Calculus

Problem 31901

Find the slope of the tangent line for the function y=2cosxy=2^{\cos x} at the point where x=π2x=\frac{\pi}{2}.

See Solution

Problem 31902

Find the fifth derivative of f(x)=x5+2x4f(x)=x^{5}+2 x^{4}. What is it? a. else b. 0 c. 120 d. 60x2+48x60 x^{2}+48 x

See Solution

Problem 31903

Find the derivative f(2)f^{\prime}(2) using the limit definition for f(x)=x2+5xf(x)=x^{2}+5x.

See Solution

Problem 31904

Find the first-order partial derivatives of f(x,y,z)=3xln(x2yz)+xy/zf(x, y, z)=3 x \ln \left(x^{2} y z\right)+x^{y / z}.

See Solution

Problem 31905

Find dydx\frac{d y}{d x} if y=4x2y=4^{x^{2}} and choose the correct option: a, b, c, d, or e.

See Solution

Problem 31906

Find the inflection point of the function f(x)=x3+6x2+9x1f(x)=x^{3}+6x^{2}+9x-1 using f(x)f'(x) and f(x)f''(x).

See Solution

Problem 31907

Find z/s\partial z / \partial s and z/t\partial z / \partial t using the Chain Rule for the given functions of ss and tt.

See Solution

Problem 31908

Find z/s\partial z / \partial s and z/t\partial z / \partial t using the Chain Rule for z=(xy)5z=(x-y)^{5}, x=s2tx=s^{2} t, y=st2y=s t^{2}.

See Solution

Problem 31909

Find dydx\frac{d y}{d x} for y=exxy=\frac{e^{x}}{x}. Options: a. exx2(1x)\frac{e^{x}}{x^{2}}(1-x) b. None c. x1x2ex\frac{x-1}{x^{2} e^{-x}} d. x2ex(x1)\frac{x^{2}}{e^{x}}(x-1) e. x2ex(1x)\frac{x^{2}}{e^{x}}(1-x).

See Solution

Problem 31910

Untersuchen Sie die Funktion f(x)=x4+4x+3f(x) = x^{4} + 4x + 3: Nullstellen, f(x)f'(x), Extrempunkte, f(x)f''(x), Wendepunkte, Verhalten für x±x \to \pm\infty, Graph skizzieren.

See Solution

Problem 31911

Find the rate of change of h=2(1sinθ1)h=2\left(\frac{1}{\sin \theta}-1\right) at θ=30\theta=30^{\circ}. Options: (A) 43-\frac{4}{\sqrt{3}}, (B) 34-\frac{3}{4}, (C) 43-4 \sqrt{3}, (D) 43-\frac{4}{3}.

See Solution

Problem 31912

Find the derivative yy^{\prime} if y=elnxy=e^{\ln x}. Options: a. 1, b. exe^{x}, c. None, d. ln(x)\ln (x), e. 0.

See Solution

Problem 31913

Find the relative minimum point of f(x)=13x32x2+3x+1f(x)=\frac{1}{3} x^{3}-2 x^{2}+3 x+1. Answer as (x,y) or none.

See Solution

Problem 31914

Find dydx\frac{d y}{d x} if y=log2(4x28x)y=\log _{2}(4 x^{2}-8 x). Choices: a. 4x28x8x8\frac{4 x^{2}-8 x}{8 x-8} b. 8x8ln(2)(4x28x)\frac{8 x-8}{\ln (2)(4 x^{2}-8 x)} c. None d. ln(2)(4x28x)8x8\frac{\ln (2)(4 x^{2}-8 x)}{8 x-8} e. ln(2)(8x8)4x28x\frac{\ln (2)(8 x-8)}{4 x^{2}-8 x}

See Solution

Problem 31915

Find the inflection point of the function f(x)=x22x21f(x)=\frac{x^{2}-2}{x^{2}-1} using f(x)f'(x) and f(x)f''(x).

See Solution

Problem 31916

Minimize the energy functional I(u)=A12μu2(uf)dAI(u)=\int_{A} \frac{1}{2} \mu\|\nabla u\|^{2}-(u f) \mathrm{d} A for uC(Aˉ)u \in C^{\infty}(\bar{A}).
1. Describe how to find a minimizer.
2. Derive the weak formulation.
3. From the weak form, find the strong form and state the boundary value problem.
4. What Neumann boundary condition is assumed?

See Solution

Problem 31917

Find dydx\frac{d y}{d x} if y=ln(x6)y=\ln \left(x^{6}\right). Choices: a. None b. 6x6 x c. 5x\frac{5}{x} d. 6x\frac{6}{x} e. 1x\frac{1}{x}

See Solution

Problem 31918

Find dydx\frac{d y}{d x} if y=4x2y=4^{x^2}. Options: a. 2x×4x2ln(4)\frac{2 x \times 4^{x^2}}{\ln (4)}, b. 4x24 x^{2}, c. 4x2ln(4)4^{x^2} \ln (4), d. None, e. ln(4)×4x2×2x\ln (4) \times 4^{x^{2}} \times 2 x.

See Solution

Problem 31919

Find the primal basis for the cubic Lagrange element CG3(μ)\mathcal{C G}^{3}(\mu) on μ=[1,1]\mu=[-1,1] using Gauss-Lobatto points. Then, compute the quadratic Lagrangian interpolation Πg2u\Pi_{g}^{2} u for u=log(x)u=\log(x) in x[1,3]x \in [1,3] using two bases. Which basis is better? Is x[0,2]x \in [0,2] a better interval for approximation?

See Solution

Problem 31920

Bestimme die Ableitung der Funktion f(x)=34xf(x)=\frac{3}{4} \cdot x.

See Solution

Problem 31921

In jeder Stunde zerfallen 13\% von 20 g20 \mathrm{~g} Plutonium 243. Bestimme die Zerfallsfunktion und die Halbwertszeit.

See Solution

Problem 31922

Bestimme die Zerfallsfunktion für 20 g Plutonium 243, wenn 13\% pro Stunde zerfallen, und berechne die Halbwertszeit.

See Solution

Problem 31923

Bestimmen Sie die Ableitungen der Funktionen: a) f(x)=e4xf(x)=e^{-4 x}, b) f(x)=ex2f(x)=e^{x^{2}}, c) f(x)=e2x+1f(x)=e^{2 x+1}, d) f(x)=exf(x)=e^{-\sqrt{x}}, e) f(x)=2e0.5xf(x)=2 \cdot e^{0.5 x}, f) f(x)=xex3f(x)=x-e^{x^{3}}, g) f(x)=(1x)exf(x)=(1-x) \cdot e^{x}, h) f(x)=x2exf(x)=x^{2} \cdot e^{-x}, i) f(x)=xexf(x)=\sqrt{x} \cdot e^{x}, j) f(x)=1e2xf(x)=\frac{1}{e^{2 x}}, k) f(x)=eexf(x)=e^{e^{x}}, l) f(x)=(x3+3x2)exf(x)=(x^{3}+3 x^{2}) \cdot e^{-x}, m) f(x)=x2exf(x)=\frac{x^{2}}{e^{x}}, n) f(x)=exf(x)=\sqrt{e^{x}}, o) f(x)=(x2+1)exf(x)=(x^{2}+1) \cdot e^{-x}, p) f(x)=(x2e2x)2f(x)=(x^{2}-e^{-2 x})^{2}.

See Solution

Problem 31924

Find the end behavior of f(x)=7x2+2x3+16f(x)=7 x^{2}+2 x^{3}+16 by calculating limxf(x)\lim _{x \rightarrow \infty} f(x) and limxf(x)\lim _{x \rightarrow-\infty} f(x).

See Solution

Problem 31925

Find the derivative of the function f(x)=3x5+πx3x+sin(20)f(x)=\sqrt{3} \cdot x^{5}+\pi \cdot x^{3}-x+\sin (20). What is f(x)f'(x)?

See Solution

Problem 31926

Find the limit: limx3x243x=\lim _{x \rightarrow-3} \frac{x^{2}-4}{3-x}=\square (Simplify your answer.) B. The limit does not exist.

See Solution

Problem 31927

Find the marginal cost from the function C(x)=178+1.9xC(x)=178+1.9 x. What is C(x)=C^{\prime}(x)=\square?

See Solution

Problem 31928

Calculate the limit: limx(2x52x2)4x2\lim _{x \rightarrow \infty}\left(\frac{2 x-5}{2 x-2}\right)^{4 x^{2}}.

See Solution

Problem 31929

Find the derivative f(x)f^{\prime}(x) for the function f(x)=7x5f(x)=-7 x^{5}. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 31930

Find the marginal average cost function for C(x)=139+6.5xC(x)=139+6.5 x and R(x)=5x0.07x2R(x)=5 x-0.07 x^{2}.

See Solution

Problem 31931

Find the value of the series: n=11n38\sum_{n=1}^{\infty} \frac{1}{n^{3}-8}.

See Solution

Problem 31932

Find the limit L=limx4(x2+6)L=\lim _{x \rightarrow 4} (x^{2}+6) and δ\delta such that f(x)L<ε|f(x)-L|<\varepsilon for ε=0.005\varepsilon=0.005.

See Solution

Problem 31933

Find the limit: limx3x243x=\lim _{x \rightarrow-3} \frac{x^{2}-4}{3-x}=\square or state if it does not exist.

See Solution

Problem 31934

Choose all correct answers (يمكن أن يكون هناك أكثر من إجابة صحيحة) given:
14f(x)dx=8,14f(x)dx=8 \int_{1}^{4} f(x) dx=8, \int_{-1}^{4} f(x) dx=-8
Then, evaluate the following statements.

See Solution

Problem 31935

Find the limits for f(x)=x29x+8x+8f(x)=\frac{x^{2}-9 x+8}{x+8} as x8,8+,8x \to -8^{-}, -8^{+}, -8.

See Solution

Problem 31936

If f(x)=lnxf(x)=\sqrt{\ln x}, choose correct statements about its domain and behavior.

See Solution

Problem 31937

Find the derivative s(x)s^{\prime}(x) of s(x)=4x2s(x)=4x-2, then calculate s(1)s^{\prime}(1), s(2)s^{\prime}(2), and s(3)s^{\prime}(3).

See Solution

Problem 31938

If f(x)f(x) is differentiable with an inflection point at x=2x=2, which statements are true: I. f(2)=0f^{\prime \prime}(2)=0, II. f(x)f^{\prime \prime}(x) changes sign at x=2x=2, III. f(x)f(x) has an extreme value at x=2x=2?

See Solution

Problem 31939

Find the area under the curve of f(x)=8(lnx)3xf(x) = \frac{8(\ln x)^{3}}{x} from x=1x=1 to x=4x=4 using the integral 148(lnx)3xdx\int_{1}^{4} \frac{8(\ln x)^{3}}{x} \, dx.

See Solution

Problem 31940

Find the derivative of the function 5x35 \sqrt{x^{3}} with respect to xx.

See Solution

Problem 31941

Calculate the integral from 16 to 25 of 2π(9x12)21+(9x12)2x1dx2 \pi(9-x^{\frac{1}{2}})^{2} \sqrt{1+(9-x^{\frac{1}{2}})^{2} x^{-1}} \, dx.

See Solution

Problem 31942

Find F(x)F'(x) for the following: a) F(x)=9x1tdtF(x)=\int_{9}^{x} \frac{1}{t} dt, b) F(x)=x171tdtF(x)=\int_{x}^{17} \frac{1}{t} dt, c) F(x)=12x41tdtF(x)=\int_{12}^{x^{4}} \frac{1}{t} dt, d) F(x)=2+cosxx2+11tdtF(x)=\int_{2+\cos x}^{x^{2}+1} \frac{1}{t} dt.

See Solution

Problem 31943

Find the integral for the area outside r=3+2sinθr=3+2 \sin \theta and inside r=2r=2.

See Solution

Problem 31944

Find aa such that a2a2x35x2+4x2dx=0\int_{a}^{2a} \frac{2x^{3}-5x^{2}+4}{x^{2}} dx=0 and show 3a3+pa2+q=03a^{3}+pa^{2}+q=0 for constants pp and qq.

See Solution

Problem 31945

Calculate the sum: n=1(1)nn2n22n+1\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}}{n^{2}-2 n+1}.

See Solution

Problem 31946

Find the derivative of y=3xy=3^{-x}. What is yy'?

See Solution

Problem 31947

Find f(x)f''(x) if f(x)=0x(t3+2t2+3)dtf(x)=\int_{0}^{x}(t^{3}+2 t^{2}+3) dt.

See Solution

Problem 31948

Approximate the area of region RR using a right Riemann sum with the values rr at θ=0,14,12,34,1\theta = 0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1.

See Solution

Problem 31949

Determine the concavity of the function f(x)=76x22x3f(x)=7-6 x^{2}-2 x^{3}.

See Solution

Problem 31950

Find the derivative of the function f(x)=x22x+1x+1f(x) = \frac{x^{2} - 2x + 1}{x + 1}. What is f(x)f'(x)?

See Solution

Problem 31951

Find the value of cc from the Mean Value Theorem for f(x)=x34xf(x)=x^{3}-4x on [0,1][0,1]. Options: a, b, c, d.

See Solution

Problem 31952

Find the length of the curve x=(y+2)2x=(y+2)^{2} for 1y41 \leq y \leq 4. Choose the correct integral:
1. 14(4y2+16y+17)dy\int_{1}^{4}\left(4 y^{2}+16 y+17\right) d y
2. 14(2y+4)dy\int_{1}^{4}(2 y+4) d y
3. 144y2+16y+17dy\int_{1}^{4} \sqrt{4 y^{2}+16 y+17} d y

See Solution

Problem 31953

Find df1dx\frac{d f^{-1}}{d x} at x=f(3)x=f(3) for f(x)=x23x+2f(x)=x^{2}-3x+2, where x>1x>1.

See Solution

Problem 31954

Evaluate the integral: 4siny1cosydy=\int \frac{4 \sin y}{1-\cos y} d y=. Choose the correct answer.

See Solution

Problem 31955

Find the lateral surface area of the cone from revolving y=32x,0x5y=\frac{3}{2} x, 0 \leq x \leq 5 about the xx-axis. Set up the integral.

See Solution

Problem 31956

Find the derivative of y=x7x4y=x^{7} \cdot x^{4} using the Product Rule and select the correct answer.

See Solution

Problem 31957

Find the integral of sinxcosx\frac{\sin x}{\cos x} with the substitution μ=cosx\mu=\cos x.

See Solution

Problem 31958

Calculate the integral sin2xcosxdx\int \sin^{2} x \cos x \, dx using the substitution u=sinxu=\sin x, du=cosxdxdu=\cos x \, dx.

See Solution

Problem 31959

Evaluate the integral extan(ex)dx\int e^{x} \tan \left(e^{x}\right) d x.

See Solution

Problem 31960

Given a vibrating guitar string, what statements about displacement u(x,t)u(x, t) are always true? Consider properties of u(a,t)u(a, t).

See Solution

Problem 31961

Find the integral of xx2+1\frac{x}{\sqrt{x^{2}+1}} with respect to xx.

See Solution

Problem 31962

Find the derivative dydx\frac{d y}{d x} for the function y=100x3y=\frac{100}{x^{3}}.

See Solution

Problem 31963

Differentiate the function: y=4x314x2+32x+7y=4 x^{3}-14 x^{2}+32 x+7. Find dydx\frac{d y}{d x}.

See Solution

Problem 31964

Differentiate y=10xy=10 \sqrt{x}. What is ddx(10x)\frac{d}{d x}(10 \sqrt{x})?

See Solution

Problem 31965

Find the derivative of the function y=7x32+4x12+x35y=7 x^{-\frac{3}{2}}+4 x^{-\frac{1}{2}}+x^{3}-5. What is y=?y^{\prime}=?

See Solution

Problem 31966

Differentiate: y=x99xy=\frac{x}{9}-\frac{9}{x}, find ddx(x99x)=\frac{d}{d x}\left(\frac{x}{9}-\frac{9}{x}\right)=\square.

See Solution

Problem 31967

Calculate the integral x4x+1dx\int x \sqrt{4 x+1} \, dx.

See Solution

Problem 31968

Find the point(s) where the tangent line of y=0.025x2+9xy=-0.025 x^{2}+9 x has a slope of 5. The point(s) is/are \square.

See Solution

Problem 31969

Find the integral: 1xln2xdx\int \frac{1}{x \ln^{2} x} \, dx

See Solution

Problem 31970

Differentiate y=x99xy=\frac{x}{9}-\frac{9}{x} and find ddx(x99x)\frac{d}{d x}\left(\frac{x}{9}-\frac{9}{x}\right).

See Solution

Problem 31971

Differentiate the function y=5x248x3+9y=\frac{5 x^{2}-4}{8 x^{3}+9}. Find y=y^{\prime}=\square.

See Solution

Problem 31972

Find the average revenue change rate for R(x)=89xR(x)=89 \sqrt{x} when x=405x=405 jackets are produced.

See Solution

Problem 31973

Find the derivative f(1)f^{\prime}(1) for the function f(x)=4x26x+3f(x)=4 x^{2}-6 x+3. Simplify your answer.

See Solution

Problem 31974

Differentiate the function F(x)=(x38x)2F(x)=(x^{3}-8x)^{2}. Find F(x)=F^{\prime}(x)=

See Solution

Problem 31975

Given the equation R(v)=6800vR(v)=\frac{6800}{v}, find R(v)R'(v), R(60)R(60), and R(60)R'(60).

See Solution

Problem 31976

Solve the equation d2ydx2=ex\frac{d^{2} y}{d x^{2}}=e^{x} with initial conditions y(0)=2y(0)=2 and y(1)=ey(1)=e.

See Solution

Problem 31977

Given the equation R(v)=6800vR(v)=\frac{6800}{v}, find:
a) R(v)R^{\prime}(v), the rate of change of heart rate with respect to vv.
b) Heart rate at v=60 mLv=60 \mathrm{~mL}.
c) Rate of change at v=60 mLv=60 \mathrm{~mL}.

See Solution

Problem 31978

Find the integral: x2x+1dx\int x^{2} \sqrt{x+1} \, dx

See Solution

Problem 31979

Differentiate the function y=x2+2y=\sqrt{x^{2}+2}. Find dydx=\frac{d y}{d x}=\square.

See Solution

Problem 31980

Find the derivative of the inverse function f1f^{-1} at x=6x=6 for f(x)=x32f(x)=x^{3}-2. Choices: 112\frac{1}{12}, 12, 16\frac{1}{6}, 112\frac{-1}{12}, 12-12.

See Solution

Problem 31981

Differentiate the function f(x)=(x5x2)6f(x)=\left(\frac{x-5}{x-2}\right)^{6}. Find f(x)=f^{\prime}(x)=\square.

See Solution

Problem 31982

Calculate the integral 216dxxlnx\int_{2}^{16} \frac{d x}{x \sqrt{\ln x}}. Choose the correct answer from the options provided.

See Solution

Problem 31983

Calculate the integral: 3e2xsine2xdx\int \frac{3 e^{2 x}}{\sin e^{2 x}} d x.

See Solution

Problem 31984

Find the rate of change of the particle's position given s=20+4ts=\sqrt{20+4t} at t=4t=4 sec. Answer: m/sec\square \mathrm{m/sec}.

See Solution

Problem 31985

Find the derivative of lny=ln[t(t1)(t2)]\ln y = \ln [t(t-1)(t-2)]. Choose the correct option from the list.

See Solution

Problem 31986

Find the derivative of the consumer credit model C(x)=9.24x485.45x3+287.04x2309.05x+2651.7C(x)=9.24 x^{4}-85.45 x^{3}+287.04 x^{2}-309.05 x+2651.7.

See Solution

Problem 31987

Differentiate the function f(x)=(2x63x5+5)25f(x)=(2x^{6}-3x^{5}+5)^{25}. Find f(x)=f'(x)=.

See Solution

Problem 31988

Evaluate the integral: 3x41+x10dx\int \frac{3 x^{4}}{1+x^{10}} d x

See Solution

Problem 31989

Model consumer credit with C(x)=9.24x485.45x3+287.04x2309.05x+2651.7C(x)=9.24 x^{4}-85.45 x^{3}+287.04 x^{2}-309.05 x+2651.7. Find rates of change for 2008 and 2015.

See Solution

Problem 31990

Calculate the integral: I=4x3+7x+5x2+1dxI = \int \frac{4 x^{3}+7 x+5}{x^{2}+1} d x

See Solution

Problem 31991

Find the local maxima and minima of the function f(x)=logx+sinx+4f(x) = \log x + \sin x + 4 for positive xx.

See Solution

Problem 31992

Check if the series n=153nn3\sum_{n=1}^{\infty} \frac{5-3 n}{n^{3}} converges or diverges. Options: a. divergent b. convergent.

See Solution

Problem 31993

Determine if the series n=16n(n+3)\sum_{n=1}^{\infty} \frac{6}{n(n+3)} converges or diverges and find its value.

See Solution

Problem 31994

Determine the convergence of the series n=13n2+2n4+n+n2\sum_{n=1}^{\infty} \frac{3 n^{2}+2 n}{4+n+n^{2}} using tests.

See Solution

Problem 31995

Find the sum of the series n=1(3n23(n+1)2)\sum_{n=1}^{\infty} \left( \frac{3}{n^{2}} - \frac{3}{(n+1)^{2}} \right). Options: a. 1 b. 3 c. 0 d. diverges

See Solution

Problem 31996

Determine if the series n=13n15n\sum_{n=1}^{\infty} \frac{3^{n-1}}{5^{n}} converges and find its sum. Options: a. 57\frac{5}{7}, b. diverges, c. 56\frac{5}{6}, d. 1429\frac{14}{29}, e. 12\frac{1}{2}.

See Solution

Problem 31997

1. Find the sum of the series n=1n+23n\sum_{n=1}^{\infty} \frac{n+2}{3^{n}}.
2. Find the sum of the series n=12n+1n3n1\sum_{n=1}^{\infty} \frac{2^{n+1}}{n 3^{n-1}}.

See Solution

Problem 31998

Calculer l'intégrale suivante : 3+2xdx\int \sqrt{3+2 x} \, dx

See Solution

Problem 31999

Finn nullpunktene til f(x)=(2sinx+3)3f(x)=(2 \sin x+3)^{3} for x[0,2π]x \in[0,2 \pi]. Regn ut f(π6)f\left(\frac{\pi}{6}\right) og f(π6)f^{\prime}\left(\frac{\pi}{6}\right).

See Solution

Problem 32000

Find the interval(s) where the curve y=0xt2t2+t+4dty=\int_{0}^{x} \frac{t^{2}}{t^{2}+t+4} dt is concave downward.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord