Calculus

Problem 22301

Evaluate the integral: 01(cos(t2))2+(e5t)2dt\int_{0}^{1} \sqrt{\left(\cos \left(t^{2}\right)\right)^{2}+\left(e^{-5 t}\right)^{2}} d t

See Solution

Problem 22302

Given an even function f:[1,1](0,)f:[-1,1] \rightarrow(0, \infty) with 11f(x)dx=1\int_{-1}^{1} f(x) d x=1 and f(x)f(x) increasing on [1,0][-1,0]:
(a) Prove f(x)f(x) has a maximum at 0. (b) Define G(r)=rrf(x)dxG(r)=\int_{-r}^{r} f(x) d x and show G(r)G(r) is differentiable on [1,1][-1,1], finding its derivative.

See Solution

Problem 22303

Find the third derivative of the function g(x)=7x22sinxg(x)=7 x^{2}-2 \sin x, i.e., calculate g(x)g^{\prime \prime \prime}(x).

See Solution

Problem 22304

Find the tangent line to f(x)=12x2f(x)=12-x^{2} at the point where x=2x=2.

See Solution

Problem 22305

Find the derivative of the function f(x)=203xf(x)=20 \cdot 3^{x}. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 22306

Find the derivative of the function f(r)=3e7r+6f(r)=3 e^{7 r+6}. What is dfdr\frac{d f}{d r}?

See Solution

Problem 22307

Bestimme die Größe der abgeschnittenen Quadrate, um das Volumen einer offenen Schachtel aus 42 cm x 30 cm Pappe zu maximieren.

See Solution

Problem 22308

Find the derivative dydx\frac{d y}{d x} for the function y=12ex+8x114y=\sqrt[4]{12 e^{x}+8 x^{11}}.

See Solution

Problem 22309

Let f0f_{0} be continuous. Define fn(x)=0xfn1(t)dtf_{n}(x)=\int_{0}^{x} f_{n-1}(t) dt. Prove:
(a) 0x(xt)m1fn(t)dt=1m0x(xt)mfn1(t)dt\int_{0}^{x}(x-t)^{m-1} f_{n}(t) dt=\frac{1}{m} \int_{0}^{x}(x-t)^{m} f_{n-1}(t) dt.
(b) fn(x)=1(n1)!0x(xt)n1f0(t)dtf_{n}(x)=\frac{1}{(n-1)!} \int_{0}^{x}(x-t)^{n-1} f_{0}(t) dt.

See Solution

Problem 22310

Find the average rate of change of f(x)=sinxf(x)=\sin x from x=0x=0 to x=2πx=2\pi.

See Solution

Problem 22311

Berechne die Steigung von ff an x0x_0 mit der h-Methode für: a) f(x)=x2x,x0=1f(x)=x^2-x, x_0=1; b) f(x)=2x2+1,x0=2f(x)=2x^2+1, x_0=-2; c) f(x)=3x+2,x0=2f(x)=3x+2, x_0=2.

See Solution

Problem 22312

Find the grams of carbon-14 left after 5867 years using the model A=16e0.000121tA=16 e^{-0.000121 t}. Round to the nearest whole number.

See Solution

Problem 22313

Ein Snowboarder bewegt sich nach der Formel s(t)=1,5t2s(t)=1,5t^2. Berechne: a) Weg nach 1s und 5s, b) mittlere Geschwindigkeit in 5s, c) Momentangeschwindigkeit nach 5s.

See Solution

Problem 22314

For what values of P P is demand elastic for Q(P)=5000e0.02P Q(P) = 5000 e^{0.02 P} ?
Also, if price increases by 3% 3\% from 40 40 €, how does demand change?

See Solution

Problem 22315

Find the max and min of f(x)=x36x2+12f(x)=x^{3}-6 x^{2}+12 on [1,6][1,6].

See Solution

Problem 22316

Finde die Koordinaten des Punktes, wo der Graph von f(x)=xe2xf(x)=x \cdot e^{2 x} eine waagerechte Tangente hat.

See Solution

Problem 22317

Find the derivative of y=ln(2x2)y=\ln(2 x^{2}) with respect to xx, tt, or θ\theta.

See Solution

Problem 22318

Untersuchen Sie die Wendepunkte der Funktionen: a) f(x)=18x338x2f(x)=\frac{1}{8} x^{3}-\frac{3}{8} x^{2} b) f(x)=110x5x2f(x)=\frac{1}{10} x^{5}-x^{2}.

See Solution

Problem 22319

Untersuchen Sie f(x)=a2x3+2ax2f(x)=a^{2} x^{3}+2 a x^{2} auf Wendepunkte bei x=2x=2. Wie muss aa gewählt werden? Rechts-links?

See Solution

Problem 22320

Find the average rate of change of h(x)=x2x+5h(x)=-x^{2}-x+5 over the interval 6x2-6 \leq x \leq 2.

See Solution

Problem 22321

Find h(0)+h(0)h(0) + h'(0) given the linear approximation y=4x5y = 4x - 5 at x=0x = 0. Choose: (A) -3 (B) -2 (C) -1 (D) 0.

See Solution

Problem 22322

Find dydx\frac{d y}{d x} for y=u3+u21y=u^{3}+u^{2}-1 with u=11xu=\frac{1}{1-x} at x=2x=2. Show all steps.

See Solution

Problem 22323

Find the local linear approximation of f(8.1)f(8.1) given f(8)=5f(8)=-5 and f(8)=3f^{\prime}(8)=3. Choose the correct answer: (A) -4.8 (B) -4.7 (C) -4.6 (D) -4.5.

See Solution

Problem 22324

Sketch a function on [8,8][-8,8] with these properties: a) f(x)>0f'(x)>0 on (1,2)(-1,2) and (4,)(4,\infty) b) f(x)<0f'(x)<0 on (,1)(-\infty,-1) and (2,4)(2,4) c) f(x)>0f''(x)>0 on (,1)(-\infty,1) and (3,)(3,\infty) d) f(x)<0f''(x)<0 on (1,3)(1,3) e) f(1)=f(2)=f(4)=0f'(-1)=f'(2)=f'(4)=0 f) f(x)=0f''(x)=0 at (1,0)(1,0) and (3,1)(3,1).

See Solution

Problem 22325

Find the second partial derivative 2x2(x3+y4+ex3+2y2)\frac{\partial^{2}}{\partial x^{2}}\left(x^{3}+y^{4}+e^{x^{3}+2 y^{2}}\right).

See Solution

Problem 22326

An Egyptian mummy has 25\frac{2}{5} of carbon-14 compared to living humans. Use y=y0e0.0001216ty=y_{0} e^{-0.0001216 t} to find tt.

See Solution

Problem 22327

An airline limits vertical acceleration to k=860mi/h2k=860 \mathrm{mi} / \mathrm{h}^{2}. At 35,000ft35,000 \mathrm{ft} and 300mi/h300 \mathrm{mi} / \mathrm{h}, how far from the airport should the pilot start descent? Graph the approach path.

See Solution

Problem 22328

Find the second mixed partial derivative 2xyex2+3xy+3y3\frac{\partial^{2}}{\partial x \partial y} e^{x^{2}+3 x y+3 y^{3}}.

See Solution

Problem 22329

Find the expression for f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} given f(x)=e(x2)f(x)=e^{(x-2)}.

See Solution

Problem 22330

Find the average price of oil over 12 months given by P(t)=16t2t+64P(t)=\frac{1}{6} t^{2}-t+64.

See Solution

Problem 22331

Finde die Stammfunktion für ff und überprüfe durch Ableiten: a) f(x)=(3x+1)2f(x)=(3 x+1)^{2}, b) f(x)=3(2x+7)2f(x)=\frac{3}{(2 x+7)^{2}}, c) f(x)=6x5f(x)=\sqrt{6 x-5}, d) f(x)=3sin(12x+7)f(x)=3 \sin (12 x+7).

See Solution

Problem 22332

A fish population grows at 3%3\% per year, starting at 12 million in 2016.
a) Model the population tt years since 2016. b) Project the population in 2030 (to the nearest tenth) and find when it reaches 30 million (to the nearest whole number).

See Solution

Problem 22333

Für die Ameisenanzahl fk(t)=82ektf_{k}(t)=8-2 e^{-k t} (in 1000) bestimmen Sie kk bei 7000 Ameisen nach 3 Wochen und Änderungsrate 250/Woche. Langfristige Ameisenanzahl und Interpretation von fk(t+1)fk(t)=0,1f_{k}(t+1)-f_{k}(t)=0,1 und fk(t)=0,1f_{k}^{\prime}(t)=0,1.

See Solution

Problem 22334

Find points (x,y)(x, y) where f(x,y)=x2+3y2y34xf(x, y)=x^{2}+3y^{2}-y^{3}-4x has a relative max, min, or saddle point.

See Solution

Problem 22335

Find the largest profit for a firm with cost C(q)=q318q2+118q+105C(q)=q^{3}-18 q^{2}+118 q+105 and revenue R(q)=58qR(q)=58 q.

See Solution

Problem 22336

Find the tangent lines at x=4x=4 for y=f(x)g(x)y=f(x) g(x) and y=f(x)g(x)y=\frac{f(x)}{g(x)} given tangents y=3x+2y=3x+2 and y=6x5y=6x-5.

See Solution

Problem 22337

World population was 7.1 billion in 2013 with a growth rate of 1.1%1.1\% per year. Find doubling and tripling times in years.

See Solution

Problem 22338

A country has a population of 150 million in 2011. Find the 2039 population if growth is 3%3\% or 2%2\% per year.

See Solution

Problem 22339

Berechnen Sie die Ableitung von f(x)=(3x+1)2f(x) = (3x + 1)^2.

See Solution

Problem 22340

Approximate the integral 111+x3dx\int_{-1}^{1} \sqrt{1+x^3} \, dx using the Trapezoidal Rule with n=4n=4. Show all steps.

See Solution

Problem 22341

Differentiate g(x)=(x2+1)3(7x+2)2g(x)=(x^{2}+1)^{3}(7x+2)^{2} and simplify the result in factored form.

See Solution

Problem 22342

Differentiate g(x)=(x2+1)3(7x+2)2g(x)=(x^{2}+1)^{3}(7x+2)^{2} and simplify the result in factored form.

See Solution

Problem 22343

Find the tangent lines at x=4x=4 for y=f(x)g(x)y=f(x)g(x) and y=f(x)g(x)y=\frac{f(x)}{g(x)} given their tangents at that point.

See Solution

Problem 22344

Berechnen Sie die Ableitung von f(x)=(3x+1)2f(x)=(3x+1)^2.

See Solution

Problem 22345

Finde die Ableitung von f(x)=3(2x+7)2 f(x) = \frac{3}{(2x + 7)^2} .

See Solution

Problem 22346

A turkey at 185F185^{\circ} \mathrm{F} cools to 155F155^{\circ} \mathrm{F} in 30 min. What's its temp after 45 min? Round to nearest °F.

See Solution

Problem 22347

Find ddxaxf(t)dt\frac{d}{d x} \int_{a}^{x} f(t) d t and ddxabf(t)dt\frac{d}{d x} \int_{a}^{b} f(t) d t, where a and bb are constants.

See Solution

Problem 22348

Find the area function A(x)=7x(t+7)dtA(x)=\int_{-7}^{x} (t+7) dt and verify A(x)=(x+7)A'(x)=(x+7). What is A(x)A(x)?

See Solution

Problem 22349

Find the area function A(x)=7x(t+7)dtA(x)=\int_{-7}^{x} (t+7) dt, graph it, and show that A(x)=f(x)A'(x)=f(x). Derivative: A(x)=A'(x)=\square.

See Solution

Problem 22350

Use Newton's Law of Cooling to find T(t)T(t) for body cooling. Given T(t)=50+48.6e0.1947tT(t)=50+48.6 e^{-0.1947 t}, find time since death if T=76FT=76^{\circ} \mathrm{F}.

See Solution

Problem 22351

Simplify f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=e2xf(x)=e^{-2 x}. Options: a) e2x(e2h1)h\frac{e^{-2 x}(e^{2 h}-1)}{h} b) e2x(e2h1)h\frac{e^{-2 x}(e^{-2 h}-1)}{h} c) e2x(e2h+1)h\frac{e^{-2 x}(e^{2 h}+1)}{h} d) e2x(e2h+1)h\frac{e^{-2 x}(e^{-2 h}+1)}{h}

See Solution

Problem 22352

Find the area under the curve y=x9x23y=x \sqrt[3]{9-x^{2}} from x=0x=0 to x=3x=3 using direct integration.

See Solution

Problem 22353

Find the velocity of the particle at t=1t=1 for s(t)=13t38t2+28ts(t)=\frac{1}{3} t^{3}-8 t^{2}+28 t. When is the particle not moving?

See Solution

Problem 22354

Simplify f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=e(2x1)f(x)=e^{(2 x-1)}. Result: e2x(e2h1)e^{2 x}(e^{2 h}-1).

See Solution

Problem 22355

Simplify f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=e2xf(x)=e^{-2 x}. Choose from: a) e2x(e2h1)h\frac{e^{-2 x}(e^{2 h}-1)}{h}, b) e2x(e2h1)h\frac{e^{-2 x}(e^{-2 h}-1)}{h}, c) e2x(e2h+1)h\frac{e^{-2 x}(e^{2 h}+1)}{h}, d) e2x(e2h+1)h\frac{e^{-2 x}(e^{-2 h}+1)}{h}.

See Solution

Problem 22356

Bestimme Extrem- und Wendepunkt sowie Asymptoten der Funktion f(x)=3+xexf(x)=3+x \cdot e^{x}.

See Solution

Problem 22357

Find the integral using integration by parts: 7xexdx\int 7 x e^{x} d x.

See Solution

Problem 22358

Evaluate the integral from -3 to -1 of (x2+x+5)(x^{2}+x+5). Options: 15.17, 14.67, 24.33, 14.5.

See Solution

Problem 22359

Find two methods to determine the derivative of f(x)=(x2+x1)(x3+8)f(x)=(x^{2}+x-1)(x^{3}+8) without actually differentiating.

See Solution

Problem 22360

Find the integral using integration by parts: 9xlnxdx\int 9 x \ln x \, dx.

See Solution

Problem 22361

Evaluate the integral from 1 to 4 of x1/2dxx^{1/2} \, dx. Options: 4.67, 5.67, 2.8, 3.4.

See Solution

Problem 22362

Find the area between the xx-axis and f(x)=x26x+9f(x)=x^{2}-6 x+9 over the interval [2,4][2,4]. Options: 13\frac{1}{3}, 43\frac{4}{3}, 73\frac{7}{3}, 23\frac{2}{3}.

See Solution

Problem 22363

Find the horizontal asymptotes of the function f(x)=3(x+7)(x7)2x(x+7)f(x)=\frac{3(x+7)(x-7)}{2 x(x+7)}.

See Solution

Problem 22364

Find two methods to determine the derivative of y=(x24)4(x2+1)5y=\frac{\left(x^{2}-4\right)^{4}}{\left(x^{2}+1\right)^{5}} without differentiating.

See Solution

Problem 22365

Determine the horizontal asymptotes of the function f(x)=3(2x+7)(x+8)x+1f(x)=\frac{3(2 x+7)(x+8)}{x+1}.

See Solution

Problem 22366

Find the area between the xx-axis and f(x)=x2+1f(x)=x^{2}+1 over [0,1][0,1] using the definite integral. Options: 13\frac{1}{3}, 43\frac{4}{3}, 23\frac{2}{3}, 53\frac{5}{3}.

See Solution

Problem 22367

Bestimmen Sie die Extrem- und Wendepunkte der Funktion f(x)=127(34x)3+4xf(x)=\frac{1}{27}(3-4 x)^{3}+4 x.

See Solution

Problem 22368

Find the consumer's surplus for the demand function D(x)=30x2D(x)=30-x^{2} at equilibrium x=4x=4. Options: 643\frac{64}{3}, 1283\frac{128}{3}, 64.

See Solution

Problem 22369

Evaluate the integral 1x5e2x6dx\int_{1}^{\infty} x^{5} e^{-2 x^{6}} \, dx.

See Solution

Problem 22370

Find the local max and min of g(x)=ex+e2xg(x)=e^{x}+e^{-2x}, and the xx values where they occur, rounded to two decimals.

See Solution

Problem 22371

Simplify f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=e3xf(x)=e^{-3x}.

See Solution

Problem 22372

Evaluate the integral 02x16x4dx\int_{0}^{2} \frac{x}{\sqrt{16-x^{4}}} d x.

See Solution

Problem 22373

Find the derivative of yy with respect to xx for y=(x22x+3)exy=(x^{2}-2x+3)e^{x}.

See Solution

Problem 22374

1- For S(t)=(t21)3S(t)=(t^{2}-1)^{3}, find max/min points and inflection points. 2- Determine critical values and their nature for f(x)=2x55x445x3f(x)=\frac{2 x^{5}}{5}-\frac{x^{4}}{4}-5 x^{3}. 3- Given p(q)=1802qp(q)=180-2q and c(q)=q3+5q+162c(q)=q^{3}+5q+162, find total revenue, quantity for max profit, and quantity for min cost.

See Solution

Problem 22375

Bestimmen Sie die Ableitung und klammern Sie, wenn möglich, aus für die Funktionen a) bis f).

See Solution

Problem 22376

Leiten Sie die Funktionen ab und klammern Sie aus: a) f(x)=2xe3xf(x)=2 x \cdot e^{3 x} b) g(x)=(x3)e2xg(x)=(x-3) \cdot e^{2 x} c) f(t)=t2e12t+5f(t)=t^{2} \cdot e^{\frac{1}{2} t}+5 d) g(t)=(t32t2)e2tg(t)=(t^{3}-2 t^{2}) \cdot e^{-2 t} e) f(x)=(2x4)e0,5xf(x)=(2 x-4) \cdot e^{0,5 x} h(x)=(x2x)e0,01xh(x)=(x^{2}-x) \cdot e^{-0,01 x}

See Solution

Problem 22377

Finde die Stammfunktion von f(x)=2x2f(x) = \frac{2}{x^2}.

See Solution

Problem 22378

Find the derivative s(t)s^{\prime}(t) of the function s(t)=3t13+2t2s(t)=3 t^{\frac{1}{3}}+2 t^{2}.

See Solution

Problem 22379

Bestimme die Tangentengleichung an A(2,e2)A(2, e^2) der Exponentialfunktion und ihre Schnittpunkte mit den Achsen. Beschreibe die Graphen von f(x)=ex+5f(x)=-e^{x}+5, g(x)=ex3g(x)=e^{x-3} und h(x)=ex+5h(x)=-e^{-x}+5.

See Solution

Problem 22380

Find the derivative dydx\frac{d y}{d x} for y=2x33x+1y=2 x^{3}-3 x+1. Choose the correct option: a) None b) 6x23x6 x^{2}-3 x c) 6x236 x^{2}-3 d) x23x^{2}-3 e) 3x233 x^{2}-3.

See Solution

Problem 22381

Finde die Stammfunktion von f(x)=1xxf(x) = \frac{1}{\sqrt{x}} - x.

See Solution

Problem 22382

Find the absolute maximum and minimum of f(x)=x39x2+24x10f(x)=x^{3}-9 x^{2}+24 x-10 on the interval [0,4][0,4].

See Solution

Problem 22383

Finde die Stammfunktion von f(x)=2x2f(x)=\frac{2}{x^{2}}.

See Solution

Problem 22384

Finde die Stammfunktion von f(x)=3x2+2xf(x) = -3x^2 + 2x.

See Solution

Problem 22385

Finde die Stammfunktion von f(x)=2x+2f(x) = -2x + 2.

See Solution

Problem 22386

Which of these does not cause a derivative to fail: a) cusp, b) horizontal tangent, c) discontinuity, d) vertical tangent, e) None?

See Solution

Problem 22387

Berechne die Tangente an ff bei x=2x=-2 und die Nullstelle der Tangente. Bestimme den Flächeninhalt des Dreiecks. Funktion: f(x)=x3+6x+12,5x+10f(x) = x^3 + 6x + 12,5x + 10.

See Solution

Problem 22388

Evaluate the integral x2(x37)3dx\int \frac{x^{2}}{(x^{3}-7)^{3}} dx using the substitution u=x37u=x^{3}-7, du=3x2dxdu=3x^{2} dx.

See Solution

Problem 22389

1. Given p(q)=1802qp(q)=180-2q and c(q)=q3+5q+162c(q)=q^{3}+5q+162, find total revenue, max profit quantity, and min cost quantity.
2. For f(x)=6x48x3+1f(x)=6x^{4}-8x^{3}+1, find all points of minima or maxima.
3. Determine the concavity and inflection points for y=3x35x2+6x+15y=3x^{3}-5x^{2}+6x+15.

See Solution

Problem 22390

Gegeben ist die Funktion f(x)=x3+6x2+12.5x+10 f(x)=x^{3}+6x^{2}+12.5x+10 .
a) Zeige, dass f f keine Extremstellen hat.
b) Finde die Tangentengleichung bei x=2 x=-2 und berechne deren Nullstelle sowie den Flächeninhalt des Dreiecks mit den Achsen.
c) (1) Bestimme die Steigungswinkel der Tangente und der Funktion bei ihrem Schnitt mit der y-Achse.
(2) Finde die Stellen, an denen f f den Steigungswinkel 45 45^{\circ} hat.
d) Gib eine Funktion an, die die momentane Zuwachsrate von f f beschreibt.

See Solution

Problem 22391

Gegeben ist die Funktion f(x)=x3+6x2+12.5x+10f(x) = x^{3} + 6x^{2} + 12.5x + 10.
a) Zeige, dass ff keine Extremstellen hat.
b) Finde die Tangentengleichung bei x=2x = -2 und berechne deren Nullstelle sowie den Flächeninhalt des Dreiecks mit den Achsen.
c) (1) Bestimme die Steigungswinkel der Tangente und von ff an der y-Achse. (2) Finde die Stellen, wo ff einen Steigungswinkel von 4545^{\circ} hat.
d) Gib eine Funktion für die momentane Zuwachsrate von ff an und zeige, dass es ein xx mit extremer Zuwachsrate gibt.

See Solution

Problem 22392

Given f(x)=sin1xf(x)=\sin^{-1} x on [1,1][-1,1], check if the Mean Value Theorem applies and find values of cc in [1,1][-1,1]. If not, enter DNE.

See Solution

Problem 22393

Zeigen Sie, dass A(t)=et4(14t2+32t74)A'(t) = e^{\frac{t}{4}}\left(\frac{1}{4} t^{2} + \frac{3}{2} t - \frac{7}{4}\right) die Ableitung von A(t)=(t22t+1)e14tA(t) = (t^2 - 2t + 1)e^{\frac{1}{4}t} ist.

See Solution

Problem 22394

Find error bounds for 061x+1dx\int_{0}^{6} \frac{1}{x+1} dx using trapezoid and Simpson's rule with n=6n=6.

See Solution

Problem 22395

Find the min/max points of f(x)=6x48x3+1f(x)=6 x^{4}-8 x^{3}+1. Also, analyze concavity and inflection for y=3x35x2+6x+15y=3 x^{3}-5 x^{2}+6 x+15. Lastly, for revenue R(x)=x3+3.5x2+6x+500R(x)=-x^{3}+3.5 x^{2}+6 x+500, find units for max revenue and the max revenue value.

See Solution

Problem 22396

Determine the concavity and inflection points for the function y=3x35x2+6x+15y=3 x^{3}-5 x^{2}+6 x+15.

See Solution

Problem 22397

Find the smallest nn for which the error in 010.5sin(3x)dx\int_{0}^{10.5} \sin(3x) \, dx is less than 10410^{-4} using trapezoid and Simpson's rules.

See Solution

Problem 22398

Calculate the distance an object falls in 5.23 seconds under gravity. Use the formula d=12gt2d = \frac{1}{2} g t^2.

See Solution

Problem 22399

Estimate f(0.3)f(0.3) and f(0.4)f(0.4) using f(x)xf(x) \approx x with n=2n=2; find the maximum error for both.

See Solution

Problem 22400

Find the velocity of an object at t=1t=1 for s(t)=5t(t2)2s(t)=5 t(t-2)^{2}. Options: a) 0 m/s b) None c) 15 m/s d) -5 m/s e) 5 m/s.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord