Calculus

Problem 31601

Find the derivative of 18x+20x\frac{18 x+20}{x}. What is ddx18x+20x=\frac{d}{d x} \frac{18 x+20}{x}=\square?

See Solution

Problem 31602

Evaluate the series: n=1(tan1(n)tan1(n+1))\sum_{n=1}^{\infty}\left(\tan ^{-1}(n)-\tan ^{-1}(n+1)\right).

See Solution

Problem 31603

Differentiate 9x3537x3\frac{9 x^{3}}{5}-\frac{3}{7 x^{3}} with respect to xx. Find the result: ddx(9x3537x3)=\frac{d}{d x}\left(\frac{9 x^{3}}{5}-\frac{3}{7 x^{3}}\right)=\square

See Solution

Problem 31604

Find the limits: a) limxx5x2x32x\lim _{x \rightarrow-\infty} \frac{x^{5}-x^{2}}{x^{3}-2 x}, b) limx9x2x+82x4+x37\lim _{x \rightarrow \infty} \frac{9 x^{2}-x+8}{2 x^{4}+x^{3}-7}.

See Solution

Problem 31605

Find the derivative h(t)h^{\prime}(t) for the function h(t)=14.1+0.9t2.6t2h(t)=14.1+0.9 t-2.6 t^{2}.

See Solution

Problem 31606

Compute limt+P(t)P(t)+C(t)+J(t)\lim _{t \rightarrow+\infty} \frac{P(t)}{P(t)+C(t)+J(t)} for P(t)=1.745t+29.84P(t)=1.745t+29.84, C(t)=1.097t+10.65C(t)=1.097t+10.65, J(t)=1.915t+12.36J(t)=1.915t+12.36. Interpret the result.

See Solution

Problem 31607

Find the derivative yy^{\prime} of the function y=6x5+3x1y=6 x^{-5}+3 x^{-1}. What is yy^{\prime}?

See Solution

Problem 31608

Find the derivative dydx\frac{d y}{d x} for y=1x6y=\frac{1}{x^{6}}. What is dydx=\frac{d y}{d x}=\square?

See Solution

Problem 31609

Find the derivative of f(x)=4x2+3x+2f(x)=4 x^{2}+3 x+2 using the limit definition: f(x)=limh0f(x+h)f(x)hf^{\prime}(x)=\lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}. Simplify f(x+h)f(x)f(x+h)-f(x).

See Solution

Problem 31610

Find f(x)=2x44x2+8f(x)=2 x^{4}-4 x^{2}+8: (A) f(x)f^{\prime}(x), (B) slope at x=3x=3, (C) tangent line at x=3x=3, (D) horizontal tangent points.

See Solution

Problem 31611

Find the derivative of the function: 9x3537x3\frac{9 x^{3}}{5} - \frac{3}{7 x^{3}}.

See Solution

Problem 31612

Find limx+S(x)\lim_{x \rightarrow+\infty} S(x) for S(x)=57333e0.0131xS(x)=573-33 e^{-0.0131 x} and interpret the result for high incomes.

See Solution

Problem 31613

Determine the marginal cost function from C(x)=240+8.7x0.04x2C(x)=240+8.7 x-0.04 x^{2}. Find C(x)C^{\prime}(x).

See Solution

Problem 31614

Find the limits: 1) limx[12(65)x]\lim _{x \rightarrow-\infty}\left[12-\left(\frac{6}{5}\right)^{x}\right] and 2) limx10x24x4+1\lim _{x \rightarrow \infty} \frac{10 x^{2}}{\sqrt{4 x^{4}+1}}.

See Solution

Problem 31615

Given sales function S(t)=0.02t3+0.6t2+5t+4S(t)=0.02 t^{3}+0.6 t^{2}+5 t+4, find S(t)S^{\prime}(t), S(3)S(3), and interpret S(8)S(8) and S(8)S^{\prime}(8).

See Solution

Problem 31616

Find f(x)=2x44x2+8f(x)=2 x^{4}-4 x^{2}+8: (A) f(x)f^{\prime}(x), (B) slope at x=3x=3, (C) tangent line at x=3x=3, (D) horizontal tangents.

See Solution

Problem 31617

Find the limits as xx \to -\infty for two expressions and determine asymptotes and discontinuities for given functions.

See Solution

Problem 31618

Invest \15,000ateither15,000 at either 10\%monthlyor monthly or 9.87\%$ continuously. Which gives more in 5 years?

See Solution

Problem 31619

Find the marginal revenue function for R(x)=x(140.09x)R(x)=x(14-0.09 x). What is R(x)R^{\prime}(x)?

See Solution

Problem 31620

Find the arc length of the curve y=x44+18x2y=\frac{x^{4}}{4}+\frac{1}{8 x^{2}} on [1,3][1,3] by integrating with respect to xx. Length: \square.

See Solution

Problem 31621

Find limt+F(t)\lim_{t \to +\infty} F(t) and limt+F(t)Y(t)\lim_{t \to +\infty} \frac{F(t)}{Y(t)} for Facebook and YouTube models. Interpret results.

See Solution

Problem 31622

Given the cost function C(x)=20,000+500xC(x)=20,000+500x, find: A) average cost for 200 frames, B) marginal average cost at 200, C) estimate for 201 frames.

See Solution

Problem 31623

Find limt+[p(t)q(t)]\lim _{t \rightarrow+\infty}[p(t)-q(t)] where p(t)p(t) and q(t)q(t) are percentages of children's speech abilities. Interpret the result.

See Solution

Problem 31624

Calculate the limit as tt approaches infinity for p(t)=100(113,200t4.5)p(t)=100\left(1-\frac{13,200}{t^{4.5}}\right). What does it imply?

See Solution

Problem 31625

Calculate the limits: limt+I(t)\lim _{t \rightarrow+\infty} I(t) and limt+I(t)E(t)\lim _{t \rightarrow+\infty} \frac{I(t)}{E(t)} for imports I(t)I(t) and exports E(t)E(t). Interpret results.

See Solution

Problem 31626

Find the cost of producing the 61st food processor using C(x)=1800+40x0.1x2C(x)=1800+40x-0.1x^2. Exact and marginal cost needed.

See Solution

Problem 31627

Find the limit: limx4[1x+1](15)x4\lim _{x \rightarrow 4} \frac{\left[\frac{1}{x+1}\right]-\left(\frac{1}{5}\right)}{x-4}. What is the approximate value?

See Solution

Problem 31628

Estimate the limit as xx approaches 4 for [1/(x+1)](1/5)x4\frac{[1 /(x+1)]-(1 / 5)}{x-4} and round to four decimal places.

See Solution

Problem 31629

Water flows into a conical tank at 9ft3/min9 \mathrm{ft}^3/\min. With height 10ft10 \mathrm{ft} and radius 5ft5 \mathrm{ft}, find the rise rate when water is 6ft6 \mathrm{ft} deep.

See Solution

Problem 31630

Water fills a conical tank at 9ft3/min9 \mathrm{ft}^{3}/\mathrm{min}. With height 10ft10 \mathrm{ft} and radius 5ft5 \mathrm{ft}, find the rise rate when water is 6ft6 \mathrm{ft} deep.

See Solution

Problem 31631

Complete the table for f(x)=6sin(x)xf(x) = \frac{6 \sin (x)}{x} as x0x \to 0. Estimate the limit: limx06sin(x)x\lim _{x \rightarrow 0} \frac{6 \sin (x)}{x}.

See Solution

Problem 31632

Calculate the curve length for x=0y2sec4t1dtx=\int_{0}^{y} \sqrt{2 \sec ^{4} t-1} d t from y=π4y=-\frac{\pi}{4} to y=π4y=\frac{\pi}{4}.

See Solution

Problem 31633

Find the limit as xx approaches -\infty for 2x21x+9\frac{2x^{2}-1}{x+9}. If it doesn't exist, enter DNE.

See Solution

Problem 31634

Find the integral for the length of the curve x=2sinyx=2 \sin y from y=π10y=\frac{\pi}{10} to y=9π10y=\frac{9 \pi}{10}.

See Solution

Problem 31635

Find the slope of the tangent line for f(x)=13xf(x)=1-3x using the four-step process. Simplify your answers completely.

See Solution

Problem 31636

Find the limit: limx3(x29x+3)\lim _{x \rightarrow-3}\left(\frac{x^{2}-9}{x+3}\right).

See Solution

Problem 31637

Determine the marginal cost function for the cost function C(x)=190+4.4x0.01x2C(x)=190+4.4 x-0.01 x^{2}.

See Solution

Problem 31638

Find the limit as xx approaches 0 for the expression 15x24xx\frac{15 x^{2}-4 x}{x}.

See Solution

Problem 31639

Calculate the limit: limx1+(x+8x+1)\lim _{x \rightarrow 1^{+}}\left(\frac{x+8}{x+1}\right). If it doesn't exist, write DNE.

See Solution

Problem 31640

Calculate the limit as xx approaches 8 for the expression (x2+10)(x264)(x^{2}+10)(x^{2}-64).

See Solution

Problem 31641

Find the limit as xx approaches 0 from the left of 1x\frac{1}{x}.

See Solution

Problem 31642

Calculate the one-sided limit: limx1(3x6)\lim _{x \rightarrow 1^{-}}(3 x-6).

See Solution

Problem 31643

Find the limits: limx(x3x)\lim _{x \rightarrow \infty} (x^3-x) and limx(x3x)\lim _{x \rightarrow -\infty} (x^3-x).

See Solution

Problem 31644

Calculate the limit as tt approaches 6 for the expression 10t28t+110 t^{2}-8 t+1.

See Solution

Problem 31645

Find the limit as xx approaches infinity: limx(8x2+6x+14x4x2)\lim _{x \rightarrow \infty}\left(\frac{8 x^{2}+6 x+14}{x^{4}-x^{2}}\right).

See Solution

Problem 31646

Find the limit as xx approaches -172.5 for 2x+23\sqrt[3]{2x + 2}.

See Solution

Problem 31647

Calculate the limit: limx4+(4x4)\lim _{x \rightarrow 4^{+}}(4 \sqrt{x-4}).

See Solution

Problem 31648

Find the one-sided limit as xx approaches 0 from the left: limx0(1x)\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}\right).

See Solution

Problem 31649

Find the limit as x approaches 11: limx11(x+11x11)\lim _{x \rightarrow 11}\left(\frac{x+11}{x-11}\right).

See Solution

Problem 31650

Evaluate the telescoping series: n=1(1n1n+1)\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right).

See Solution

Problem 31651

Set up an integral for the curve length of y2+3y=x+1y^{2}+3y=x+1 from (3,1)(-3,-1) to (17,3)(17,3). Find L=dyL=\int \square d y.

See Solution

Problem 31652

Find the sum of the series n=26n(n+3)\sum_{n=2}^{\infty} \frac{6}{n(n+3)}.

See Solution

Problem 31653

Show that the series converges using the Limit Comparison Test with 1n1/2\frac{1}{n^{1/2}} and evaluate the limit: limn1n3/21n3+2 \lim_{n \to \infty} \frac{\frac{1}{n^{3/2}}}{\frac{1}{\sqrt{n^3}+2}}

See Solution

Problem 31654

Find the value of the series n=11(2)n3n\sum_{n=1}^{\infty} \frac{-1-(-2)^{n}}{3^{n}}. Choose a, b, c, or d.

See Solution

Problem 31655

Find the sum of the series n=1(9n29(n+1)2)\sum_{n=1}^{\infty}\left(\frac{9}{n^{2}}-\frac{9}{(n+1)^{2}}\right).

See Solution

Problem 31656

Determine the convergence of the series n=0(5)n+13n\sum_{n=0}^{\infty} \frac{(-5)^{n+1}}{3^{n}} and find its sum.

See Solution

Problem 31657

Find the limit as xx approaches 1 for x41x61\frac{x^{4}-1}{x^{6}-1}. Create a value table and estimate the limit.

See Solution

Problem 31658

Find the length of the curve y=0xcos2tdty=\int_{0}^{x} \sqrt{\cos 2 t} dt from x=0x=0 to x=π4x=\frac{\pi}{4}. Set up the integral.

See Solution

Problem 31659

Determine if the series n=13n2n5n\sum_{n=1}^{\infty} \frac{3^{n}-2^{n}}{5^{n}} converges or diverges, and find its sum.

See Solution

Problem 31660

Determine the convergence of the series n=26n(n+3)\sum_{n=2}^{\infty} \frac{6}{n(n+3)}: a. 136\frac{13}{6} b. 53\frac{5}{3} c. diverges d. 113\frac{11}{3} e. 132\frac{13}{2}.

See Solution

Problem 31661

Find the limit: limx1x41x61\lim _{x \rightarrow 1} \frac{x^{4}-1}{x^{6}-1}. Use a table and graph to estimate it.

See Solution

Problem 31662

Evaluate the integral: sin2βcos2βdβ\int \sin^{2} \beta \cos^{2} \beta \, d\beta

See Solution

Problem 31663

Find the limit as xx approaches 1 for x41x61\frac{x^{4}-1}{x^{6}-1} and create a value table rounded to four decimals.

See Solution

Problem 31664

Find the derivative of f(x)=3x83x52x3+2xf(x)=3 x^{8}-3 x^{5}-2 x^{3}+2 x and then calculate f(5)f^{\prime}(5).

See Solution

Problem 31665

Find the derivative of the function f(x)=4x27x5f(x)=4 x^{2}-7 x-5, i.e., calculate f(x)f^{\prime}(x).

See Solution

Problem 31666

Find the limit as xx approaches 1 for x41x61\frac{x^{4}-1}{x^{6}-1}. Estimate using a table and graph.

See Solution

Problem 31667

Find the derivative of the function f(t)=9sint9πcostf(t) = 9 \sin t - 9 \pi \cos t, i.e., calculate f(t)f^{\prime}(t).

See Solution

Problem 31668

Complete the table and estimate the limit:
limx4[1/(x+1)](1/5)x4 \lim _{x \rightarrow 4} \frac{[1 /(x+1)]-(1 / 5)}{x-4}
Estimate: 0.04\approx -0.04. Use a graphing tool to confirm.

See Solution

Problem 31669

Set up an integral for the surface area of the curve x1/2+y1/2=9x^{1/2} + y^{1/2} = 9 revolved around the x-axis.

See Solution

Problem 31670

Find the derivative using logarithmic differentiation for f(x)=(1+2x294x)4f(x)=\left(\frac{1+2 x^{2}}{9-4 x}\right)^{4}.

See Solution

Problem 31671

A colony of 90 bacteria grows at 3.5%3.5\% per hour. How long until the population doubles?

See Solution

Problem 31672

Find the derivative f(t)f'(t) of the function f(t)=4t7f(t)=\frac{\sqrt{4}}{t^{7}} and evaluate f(2)f'(2).

See Solution

Problem 31673

Complete the table to find limx06sin(x)x\lim _{x \rightarrow 0} \frac{6 \sin (x)}{x} and estimate the limit. Round to five decimal places.

See Solution

Problem 31674

Find limits for the function f(x)={2x+1,x13x,1<x<0x,x0f(x)=\begin{cases} 2x+1, & x \leq -1 \\ 3x, & -1<x<0 \\ \sqrt{x}, & x \geq 0 \end{cases} for: a. limx3f(x)\lim_{x \to -3} f(x), b. limx1+f(x)\lim_{x \to -1^+} f(x), c. limx1f(x)\lim_{x \to -1^-} f(x), d. limx1f(x)\lim_{x \to -1} f(x), e. limx0f(x)\lim_{x \to 0} f(x), f. limx2f(x)\lim_{x \to 2} f(x).

See Solution

Problem 31675

Find the derivative f(x)f'(x) if f(x)=4+4x+4x2f(x) = 4 + \frac{4}{x} + \frac{4}{x^2}.

See Solution

Problem 31676

Find dydx\frac{d y}{d x} using logarithmic differentiation for y=xlog5(x)y = x^{\log _{5}(x)}.

See Solution

Problem 31677

Find the derivative of the function f(x)=(x9)(7x+9)f(x)=(x-9)(7x+9), i.e., compute f(x)f^{\prime}(x).

See Solution

Problem 31678

Find the derivative of the function f(t)=4t34f(t)=4 t^{-\frac{3}{4}}. What is f(t)f^{\prime}(t)? f(t)= f^{\prime}(t)=

See Solution

Problem 31679

Complete the table and estimate the limit: limx06sin(x)x6\lim _{x \rightarrow 0} \frac{6 \sin (x)}{x} \approx 6. Round answers to five decimal places.

See Solution

Problem 31680

Find the derivative of the function f(t)=4t34f(t)=4 t^{-\frac{3}{4}}. What is f(t)f^{\prime}(t)?

See Solution

Problem 31681

Find the limits of the piecewise function:
f(x)={2x+1,x13x,1<x<0x,x0 f(x)=\left\{\begin{array}{lr} 2 x+1, & x \leq-1 \\ 3 x, & -1<x<0 \\ \sqrt{x}, & x \geq 0 \end{array}\right.
a. limx3f(x)\lim _{x \rightarrow-3} f(x), b. limx1+f(x)\lim _{x \rightarrow-1^{+}} f(x), c. limx1f(x)\lim _{x \rightarrow-1^{-}} f(x), d. limx1f(x)\lim _{x \rightarrow-1} f(x), e. limx0f(x)\lim _{x \rightarrow 0} f(x), f. limx2f(x)\lim _{x \rightarrow 2} f(x).

See Solution

Problem 31682

Differentiate the function V(r)=43πr3V(r)=\frac{4}{3} \pi r^{3}.

See Solution

Problem 31683

Find the marginal cost function for C(x)=210+5.1x0.01x2C(x)=210+5.1 x-0.01 x^{2}. What is C(x)C^{\prime}(x)?

See Solution

Problem 31684

Determine the marginal revenue function from R(x)=x(210.07x)R(x)=x(21-0.07 x). Find R(x)R^{\prime}(x).

See Solution

Problem 31685

Find the derivative f(t)f^{\prime}(t) for the function f(t)=4t26t+7f(t)=-4 t^{2}-6 t+7.

See Solution

Problem 31686

Find the derivative dydx\frac{d y}{d x} for the function y=1x9y=\frac{1}{x^{9}}.

See Solution

Problem 31687

Find the derivative of the function f(x)=8x(x2)f(x)=8 \sqrt{x}(x-2). What is f(x)f^{\prime}(x)?

See Solution

Problem 31688

Differentiate 0.2x4.7x2+4x\frac{0.2}{\sqrt{x}}-4.7 x^{-2}+4 x with respect to xx.

See Solution

Problem 31689

Find the derivative of the function 18x+39x\frac{18 x+39}{x}. What is ddx18x+39x=\frac{d}{d x} \frac{18 x+39}{x}=\square?

See Solution

Problem 31690

Find the derivative f(x)f^{\prime}(x) for the function f(x)=7x5f(x)=7 x^{5}.

See Solution

Problem 31691

Find f(0)f^{\prime}(0) for f(x)=5tan(x)tan(3x)f(x)=5 \tan (x)-\tan (3 x) and g(π4)g^{\prime}\left(\frac{\pi}{4}\right) for g(x)=csc(x)g(x)=\csc (x).

See Solution

Problem 31692

Find the relative minimum point of f(x)=x22x21f(x)=\frac{x^{2}-2}{x^{2}-1} using f(x)f'(x) and f(x)f''(x).

See Solution

Problem 31693

Find the derivative r(x)r^{\prime}(x) for r(x)=64x2r(x)=6-4x^{2} and calculate r(1)r^{\prime}(1), r(2)r^{\prime}(2), r(3)r^{\prime}(3).

See Solution

Problem 31694

Find the inflection point using f(x)=x23x2f(x)=\frac{x^{2}-3}{x-2}, f(x)=x24x+3(x2)2f^{\prime}(x)=\frac{x^{2}-4x+3}{(x-2)^{2}}, and f(x)=2(x2)3f^{\prime \prime}(x)=\frac{2}{(x-2)^{3}}.

See Solution

Problem 31695

Given f(x)=2x3f(x)=2 x^{3} on [1,2][1,2], find the Riemann sum RNR_{N}, simplify it, and compute the area as NN \to \infty.

See Solution

Problem 31696

Find the derivative f(x)f^{\prime}(x) for f(x)=2x2+3x2f(x)=2x^{2}+3x-2 and calculate f(2)f^{\prime}(-2), f(6)f^{\prime}(6), f(8)f^{\prime}(8).

See Solution

Problem 31697

Find the marginal revenue function for R(x)=6x0.08x2R(x)=6 x-0.08 x^{2}, and calculate R(x)=R^{\prime}(x)=\square.

See Solution

Problem 31698

For the function y=f(x)=7x2y=f(x)=7-x^{2}, find: (A) f(1)f(2)1\frac{f(-1)-f(-2)}{1}, (B) f(2+h)f(2)h\frac{f(-2+h)-f(-2)}{h}, (C) limh0f(2+h)f(2)h\lim _{h \rightarrow 0} \frac{f(-2+h)-f(-2)}{h}.

See Solution

Problem 31699

The cost to make xx frames is C(x)=90,000+500xC(x)=90,000+500 x. Find: (A) avg cost for 50 frames, (B) marginal avg cost at 50, (C) estimate avg cost for 51 frames.

See Solution

Problem 31700

Calculate the value of V=x(14y33+35y)5/25/2V=\left.x\left(-\frac{14 y^{3}}{3}+35 y\right)\right|_{-\sqrt{5} / \sqrt{2}} ^{\sqrt{5} / \sqrt{2}}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord