime}(10)=11, g(10)=-1, g^{\prime}(10)=8.

See Solution

Problem 32457

Expand f(x)=(x2+9)(2x7)f(x)=\left(x^{2}+9\right)(2 x-7), then find its derivative f(x)f^{\prime}(x).
f(x)= f(x)=
f(x)= f^{\prime}(x)=

See Solution

Problem 32458

Find the tangent line equation for f(x)=(x2+9)(x2)f(x)=(x^{2}+9)(x-2) at point (0,18)(0,-18). y=y=

See Solution

Problem 32459

Find δ\delta such that x21<0.2|x^2 - 1| < 0.2 for 0<x1<δ0 < |x - 1| < \delta using the graph of f(x)=x2f(x) = x^2.

See Solution

Problem 32460

Find the derivative of f(x)=(x2+9)(2x7)f(x)=(x^{2}+9)(2x-7) using the product rule. Define g(x)=x2+9g(x)=x^{2}+9 and h(x)=2x7h(x)=2x-7. Calculate g(x)g'(x), h(x)h'(x), and f(x)f'(x).

See Solution

Problem 32461

Finde den Wert von zz, der den maximalen Flächeninhalt AA des Rechtecks unter f(x)=ex2f(x) = e^{x^2} ergibt.

See Solution

Problem 32462

Find the initial population of arctic flounder from P(t)=9t+1680.1t2+1P(t)=\frac{9 t+168}{0.1 t^{2}+1} and calculate P(10)P^{\prime}(10).

See Solution

Problem 32463

Untersuchen Sie die Funktion N(t)=242+10e0,5tN(t)=\frac{24}{2+10 \cdot e^{-0,5 t}}: Graph skizzieren, Anfangsbestand, Grenzbestand, Ableitungsfunktion NN' bestimmen.

See Solution

Problem 32464

Find δ\delta so that f(x)0.25<0.1|f(x)-0.25|<0.1 for 0<x4<δ0<|x-4|<\delta, where f(x)=1xf(x)=\frac{1}{x}.

See Solution

Problem 32465

Find the derivative of f(x)=(x2+9)(2x7)f(x)=(x^{2}+9)(2x-7) using the product rule. Let g(x)=x2+9g(x)=x^{2}+9 and h(x)=2x7h(x)=2x-7.

See Solution

Problem 32466

Is the statement true or false? A function ff has a local max at cc if xI,f(x)f(c)\forall x \in I, f(x) \leq f(c). Choose A, B, C, or D.

See Solution

Problem 32467

Ein Land hat 20 Millionen Einwohner, wächst auf 23 Millionen in 5 Jahren. Bestimme die Wachstumsfunktion N(t)N(t) und Prozentsätze.

See Solution

Problem 32468

Determine where the function g(x)=x510x3g(x)=x^{5}-10 x^{3} is concave up from the options: a, b, c, or d.

See Solution

Problem 32469

Find the value of cc for the function f(x)=3x2f(x)=3 x^{2} on [0,3][0,3] that satisfies the Mean Value Theorem.

See Solution

Problem 32470

Find the absolute maximum of f(x)=xπ+tanxf(x)=\frac{x}{\pi}+\tan x on [0,π4][0, \frac{\pi}{4}]. Options: a. 54\frac{5}{4} b. π4\frac{\pi}{4} c. 0 d. No maximum.

See Solution

Problem 32471

A particle moves with velocity v(t)=6t+18v(t)=-6 t+18. If x(0)=2x(0)=2, find x(2)x(2).

See Solution

Problem 32472

Find the inflection point of the function f(x)=x3x2+3x+1f(x)=x^{3}-x^{2}+3x+1. Options: a. 1, b. None, c. 13\frac{1}{3}, d. 3.

See Solution

Problem 32473

Find the position of a particle at time t=2t=2 given v(t)=3t22tv(t)=3 t^{2}-2 t and x(0)=10x(0)=10.

See Solution

Problem 32474

Evaluate the integral from 2 to e2e^{2} of 1+lnxxlnxdx\frac{1+\ln x}{x \ln x} dx. Choices: a. 3+ln23+\ln 2, b. 1+ln21+\ln 2, c. 1ln21-\ln 2, d. 2ln(ln2)2-\ln (\ln 2).

See Solution

Problem 32475

Find df1dx\frac{d f^{-1}}{d x} at x=f(2)x=f(2) for f(x)=2x3f(x)=2 x^{3}. Options: a. 16 b. none c. 18\frac{1}{8} d. 124\frac{1}{24} e. 4

See Solution

Problem 32476

Find the position of a particle at time t=1t=1 given v(t)=6t2+8t+7v(t)=6 t^{2}+8 t+7 and x(3)=7x(3)=7.

See Solution

Problem 32477

Find the position of a particle at time t=1t=1 given v(t)=6t26tv(t)=6 t^{2}-6 t and x=8x=-8 at t=3t=3.

See Solution

Problem 32478

Find the position of a particle at time t=0t=0 if its velocity is v(t)=3t28v(t)=3 t^{2}-8 and x(1)=3x(1)=3.

See Solution

Problem 32479

Find the position of a particle at time t=1t=1 given v(t)=6t2+8v(t)=6 t^{2}+8 and x=6x=-6 at t=3t=3.

See Solution

Problem 32480

Find the derivative yy', where y=ln1xx+1y=\ln \frac{1}{x \sqrt{x+1}}. Options are: a, b, c, d, e.

See Solution

Problem 32481

Vergleichen Sie die Bevölkerungswachstumsfunktionen NA(t)=120020+40e0,048tN_{A}(t)=\frac{1200}{20+40 \cdot e^{-0,048 t}} und NB(t)=60010+50e0,084tN_{B}(t)=\frac{600}{10+50 \cdot e^{-0,084 t}} für 0<t1000<t \leq 100. Skizzieren Sie die Graphen.

See Solution

Problem 32482

Find the position of a particle at time t=3t=3 given v(t)=3t2+2tv(t)=3 t^{2}+2 t and x=4x=-4 at t=1t=1.

See Solution

Problem 32483

Find the rectangle's dimensions with maximum area inscribed in a circle of radius 10 cm10 \mathrm{~cm}.

See Solution

Problem 32484

Find dydx\frac{d y}{d x} if ey=6x+3ye^{y}=6 x+3 y. Select the correct option from the choices given.

See Solution

Problem 32485

Find the integral: x+6x2+12x+6dx\int \frac{x+6}{x^{2}+12 x+6} d x

See Solution

Problem 32486

Evaluate the integral from 3 to 9 of 1x(lnx)2dx\frac{1}{x(\ln x)^{2}} \, dx. What is the result?

See Solution

Problem 32487

A cannonball fired parallel to the ground orbits Earth if it reaches a speed of 7.91×103 m/s7.91 \times 10^{3} \mathrm{~m/s}. How long to orbit? (1.40 h)(1.40 \mathrm{~h})

See Solution

Problem 32488

A rocket accelerates at 15.6 m/s215.6 \mathrm{~m/s^2} for 6.94 s, then falls. Find time to peak, height at peak, and landing time.

See Solution

Problem 32489

Find the vertical and horizontal asymptotes of the function f(x)=1x2f(x)=\frac{1}{x^{2}}.

See Solution

Problem 32490

Find the limits:
1. limh0log3(9+h)2h\lim_{h \rightarrow 0} \frac{\log_{3}(9+h)-2}{h}
2. f(0)f^{\prime}(0) for f(x)=log3xf(x)=\log_{3} x
3. f(2)f^{\prime}(2) for f(x)=log3xf(x)=\log_{3} x
4. f(2)f^{\prime}(2) for f(x)=log3(x+9)f(x)=\log_{3}(x+9)
5. f(9)f^{\prime}(9) for f(x)=log3xf(x)=\log_{3} x

See Solution

Problem 32491

Find the derivative f(x)f^{\prime}(x) for f(x)=arctan(5ex)f(x)=\arctan(5 e^{-x}).

See Solution

Problem 32492

Find dydx\frac{d y}{d x} at y=3y=3 for the equation y2+2x3y=3y^{2}+2 x^{3} y=3. Choices: 154-\frac{15}{4}, 94-\frac{9}{4}, 0, 92-\frac{9}{2}.

See Solution

Problem 32493

Find intercepts, holes, asymptotes of y=x32x2x+2x2x6y=\frac{x^{3}-2 x^{2}-x+2}{x^{2}-x-6} and sketch. Also, estimate rate of change for: a) f(x)=x3+x2f(x)=x^{3}+x^{2} at x=2x=2 b) f(x)=x4+1f(x)=-x^{4}+1 at x=3x=3 using ±0.001\pm 0.001.

See Solution

Problem 32494

Find the limit: limn46+94+145++(5n1)(n+2)n3\lim _{n \rightarrow \infty} \frac{4 \cdot 6 + 9 \cdot 4 + 14 \cdot 5 + \cdots + (5 n-1)(n+2)}{n^{3}}.

See Solution

Problem 32495

Determine if the series converges or diverges: n=112n(n+1n)n2\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left(\frac{n+1}{n}\right)^{n^{2}}

See Solution

Problem 32496

Solve the equation using Separation of Variables: y9x2y3=0y' - \frac{9 x^{2}}{y^{3}}=0. Include the constant CC.

See Solution

Problem 32497

Solve the differential equation y+16xy8=0y' + 16xy^8 = 0 using separation of variables. Include the constant CC.

See Solution

Problem 32498

Solve the IVP: yy=xey2y y' = x e^{-y^2}, with y(0)=5y(0) = -5. Use exact numbers and symbolic notation.

See Solution

Problem 32499

Normalize the wave function Ψ(x)=2Lsin(πxL)\Psi(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{\pi x}{L}\right) for a particle in a box.

See Solution

Problem 32500

Estimate the instantaneous rate of change for: a) f(x)=x3+x2f(x)=x^{3}+x^{2} at x=2x=2 b) f(x)=x4+1f(x)=-x^{4}+1 at x=3x=3 Also, find the average rate of change of P(t)=6t2+110t+3000P(t)=6t^{2}+110t+3000 from 1995 to 2005.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord