Calculus

Problem 20301

Find the tangent line equations at the specified points for each curve. a) y=3x2y=3x^2 at x=1x=1 b) y=x5y=\sqrt{x-5} at x=9x=9 c) y=8x+11y=\frac{8}{\sqrt{x+11}} at x=5x=5

See Solution

Problem 20302

Find tangent line equations for y=cosxy=\cos x at x=π2,0,π2x=-\frac{\pi}{2}, 0, \frac{\pi}{2}. Graph over [3π2,2π][-\frac{3\pi}{2}, 2\pi].

See Solution

Problem 20303

Find the integration norm of the polynomial f(x)=9x2f(x) = -9x - 2 on C[0,1]C[0,1]. What is f\|f\|?

See Solution

Problem 20304

Find the largest θ\theta in 0<θ<2π0<\theta<2\pi where N(θ)=305+2(sin2θ2cos2θ)2N(\theta)=\frac{30}{5+2(\sin 2\theta-2\cos 2\theta)^{2}} is maximized.

See Solution

Problem 20305

Find tangent line equations for y=cosxy=\cos x at x=π2,0,π2x=-\frac{\pi}{2}, 0, \frac{\pi}{2}. Graph the curve and tangents.

See Solution

Problem 20306

Find the integration distance f,g=01f(x)g(x)dx\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x for f(x)=7x+2f(x)=7x+2, g(x)=2x4g(x)=-2x-4.

See Solution

Problem 20307

Calculate the present value of a \$7,000 annual investment over 7 years at a continuous interest rate of 0.9%.

See Solution

Problem 20308

State the Fundamental Theorem of Calculus and define F(x)=25xcos(t3)dtF(x)=\int_{2}^{5x} \cos(t^3) dt.

See Solution

Problem 20309

Find a function f(x)f(x) where f(x)=3x2+6f'(x) = 3x^2 + 6 and f(0)=5f(0) = 5. What is f(x)f(x)?

See Solution

Problem 20310

Find tangent line equations for y=cosxy=\cos x at x=π2,0,π2x=-\frac{\pi}{2}, 0, \frac{\pi}{2}. Graph the curve and tangents.

See Solution

Problem 20311

Find the volume of the solid formed by revolving the region RR (bounded by f(x)=6x2x2f(x)=6x-2x^2 and the xx-axis from 00 to 11) around the yy-axis. Express your answer in terms of π\pi.

See Solution

Problem 20312

Find the solution for y=x2+16x2y^{\prime}=x^{2}+16x-2 with y=12y=12 at x=0x=0. What is y=?y=?

See Solution

Problem 20313

Approximate the root of x3+x+3=0x^{3}+x+3=0 using Newton's method. Given x1=1x_{1} = -1 and x2=54x_{2} = -\frac{5}{4}, find x3x_{3}.

See Solution

Problem 20314

The function s(t)=8t(t+2)s(t)=8 t(t+2) gives distance in km. Find average velocity for: i) t=3t=3 to t=4t=4, ii) t=3t=3 to t=3.1t=3.1, iii) t=3t=3 to t=3.01t=3.01. Then estimate instantaneous velocity at t=3t=3.

See Solution

Problem 20315

A foreign language student learns N(t)=20tt2N(t)=20t-t^{2} terms after tt hours.
a) How many terms are learned in the 3rd3^{\text{rd}} hour? b) What is the learning rate at t=2t=2 hours?

See Solution

Problem 20316

Zeigen Sie, dass das Volumen zwischen f(x)=25(x3)2f(x) = \sqrt{25-(x-3)^2} und g(x)=1144x318x2+7g(x) = \frac{1}{144}x^3 - \frac{1}{8}x^2 + 7 mindestens 500 ml beträgt:
ab[f(x)g(x)]dx500 \int_{a}^{b}[f(x)-g(x)] dx \geq 500

See Solution

Problem 20317

Find the derivative f(x)f^{\prime}(x) and critical numbers of f(x)=x327x6f(x)=x^{3}-27x-6.

See Solution

Problem 20318

Find the population size at time t=5t=5 for the model dydt=0.1y\frac{d y}{d t}=0.1 y, given y(0)=350y(0)=350.

See Solution

Problem 20319

If h(x)h(x) is a continuous increasing function, what can we conclude about its maxima and minima?

See Solution

Problem 20320

Solve dydx=0.4y\frac{d y}{d x}=-0.4 y with initial condition y(0)=6y(0)=6. Find y(x)=y(x)=.

See Solution

Problem 20321

Find f(x)f(x) given dydx=36yx5\frac{d y}{d x}=36 y x^{5} and the yy-intercept is 3. What is f(x)f(x)?

See Solution

Problem 20322

Find the demand function D(x)D(x) given that D(x)=3000x2D^{\prime}(x)=-\frac{3000}{x^{2}} and D(6)=505D(6)=505.

See Solution

Problem 20323

Leiten Sie die Funktion ff einmal ab: a) f(x)=(3x1)2f(x)=(3 x-1)^{2}, b) f(t)=2cos(πt+2)f(t)=2 \cos (\pi \cdot t+2), c) f(x)=x(3x2)f(x)=\sqrt{x} \cdot(3 x-2), d) f(x)=xx+1f(x)=x \cdot \sqrt{x+1}, e) f(t)=(t+1)sin(t)f(t)=(t+1) \cdot \sin (t), f) f(t)=2t+1f(t)=\sqrt{2 t+1}.

See Solution

Problem 20324

Find the tangent line equation to the curve 3x3+2x2y2+3y3=83 x^{3}+2 x^{2} y^{2}+3 y^{3}=8 at the point (1,1)(1,1).

See Solution

Problem 20325

A foreign language student learns N(t)=20tt2N(t)=20t-t^{2} terms. a) How many terms are learned in the 3rd hour? b) What is the rate of change at t=2t=2 hr?

See Solution

Problem 20326

Calculate the value of the integral 04t1/2dt\int_{0}^{4} t^{-1 / 2} d t.

See Solution

Problem 20327

Find F(π)F^{\prime}(\pi) if F(x)=0xcos(t)dtF(x)=-\int_{0}^{x} \cos (t) dt.

See Solution

Problem 20328

Berechne das Volumen des Drehkörpers, der durch die Rotation der Fläche zwischen f(x)=3xf(x)=3 \sqrt{x} und g(x)=4xg(x)=\sqrt{4-x} um die xx-Achse entsteht.

See Solution

Problem 20329

Calculate the value of the integral from 1 to 2: 124x3dx\int_{1}^{2} 4 x^{3} d x.

See Solution

Problem 20330

Find the limit: limtt5+t4t3+t+5\lim _{t \rightarrow \infty} t^{5}+t^{4}-t^{3}+t+5. What is the answer?

See Solution

Problem 20331

Find the velocity after 2.3 s2.3 \mathrm{~s} and the distance fallen during this time on a free-fall ride.

See Solution

Problem 20332

Find the demand function D(x)D(x) given D(x)=3000x2D'(x)=-\frac{3000}{x^2} and D(1.50)=2003D(1.50)=2003.

See Solution

Problem 20333

Evaluate the integral: 01x8(3+2x9)5dx\int_{0}^{1} x^{8}(3+2 x^{9})^{5} \, dx

See Solution

Problem 20334

Find the limit: limx24x22+x\lim _{x \rightarrow-2} \frac{4-x^{2}}{2+x}.

See Solution

Problem 20335

Find the demand function D(x)D(x) given that D(x)=7000x2D'(x)=-\frac{7000}{x^{2}} and demand is \$3.50 per unit.

See Solution

Problem 20336

Find the limit: limx433x2+x43x+4\lim _{x \rightarrow-\frac{4}{3}} \frac{3 x^{2}+x-4}{3 x+4}.

See Solution

Problem 20337

Find the demand function D(x)D(x) given D(x)=10000x2D^{\prime}(x)=-\frac{10000}{x^{2}} and D(20)=501D(20)=501.

See Solution

Problem 20338

Find where f(x)=x3+8x+7f(x)=x^{3}+8x+7 is increasing, decreasing, and its local extrema.

See Solution

Problem 20339

Find the limit as xx approaches -2 for the expression 4x22+x\frac{4-x^{2}}{2+x}.

See Solution

Problem 20340

Find f(x)f(x) if dydx=68yx16\frac{d y}{d x}=68 y x^{16} and the yy-intercept is 6. What is f(x)f(x)?

See Solution

Problem 20341

Evaluate the integral ππsinxdx\int_{-\pi}^{\pi} \sin x \, dx. Options: 0, 2, -2, π\pi.

See Solution

Problem 20342

Bestimmen Sie f(x)f^{\prime}(x) für: a) f(x)=1x(2x+1)4f(x)=\frac{1}{x}(2x+1)^{4}, b) f(x)=x3x2f(x)=x\sqrt{3x-2}, c) f(x)=xcos(2x)f(x)=x\cos(2x).

See Solution

Problem 20343

Evaluate the limit: limx24x22+x\lim _{x \rightarrow-2} \frac{4-x^{2}}{2+x}.

See Solution

Problem 20344

Find the limit: limx0x+11x\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}.

See Solution

Problem 20345

Find the area under the curve y=x1/2+1xy=x^{1/2}+\frac{1}{x} from x=4x=4 to x=9x=9.

See Solution

Problem 20346

Solve the equation dydx=4y\frac{d y}{d x}=-4 y with initial condition y(0)=3y(0)=3. Find y(x)=y(x)=.

See Solution

Problem 20347

Find the limit: limx07xx2x\lim _{x \rightarrow 0} \frac{7 x-x^{2}}{x}.

See Solution

Problem 20348

Find the limit: limx15x3+xx1\lim _{x \rightarrow 1} \frac{\sqrt{5-x}-\sqrt{3+x}}{x-1}.

See Solution

Problem 20349

Find the population size at time t=5t=5 given dydt=0.1y\frac{d y}{d t}=0.1 y and y(0)=600y(0)=600. Round to the nearest whole number.

See Solution

Problem 20350

Calculate the future value of an 8-year continuous income stream of \$160,000 at a continuous compounding rate of 4.1%.

See Solution

Problem 20351

Evaluate the integral from 0 to a: 0ax2dx\int_{0}^{a} x^{2} d x and find the result.

See Solution

Problem 20352

Evaluate the integral of cos(x+1)\cos (x+1) with respect to xx. What is the result?

See Solution

Problem 20353

Find the limit: limx1(x1)x1\lim _{x \rightarrow 1} \frac{(x-1)}{\sqrt{x}-1}.

See Solution

Problem 20354

Calculate the future value of a 14-year continuous income stream of \$220,000 at a continuous compounding rate of 4\%.

See Solution

Problem 20355

Determine the convergence of the series n=13(4)n\sum_{n=1}^{\infty} \frac{3}{(-4)^{n}}: converges conditionally, absolutely, or diverges?

See Solution

Problem 20356

Find dydx\frac{d y}{d x} for y=sinuy=\sin u and u=4x+3u=4 x+3. Use dydx=f(g(x))g(x)\frac{d y}{d x}=f^{\prime}(g(x)) g^{\prime}(x).

See Solution

Problem 20357

Find the limit: limx0(2x+1)131x\lim _{x \rightarrow 0} \frac{(2 x+1)^{\frac{1}{3}}-1}{x}.

See Solution

Problem 20358

Evaluate the integral: ex+22dx\int \frac{e^{x+2}}{2} dx. What is the result?

See Solution

Problem 20359

Find the limit: limx15x3+xx1\lim _{x \rightarrow 1} \frac{\sqrt{5-x}-\sqrt{3+x}}{x-1}.

See Solution

Problem 20360

Find the limit: limt0tan(114ππsintt)\lim _{t \rightarrow 0} \tan \left(\frac{11}{4} \pi-\frac{\pi \sin t}{t}\right). Simplify your answer.

See Solution

Problem 20361

Find the partial derivatives of the function f(x,y)=x63xy26y4f(x, y)=x^{6}-3xy^{2}-6y^{4}: fx(x,y)f_{x}(x, y) and fy(x,y)f_{y}(x, y).

See Solution

Problem 20362

Find the population size at t=5t=5 for the model dydt=0.2y\frac{d y}{d t}=0.2 y with y(0)=350y(0)=350. Round to nearest whole number.

See Solution

Problem 20363

Find the equilibrium quantity where demand d(x)=5000.5x2d(x)=500-0.5 x^{2} and supply s(x)=0.3x2s(x)=0.3 x^{2}. What is the consumer surplus?

See Solution

Problem 20364

Find the volume of the solid formed by revolving the region RR (bounded by f(x)=2sin(2x2)+2f(x)=2 \sin(2x^2)+2 and the xx-axis) around the yy-axis.

See Solution

Problem 20365

Calculate limh0f(x,y+h)f(x,y)h\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h} for f(x,y)=y2+7xyf(x, y)=y^{2}+7 x y.

See Solution

Problem 20366

Find the limits: a) limx1(x1)x1\lim _{x \rightarrow 1} \frac{(x-1)}{\sqrt{x}-1} b) limx0(2x+1)131x\lim _{x \rightarrow 0} \frac{(2x+1)^{\frac{1}{3}}-1}{x} c) limx0(343+x)137x\lim _{x \rightarrow 0} \frac{(343+x)^{\frac{1}{3}}-7}{x}

See Solution

Problem 20367

Given an=3(4)na_{n}=\frac{3}{(-4)^{n}}, determine the order of partial sums: SN=a1+a2++aNS_{N}=a_{1}+a_{2}+\ldots+a_{N}. Which is true?

See Solution

Problem 20368

Calculate the partial derivative of 5e4xy5 e^{4 x y} with respect to xx.

See Solution

Problem 20369

Find the limit: limx0(343+x)137x\lim _{x \rightarrow 0} \frac{(343+x)^{\frac{1}{3}}-7}{x}

See Solution

Problem 20370

Find the limit: limx0sinxx\lim _{x \rightarrow 0} \frac{\sin x}{x}. What is the value?

See Solution

Problem 20371

Find fx(4,3)f_{x}(4,3) and fy(4,3)f_{y}(4,3) for the function f(x,y)=2x46xy3+3y2f(x, y)=-2 x^{4}-6 x y^{3}+3 y^{2}.

See Solution

Problem 20372

Find the derivative of y=5x8x2+6xy=\frac{5x-8}{x^2+6x}. What is y=y'=\square?

See Solution

Problem 20373

Find the present value of a 12-year continuous income stream of \$170,000 at a continuous rate of 4.9\%. Round to the nearest dollar.

See Solution

Problem 20374

Lucky Larry wins \$8,000,000 paid as \$320,000/year for 25 years. Find the future and present value at 7% interest, compounded continuously.

See Solution

Problem 20375

Evaluate the limit: limx4x4x4\lim _{x \rightarrow 4} \frac{|x-4|}{x-4}. Does it exist?

See Solution

Problem 20376

Find the partial derivatives of the function f(x,y,z)=6x+6y+2zf(x, y, z)=\sqrt{-6 x+6 y+2 z}: fx(x,y,z)f_{x}(x, y, z), fy(x,y,z)f_{y}(x, y, z), fz(x,y,z)f_{z}(x, y, z).

See Solution

Problem 20377

Find the Elasticity of Demand for D(p)=200pD(p)=\frac{200}{p} at price \$79. Is it Unitary, Elastic, or Inelastic? What should we do to increase revenue?

See Solution

Problem 20378

Find fx(2,3)f_{x}(2,3) and fy(2,3)f_{y}(2,3) for the function f(x,y)=x2+4xy3+5y4f(x, y)=x^{2}+4xy^{3}+5y^{4}.

See Solution

Problem 20379

Find the Elasticity of Demand for D(p)=200pD(p)=\frac{200}{p} at price \$79. Is it Unitary, Elastic, or Inelastic? To increase revenue, should we keep, raise, or lower prices?

See Solution

Problem 20380

Given the demand function D(p)=1502pD(p)=\sqrt{150-2p}, find:
1. Sales at p=73p=73.
2. Elasticity function E(p)=pD(p)(D(p))E(p)=-\frac{p}{D(p)}(D'(p)).
3. Elasticity at p=73p=73.
4. Type of demand at this price.
5. Price strategy for revenue.
6. Price to maximize revenue.

See Solution

Problem 20381

Find the second partial derivatives of the function f(x,y)=x32xy56y2f(x, y)=x^{3}-2xy^{5}-6y^{2}: fxx(x,y)f_{xx}(x, y) and fxy(x,y)f_{xy}(x, y).

See Solution

Problem 20382

Calculate the integral A=1512x1dxA=\int_{1}^{5} \frac{1}{\sqrt{2 x-1}} d x.

See Solution

Problem 20383

Find the marginal productivity of labor PLP_L and capital PKP_K for the function P(L,K)=27L0.5K0.5P(L, K)=27 L^{0.5} K^{0.5}.

See Solution

Problem 20384

Approximate the area under f(x)=4xf(x)=\frac{4}{x} from x=1x=1 to x=5x=5 using 8 right rectangles. Provide a fraction.

See Solution

Problem 20385

Approximate the area under f(x)=x2f(x) = x^{2} on [0,2][0,2] using a right-endpoint method with n=4n=4 subintervals.

See Solution

Problem 20386

A company's weekly sales qq relate to price pp as q=13950p103q=\frac{13950}{\sqrt[3]{p^{10}}}. Currently, p=5p=5.
a. Find the point elasticity of demand ε=\varepsilon=\square.
b. If price decreases by 1%1\%, revenue changes by \$.
c. If price decreases by 5%5\%, revenue changes by \$

See Solution

Problem 20387

Find a function f(x)f(x) where f(x)=ex+4xf'(x) = e^x + 4x and f(0)=5f(0) = 5. What is f(x)f(x)?

See Solution

Problem 20388

A box starts from rest and slides down a ramp with a height of 4.0m. What is its speed at the bottom?

See Solution

Problem 20389

Find the marginal cost C(x)=0.06x+21C^{\prime}(x)=-0.06 x+21.
a. Compute C(580)C^{\prime}(580). Round to the nearest cent.
b. Integrate to find cost function C(x)C(x).
c. Compute C(580)C(580). Round to the nearest dollar.

See Solution

Problem 20390

Bestimme die Ableitungen von f(x)f(x) für: a) x3x^{3}, b) x5x^{5}, c) x2nx^{2 n}, d) xx, e) xn+4x^{n+4}, f) x2016x^{2016}.

See Solution

Problem 20391

Berechne die Steigung von ff bei x0x_0 mit der h-Methode für: a) f(x)=x2f(x)=x^2, x0=1x_0=1; b) f(x)=2x2f(x)=2x^2, x0=1x_0=-1; c) f(x)=x3f(x)=x^3, x0=2x_0=2; d) f(x)=2xf(x)=2x, x0=1x_0=1.

See Solution

Problem 20392

Determine the max and min of the cubic function f(x)=6x337x2+54x8f(x) = 6x^{3} - 37x^{2} + 54x - 8.

See Solution

Problem 20393

Find the limit as xx approaches infinity: limx(1+1x)x+9=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x+9}=

See Solution

Problem 20394

Encuentra la derivada de f(x)=(x52x2)3(4x35)4f(x)=(x^{5}-2x^{2})^{3}(4x^{3}-5)^{4} usando la regla del producto.

See Solution

Problem 20395

What does the function f(x)=a(b)xf(x)=a(b)^{x} approach as xx increases, given that 0<b<10<b<1?

See Solution

Problem 20396

A biologist has a 366g radioactive sample. Find its mass after 2 hours with a decay rate of 5%5\% per hour. Round to the nearest tenth.

See Solution

Problem 20397

Evaluate the integral: x27x32x2+xdx\int \frac{x^{2}-7}{x^{3}-2 x^{2}+x} d x using partial fractions.

See Solution

Problem 20398

Find kk so that f(x)=k(x+1)2f(x)=\frac{k}{(x+1)^{2}} (for 2x32 \leq x \leq 3) is a probability density function.

See Solution

Problem 20399

Determine which two of the following sequences converge:
1. n=1135(2n1)n!\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{n !}
2. n=1(1+1n2)n3\sum_{n=1}^{\infty}\left(1+\frac{1}{n^{2}}\right)^{n^{3}}
3. n=1(n1n+1)n2+n\sum_{n=1}^{\infty}\left(\frac{n-1}{n+1}\right)^{n^{2}+n}
4. n=133+1n10+n3\sum_{n=1}^{\infty} \frac{3^{3}+1}{\sqrt[3]{n^{10}+n}}
5. n=1n!(2n)!\sum_{n=1}^{\infty} \frac{n !}{(2 n) !}
6. n=1(n22n+1)n\sum_{n=1}^{\infty}\left(\frac{n^{2}}{2 n+1}\right)^{n}

See Solution

Problem 20400

Find the marginal cost at x=570x=570 from C(x)=0.02x+27C'(x)=-0.02x+27, then integrate to get C(x)C(x) and compute C(570)C(570).

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord