Calculus

Problem 30601

Find f(5)f(5) if f(x)=2x+8sin(x)f^{\prime \prime}(x)=2 x+8 \sin (x), f(0)=2f(0)=2, and f(0)=4f^{\prime}(0)=4.

See Solution

Problem 30602

Differentiate the function s(t)=tan(t)s(t)=\tan (\sqrt{t}).

See Solution

Problem 30603

Find the slope of the tangent line to y=3x2xy=\frac{3-x}{2 x} at x=1x=1. Choices: a) m=32m=\frac{3}{2} b) m=32m=-\frac{3}{2} c) m=3m=3 d) m=3m=-3

See Solution

Problem 30604

Find the function f(t)f(t) given that f(t)=2et+3sin(t)f''(t)=2 e^{t}+3 \sin (t), with conditions f(0)=2f(0)=-2 and f(π)=6f(\pi)=6.

See Solution

Problem 30605

Find the antiderivative F(t)F(t) of f(t)=8sec2(t)10t3f(t)=8 \sec ^{2}(t)-10 t^{3} with F(0)=0F(0)=0. Calculate F(1.3)F(1.3).

See Solution

Problem 30606

Finde die Nullstellen der Funktionen mit dem Newton-Verfahren in den angegebenen Intervallen: a) f(x)=x3+2x2;[0;2]f(x)=x^{3}+2 x-2 ;[0 ; 2] b) f(x)=x5x+6;[1;2]f(x)=x^{5}-x+6 ;[-1 ;-2] c) f(x)=x3+4x21;[3;5]f(x)=-x^{3}+4 x^{2}-1 ;[3 ; 5] d) f(x)=x33x2+3x1;[0;4]f(x)=x^{3}-3 x^{2}+3 x-1 ;[0 ; 4]

See Solution

Problem 30607

Find the derivative of the function y=cos(x3)y=\cos \left(x^{3}\right).

See Solution

Problem 30608

Find the derivative dydx\frac{d y}{d x} for the function y=x32x+1y=x^{3} \sqrt{2 x+1}.

See Solution

Problem 30609

Differentiate the function: y=sec2(x)+tan2(x)y=\sec ^{2}(x)+\tan ^{2}(x)

See Solution

Problem 30610

Find the derivative f(x)f^{\prime}(x) for the function f(x)=(2x2+5)7f(x)=(2x^{2}+5)^{7}.

See Solution

Problem 30611

Find the derivative of the function y=x2+x3y=\sqrt[3]{x^{2}+x}.

See Solution

Problem 30612

Given f(x)=6cos(x)f^{\prime \prime}(x)=-6 \cos (x), find f(x)f^{\prime}(x) and f(x)f(x) using constants C\mathrm{C} and D\mathrm{D}.

See Solution

Problem 30613

Find the derivative of y=ex2+3xy = e^{x^2 + 3x}.

See Solution

Problem 30614

Find the derivative of the function f(x)=(3sinx+6cosx)tan1xf(x)=(3 \sin x+6 \cos x) \tan ^{-1} x. What is f(x)f^{\prime}(x)?

See Solution

Problem 30615

Bestimmen Sie die 1., 2. und 3. Ableitung für die Funktionen a) bis f) und berechnen Sie die Steigung von ff an A(2f(2))A(2 \mid f(2)).

See Solution

Problem 30616

Berechnen Sie die Steigung von ff an A(2f(2))A(2 \mid f(2)) für die Funktionen: a) f(x)=32x2f(x)=\frac{3}{2} x^{2}, b) f(t)=14t453t3f(t)=\frac{1}{4} t^{4}-\frac{5}{3} t^{3}, c) f(z)=34z23z1f(z)=\frac{3}{4} z^{2}-3 z^{-1}, d) f(x)=x2x4f(x)=-x-\frac{2}{x^{4}}, e) f(x)=2x14x2f(x)=2 x^{-1}-4 x^{-2}, f) f(x)=3x+4x2f(x)=\frac{3}{x}+4 \sqrt{x}-2.

See Solution

Problem 30617

Bestimme die Steigung von f(z)=34z23z1f(z) = \frac{3}{4} z^{2} - 3 z^{-1} am Punkt A(2f(2))A(2|f(2)).

See Solution

Problem 30618

Find the value of the series: n=1+(3n1)\sum_{n=1}^{+\infty}\left(\sqrt[n]{3}-1\right).

See Solution

Problem 30619

Graph the yield function V=6.7e48.1/tV=6.7 e^{-48.1/t}, find its horizontal asymptote, and determine time for V=1.3V=1.3.

See Solution

Problem 30620

Finde die Stellen, an denen ff die Steigung mm hat: a) f(x)=14x46x,m=2f(x)=\frac{1}{4} x^{4}-6 x, m=2 b) f(x)=16x3+x2,m=2,5f(x)=-\frac{1}{6} x^{3}+x^{2}, m=-2,5 c) f(x)=2xx,m=3f(x)=\frac{2}{x}-x, m=-3 d) f(x)=3x,m=3f(x)=3 \sqrt{x}, m=3

See Solution

Problem 30621

Berechnen Sie die Steigung von ff bei A(2f(2))A(2 \mid f(2)) für: a) f(x)=32x2f(x)=\frac{3}{2} x^{2}, b) f(t)=14t453t3f(t)=\frac{1}{4} t^{4}-\frac{5}{3} t^{3}, c) f(z)=34z23z1f(z)=\frac{3}{4} z^{2}-3 z^{-1}.

See Solution

Problem 30622

Begründen Sie, warum die e-Funktion f(x)=exf(x) = \mathrm{e}^{x} keine Nullstellen, Symmetrie, Extrem- oder Wendepunkte hat.

See Solution

Problem 30623

Togets avstand fra stasjonen er gitt ved s(t)=(0,800 m/s2)t2+(21,0 m/s)t+(150 m)s(t)=\left(0,800 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}+(21,0 \mathrm{~m} / \mathrm{s}) t+(150 \mathrm{~m}). Finn koeffisientene, tiden for 35,0 m/s, og avstanden da.

See Solution

Problem 30624

Bestimmen Sie die Ableitungsfunktion von f(x)=ax+cf(x) = ax + c.

See Solution

Problem 30625

Evaluate the series n=1+(nn1)α\sum_{n=1}^{+\infty}(\sqrt[n]{n}-1)^{\alpha}.

See Solution

Problem 30626

Calculate the integral: (x+1)dxx2(x1)\int \frac{(x+1) d x}{x^{2}(x-1)}

See Solution

Problem 30627

Calculate the integral: 2xdx(x1)(x2+1)\int \frac{2 x d x}{(x-1)(x^{2}+1)}.

See Solution

Problem 30628

Bestimmen Sie die Ableitung und die Steigungen bei x1=1x_{1}=1 und x2=0x_{2}=0 für f(x)=4ex+2xf(x)=-4 e^{x}+2 x und f(x)=2xf(x)=2^{x}.

See Solution

Problem 30629

Evaluate the integral: (x+1)dxx3+x26x\int \frac{(x+1) d x}{x^{3}+x^{2}-6 x}.

See Solution

Problem 30630

Bestimmen Sie die Ableitung und die Steigungen an x1=1x_{1}=1 und x2=0x_{2}=0 für: a) f(x)=2exf(x)=2 e^{x}, b) f(x)=4ex+2xf(x)=-4 e^{x}+2 x, c) f(x)=2xf(x)=2^{x}.

See Solution

Problem 30631

Evaluate the integral: xcos2xdx\int x \cos^{2} x \, dx

See Solution

Problem 30632

Find the integral of x2ln2xdxx^{2} \ln^{2} x \, dx.

See Solution

Problem 30633

Given the function f(x)=2x+1x3f(x)=\frac{2x+1}{x-3}, find f(x)f'(x), f(4)f'(4), the tangent line at x=4x=4, and tangents from (6,5)(6,-5).

See Solution

Problem 30634

Calculate the integral: dxx2+7x+6\int \frac{d x}{x^{2}+7 x+6}

See Solution

Problem 30635

Find the derivative of the function f(x)=x2+εx+2f(x) = x^{2} + \varepsilon x + 2.

See Solution

Problem 30636

Bestimme die Fläche A zwischen den Schnittpunkten der Funktionen f(x)=1x2f(x)=1-x^{2} und g(x)=x22x+1g(x)=x^{2}-2x+1.

See Solution

Problem 30637

Evaluate the integral π/3π/6cosxxsinxxcosxdx\int_{\pi / 3}^{\pi / 6} \frac{\cos x-x \sin x}{x \cos x} d x and choose the correct answer.

See Solution

Problem 30638

Find the derivative of the function f(x)=x2+4x+1f(x) = x^{2} + 4x + 1.

See Solution

Problem 30639

Find df1dx\frac{d f^{-1}}{d x} for f(x)=x24x+3f(x)=x^{2}-4 x+3 at x=3x=3, where x2x \geq 2. Choices: 1/41/4, 1/21/2, 1/31/3, 4.

See Solution

Problem 30640

Bestimme die Funktion f(x)=aekxf(x)=a \cdot e^{k \cdot x} für das Wachstum einer Sonnenblume und die momentane Geschwindigkeit bei x=20x=20.

See Solution

Problem 30641

Haziq's ice cylinder melts at 4 cm2 s14 \mathrm{~cm}^{2} \mathrm{~s}^{-1}. Find the surface area change rate when radius is 8 cm8 \mathrm{~cm}.

See Solution

Problem 30642

Berechne den Flächeninhalt AA zwischen f(x)=12x2+1f(x)=\frac{1}{2} x^{2}+1 und g(x)=x2+32x+4g(x)=-x^{2}+\frac{3}{2} x+4 von x=1x=-1 bis x=2x=2.

See Solution

Problem 30643

What height is needed for an 823 g823 \mathrm{~g} falcon to reach 68 m/s68 \mathrm{~m/s} in a dive under gravity?

See Solution

Problem 30644

Berechne die Fläche zwischen den Funktionen f(x)=164x4+18x2+4f(x)=-\frac{1}{64} x^{4}+\frac{1}{8} x^{2}+4 und g(x)=18x2+1g(x)=\frac{1}{8} x^{2}+1 von 4-4 bis 44.

See Solution

Problem 30645

Ein Patient nimmt um 20 Uhr 2mg2 \mathrm{mg} eines Medikaments ein. Berechne die verbleibende Menge nach 1,2,31, 2, 3 Stunden und finde die Funktion zur Basis ee.

See Solution

Problem 30646

Calculate the integral: 44(164x43)dx\int_{-4}^{4}\left(-\frac{1}{64} x^{4}-3\right) d x

See Solution

Problem 30647

Найдите производную функции y=cos2xln(x2+4x)y = \frac{\cos 2x}{\ln(x^{2} + 4x)}.

See Solution

Problem 30648

If f(x)=2x3f'(x)=2x^3, find df1dx\frac{d f^{-1}}{d x} at x=f(2)x=f(2). Options: a. 4, b. 16, c. 124\frac{1}{24}, d. 18\frac{1}{8}, e. none.

See Solution

Problem 30649

Rewrite the integral using uu and dudu, then evaluate: (u)7du,u=2x1\int (u)^{7} du, \quad u=2x-1

See Solution

Problem 30650

x23+y23=4x^{\frac{2}{3}}+y^{\frac{2}{3}}=4 için yy^{\prime} türevi x=8x=8'de nedir? A) 0 B) 1 C) 2 D) 4 E) 8

See Solution

Problem 30651

Rewrite the integral using uu and dudu, then solve: t6t2+1dt\int t \sqrt{6 t^{2}+1} dt

See Solution

Problem 30652

Find the limit as xx approaches 32\frac{3}{2} from the right for x2+8x202x2+x6\frac{x^{2}+8x-20}{2x^{2}+x-6}.

See Solution

Problem 30653

Rewrite the integral as uu and dudu, then evaluate sin(u)du\int \sin(u) \, du, where u=9θ5u=9\theta-5.

See Solution

Problem 30654

Evaluate the integral from 0 to π6\frac{\pi}{6} of tan(2x)\tan(2x). What is the result?

See Solution

Problem 30655

Rewrite the integral using uu and dudu, then evaluate: (ln(x))6xdx,u=ln(x)\int \frac{(\ln (x))^{6}}{x} dx, \quad u=\ln (x)

See Solution

Problem 30656

Determine where the function x44x2+3x^{4}-4 x^{2}+3 is increasing and decreasing.

See Solution

Problem 30657

Evaluate the integral 0π/34sinθ14cosθdθ\int_{0}^{\pi / 3} \frac{4 \sin \theta}{1-4 \cos \theta} d \theta.

See Solution

Problem 30658

Find when the particle changes direction for the position s(t)=2t3+6t23s(t) = -2t^3 + 6t^2 - 3, where t0t \geq 0.

See Solution

Problem 30659

Find the derivative of yy with respect to xx, tt, or θ\theta for y=ln(secθ+tanθ)y=\ln (\sec \theta+\tan \theta).

See Solution

Problem 30660

Find the first and second derivatives of these functions: a. f(x)=x2+1f(x)=x^{2}+1 (first principles), b. f(x)=cos(x)exf(x)=\cos(x)e^{x}, c. f(x)=(x23x+2)3sin(2x2)f(x)=(x^{2}-3x+2)^{3}\sin(2x^{2}) (first derivative only).

See Solution

Problem 30661

How long for 75% of iodine-131 (half-life 8.02 days) to decay?

See Solution

Problem 30662

Approximate Bolt's velocity at t=2t=2 seconds using the position equation s(t)=0.567t410.2t3+57.2t260.4ts(t)=0.567 t^{4}-10.2 t^{3}+57.2 t^{2}-60.4 t.

See Solution

Problem 30663

Evaluate the limits: a) x24x+3x3\frac{x^{2}-4 x+3}{x-3} b) x24x+3x3\frac{x^{2}-4 x+3}{x-3}

See Solution

Problem 30664

Calcula el límite de x24x+3x3\frac{x^{2}-4 x+3}{x-3} cuando xx tiende a 3.

See Solution

Problem 30665

Differentiate the function f(x)=xx2+1f(x) = x \sqrt{x^{2}+1}.

See Solution

Problem 30666

Find the first and second derivatives of these functions: a) f(x)=x2+1f(x)=x^{2}+1, b) f(x)=cos(x)exf(x)=\cos(x)e^{x}, c) f(x)=2sin(x2)f(x)=2\sin(x^{2}).

See Solution

Problem 30667

Find the slope of the tangent to y=x2+9xy=x^{2}+9 x where it intersects the line y=3xy=3 x.

See Solution

Problem 30668

Find the first derivative using first principles for: a) f(x)=7x2f(x)=7 x-2 b) f(x)=3x2+7x+14f(x)=3 x^{2}+7 x+14

See Solution

Problem 30669

Find the derivative of the function e3xe^{3x}.

See Solution

Problem 30670

Differentiate the function: f(x)=(13x)2x+5f(x) = (1-3x) \sqrt{2x+5}.

See Solution

Problem 30671

The position of an object is s(t)=3t340.5t2+162ts(t)=3 t^{3}-40.5 t^{2}+162 t. Find velocity, acceleration, and when it's stationary, advancing, or retreating.

See Solution

Problem 30672

Find velocity and acceleration of s(t)=3t340.5t2+162ts(t)=3 t^{3}-40.5 t^{2}+162 t for 0t80 \leq t \leq 8. When is it stationary, advancing, or retreating? When is velocity constant, decreasing, or increasing?

See Solution

Problem 30673

Find the derivative of y=3ex4y = \frac{3}{e^{x^{4}}}.

See Solution

Problem 30674

Find the velocity and acceleration of the object described by s(t)=3t340.5t2+162ts(t)=3 t^{3}-40.5 t^{2}+162 t for 0t80 \leq t \leq 8.

See Solution

Problem 30675

Find the velocity and acceleration of an object with position s(t)=3t340.5t2+162ts(t)=3 t^{3}-40.5 t^{2}+162 t for 0t80 \leq t \leq 8.

See Solution

Problem 30676

Find the asymptotes and local extrema for the function y=8x29y=\frac{8}{x^{2}-9}.

See Solution

Problem 30677

Find the derivatives of these functions: a. y=2sinx3cos5xy=2 \sin x-3 \cos 5 x, b. y=sin(cosx2)y=\sin(\cos x^{2}), c. y=(sin2x+1)4y=(\sin 2x+1)^{4}.

See Solution

Problem 30678

Amira wants to know how much to invest at a 2.4%2.4\% continuous interest rate to reach \$320 in 17 years.

See Solution

Problem 30679

Calculate the integral (2x+1)dx\int(2 x+1) \, dx.

See Solution

Problem 30680

Find yy in terms of xx given dy dx=2x+1\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x+1 and y=5y=5 when x=1x=1.

See Solution

Problem 30681

Soit la fonction g(x)=1xx+2g(x)=\frac{1-x}{x+2}.
1. Montrez que Dg=];2[]2;+[D_{g} = ]-\infty ; -2[ \cup ]-2 ; +\infty[.
2. Montrez que g(x)=3(x+2)2g'(x) = -\frac{3}{(x+2)^2}.
3. Étudiez le sens de variation de gg sur (1;5)(-1 ; 5).
4. Dressez le tableau de variation de gg sur [1;5][-1 ; 5].
5. Complétez le tableau: xx: -1, 0, 1, 3, 5; g(x)g(x): ?
6. Représentez graphiquement gg sur [1;5][-1 ; 5].

See Solution

Problem 30682

Find yy for each case given the conditions: a) dydx=36x\frac{dy}{dx}=3-6x, y=1y=1 at x=2x=2 b) dydx=3x2x\frac{dy}{dx}=3x^2-x, y=41y=41 at x=4x=4 c) dydx=x2+4xx+1\frac{dy}{dx}=x^2+4x^x+1, y=4y=4 at x=3x=-3 d) dydx=75xx3\frac{dy}{dx}=7-5x-x^3, y=0y=0 at x=2x=2 e) dydx=8x2x2\frac{dy}{dx}=8x-\frac{2}{x^2}, y=1y=-1 at x=12x=\frac{1}{2} f) dydx=3x\frac{dy}{dx}=3-\sqrt{x}, y=8y=8 at x=4x=4

See Solution

Problem 30683

Find the integral of cos3x\cos ^{3} x with respect to xx.

See Solution

Problem 30684

Evaluate the series: n=1(1)nsin1n\sum_{n=1}^{\infty}(-1)^{n} \sin \frac{1}{n}.

See Solution

Problem 30685

Find the function f(x)f(x) given that f(x)=3+2xx2f'(x)=3+2x-x^{2} and it passes through the point (3,5)(3,5).

See Solution

Problem 30686

Das Wachstum einer Bakterienkultur wird durch f(t)=12t3+6t2f(t)=-\frac{1}{2} t^{3}+6 t^{2} für tt in Stunden beschrieben.
a) Beschreiben Sie das Wachstum. b) Bestimmen Sie die Fläche. c) Berechnen Sie die Kulturgröße nach 2, 4 und 6 Stunden. d) Verwenden Sie g(t)=15tg(t)=15 t für die Berechnung und vergleichen Sie diese Ergebnisse mit c).

See Solution

Problem 30687

Find yy when x=4x=4 given dy dx=10x322x12\frac{\mathrm{d} y}{\mathrm{~d} x}=10 x^{\frac{3}{2}}-2 x^{-\frac{1}{2}} and y=7y=7 at x=0x=0.

See Solution

Problem 30688

1. Given f(1)=4f'(-1)=4 and f(x)=2x3x8f'(x)=2x^3-x-8, find f(x)f(x) and the tangent at x=2x=2.
2. With f(x)=3x28x5f'(x)=3x^2-8x-5 and passing through origin, find other xx-axis crossing points.
3. Given dydx=3x+2x2\frac{dy}{dx}=3x+\frac{2}{x^2}, find yy and its value when x=12x=\frac{1}{2}.
4. For CC with dydx=3x2+kx\frac{dy}{dx}=3x^2+kx, find kk and the curve's equation, passing through (1,6)(1,6) and (2,1)(2,1).

See Solution

Problem 30689

Find yy given dydx=3x\frac{d y}{d x}=3-\sqrt{x} and y=8y=8 at x=4x=4.

See Solution

Problem 30690

Find the volume of the solid formed by rotating the triangle with vertices (0,0),(6,6)(0,0),(6,6), and (9,3)(9,3) around y=xy=x.

See Solution

Problem 30691

Find the derivative of the curve y=x34x2+5x+4y=x^{3}-4 x^{2}+5 x+4 and the xx values where the gradient is 1.

See Solution

Problem 30692

Bestimme das unbestimmte Integral von f(x)=x23xf(x)=x^{\frac{2}{3}}-x.

See Solution

Problem 30693

How many years does it take for an investment to double at a continuous rate of 3%3\%? Round to one decimal place.

See Solution

Problem 30694

A particle PP moves along a line with displacement s=t+36t+4s=t+\frac{36}{t}+4 for t>1t>1.
(a) Find vv by differentiating ss.
(b) Determine tt when v=0v=0.
(c) Calculate aa when t=2t=2.

See Solution

Problem 30695

Find the limit: limx3(6x)\lim _{x \rightarrow 3}(6-x). If it doesn't exist, write DNE.

See Solution

Problem 30696

Find the limit: limx1f(x)\lim_{x \rightarrow 1} f(x) for f(x)={x22if x13if x=1f(x)=\begin{cases} x^{2}-2 & \text{if } x \neq 1 \\ -3 & \text{if } x=1 \end{cases}.

See Solution

Problem 30697

A particle PP moves along a line with displacement s=t+36t+4s=t+\frac{36}{t}+4 for t>1t>1.
(a) Find the velocity vv by differentiating ss.
(b) Determine when v=0v=0.
(c) Calculate acceleration aa when t=2t=2.

See Solution

Problem 30698

Find the limit as xx approaches -3 for the expression x+3x+3\frac{|x+3|}{x+3}.

See Solution

Problem 30699

Find the limit: limx7f(x)\lim _{x \rightarrow 7} f(x) for the piecewise function f(x)={9x,x70,x=7f(x)=\left\{\begin{array}{ll} 9-x, & x \neq 7 \\ 0, & x=7 \end{array}\right..

See Solution

Problem 30700

Bestimmen Sie die Stammfunktion F(x)F(x) mit F(1)=5F(1)=5 für f(x)=2x3x2f(x)=2 x^{3}-x^{-2}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord