Calculus

Problem 19501

Find g(x)g^{\prime}(x) if g(x)=x7cos(t7)dtg(x)=\int_{x}^{7} \cos(t^{7}) dt. Options: cos(x7)-\cos(x^{7}), sin(x7)-\sin(x^{7}), etc.

See Solution

Problem 19502

Find the value of the integral 05g(x)1+(g(x))2dx\int_{0}^{5} \frac{g^{\prime}(x)}{1+(g(x))^{2}} d x given g(0)=0g(0)=0 and g(5)=1g(5)=1.

See Solution

Problem 19503

Find the derivative of sinxcosxt2dt\int_{\sin x}^{\cos x} t^{2} dt. Choices: sin2xcos2x\sin^2 x - \cos^2 x, cosxsin2xsinxcos2x-\cos x \sin^2 x - \sin x \cos^2 x, cosxsin2x+sinxcos2x\cos x \sin^2 x + \sin x \cos^2 x, or cos2xsin2x\cos^2 x - \sin^2 x.

See Solution

Problem 19504

Find the value of the limit: limx0x0t2+9dtx\lim _{x \rightarrow 0} \frac{\int_{x}^{0} \sqrt{t^{2}+9} d t}{x}. Choices: -3, 3, \infty, -\infty, 0.

See Solution

Problem 19505

Evaluate the integral ππf(x)dx\int_{-\pi}^{\pi} f(x) dx where f(x)={2x4,πx<0;5sin(x),0xπ}f(x)=\{2x^4, -\pi \leq x<0; 5\sin(x), 0 \leq x \leq \pi\}.

See Solution

Problem 19506

Find F(2)F'(2) for F(x)=3xx3f(t)dtF(x)=\int_{3x}^{x^3} f(t) dt given f(2)=2,f(4)=1,f(6)=6,f(8)=4,f(10)=3f(2)=2, f(4)=-1, f(6)=6, f(8)=4, f(10)=-3.

See Solution

Problem 19507

Find g(2)g^{\prime}(2) for the function g(x)=x243tdtg(x)=\int_{x^{2}}^{4} 3 t d t.

See Solution

Problem 19508

Find the derivative of the integral sinxcosxt2dt\int_{\sin x}^{\cos x} t^{2} dt. What is it equal to?

See Solution

Problem 19509

Find the integral of x(1x)99x(1-x)^{99} with respect to xx.

See Solution

Problem 19510

Calculate the integral (x2+3x)5(2x+3)dx\int\left(x^{2}+3 x\right)^{5}(2 x+3) d x.

See Solution

Problem 19511

Vérifiez si la dérivée seconde de f(x)=5x236x2+12f(x) = \frac{5x^{2}-36}{x^{2}+12} est 596(2x)(2+x)(x2+12)2\frac{596(2-x)(2+x)}{(x^{2}+12)^{2}}.

See Solution

Problem 19512

Find the max and min of f(x)=x8xx+2f(x)=x-\frac{8 x}{x+2} on [0,3][0,3]. Min value = ?, Max value = 0.

See Solution

Problem 19513

Find the volume of the solid formed by revolving the area between y=3xy=3x and y=12xy=12\sqrt{x} around the xx-axis.

See Solution

Problem 19514

Find the volume of the solid formed by revolving the area between y=32xy=3 \sqrt{2 x} and y=8xy=8-x around the xx-axis.

See Solution

Problem 19515

Find the integral of the function: 3x5dx\int \sqrt{3 x-5} \, dx.

See Solution

Problem 19516

Calculate the volume of the solid formed by rotating the area in the first quadrant between y2=8xy^{2}=8x and x=2x=2 around the x-axis.

See Solution

Problem 19517

Find the volume of the solid formed by rotating the area between y=x2+2xy=-x^{2}+2x and the xx-axis around the xx-axis.

See Solution

Problem 19518

Find f(x)f(x) where dydx=80yx15\frac{d y}{d x}=80 y x^{15} and the yy-intercept is 5.

See Solution

Problem 19519

Given g(x)=f(x2x)g(x)=f\left(x^{2}-x\right), find g(3)g^{\prime}(3) and f(0)f^{\prime \prime}(0) if g(0)=1g^{\prime \prime}(0)=-1.

See Solution

Problem 19520

Find the population P(t)=700t3t2+6P(t)=\frac{700 t}{3 t^{2}+6} at t=0,1,3,8t=0,1,3,8. Determine the horizontal asymptote as tt \to \infty and its significance.

See Solution

Problem 19521

Use the Limit Comparison Test for convergence/divergence of n=15n2+n+1n4+4n26\sum_{n=1}^{\infty} \frac{5 n^{2}+n+1}{n^{4}+4 n^{2}-6}. Choose bnb_{n} and find limit LL.

See Solution

Problem 19522

Compute ddx[1x4sin(t3)dt]\frac{d}{d x}\left[\int_{1}^{x^{4}} \sin \left(t^{3}\right) d t\right] using the Fundamental Theorem.
a) Write 1x4sin(t3)dt\int_{1}^{x^{4}} \sin \left(t^{3}\right) d t as G(x4)G(1)G(x^{4}) - G(1).
b) Find ddx[1x4sin(t3)dt]\frac{d}{d x}\left[\int_{1}^{x^{4}} \sin \left(t^{3}\right) d t\right].

See Solution

Problem 19523

Given ff and ff^{\prime} values, find cc in 0<c<30<c<3 where g(c)=5g(c)=5 and locate xx in [3,0][-3, 0] where h(x)=f(6)f(3)6(3)h^{\prime}(x)=\frac{f(6)-f(-3)}{6-(-3)}.

See Solution

Problem 19524

Given f(x)=x2x21f(x)=\frac{x^{2}}{x^{2}-1}, find (a) where ff is increasing/decreasing, (b) local max/min xx-values, (c) concavity and inflection points.

See Solution

Problem 19525

Estimate the area under f(x)=1x2f(x)=1-x^{2} using an upper sum with 4 equal-width rectangles over [a,b][a, b].

See Solution

Problem 19526

Find horizontal and vertical asymptotes of g(x)=3xtan1(1x)g(x)=|3 x| \cdot \tan ^{-1}\left(\frac{1}{x}\right). Show your work.

See Solution

Problem 19527

Find the max and min of f(x)=x8xx+2f(x)=x-\frac{8 x}{x+2} on [0,3][0,3]. Min value = ?, Max value = 0.

See Solution

Problem 19528

Estabon's drink cools from 204F204^{\circ} \mathrm{F} to 184F184^{\circ} \mathrm{F} in 2 min. How long to reach 99F99^{\circ} \mathrm{F}?

See Solution

Problem 19529

Find the initial temperature of the soda and its temperature after 18 minutes using T(x)=6+24e0.04xT(x)=-6+24 e^{-0.04 x}.

See Solution

Problem 19530

Approximate 025x4dx\int_{0}^{2} 5 x^{4} d x using Simpson's Rule with n=4n=4.

See Solution

Problem 19531

A cup of coffee cools from 205F205^{\circ} \mathrm{F} to 195F195^{\circ} \mathrm{F} in 10 mins. When will it reach 180F180^{\circ} \mathrm{F}? Use Newton's law of cooling: T(t)=TA+(T0TA)ektT(t)=T_{A}+\left(T_{0}-T_{A}\right) e^{-k t}. A. 27 min B. 45 min C. 15 min D. 1 hour

See Solution

Problem 19532

Find the consumer's surplus for the demand function p=34x2p=34-x^{2} at an equilibrium price of \$9 per unit.

See Solution

Problem 19533

Find the time in hours for a bacteria population to double with a growth rate of 4.6%4.6\% per hour. Round to the nearest hundredth.

See Solution

Problem 19534

Find the national health expenditures in billions of dollars at the start of 1981, given it was \$500 billion.

See Solution

Problem 19535

Cost function C(x)=4x2+12x+24C(x)=4 x^{2}+12 x+24, find marginal cost at x=5x=5, estimate cost for 5.50 units, and break-even point with R(x)=x2+29x+36R(x)=-x^{2}+29 x+36.

See Solution

Problem 19536

Find the time to double \$2700 at a continuous interest rate of 1.5\%. Round to the nearest hundredth.

See Solution

Problem 19537

Find the half-life of a substance decaying at 6.2%6.2\% per day using the continuous exponential decay model.

See Solution

Problem 19538

Find dydx\frac{d y}{d x} for y=ax(t22t)dty=\int_{a}^{x}(t^{2}-2t) dt using the fundamental theorem of calculus.

See Solution

Problem 19539

Find the hourly growth rate of a bacteria population that grows from 3000 to 3121 in 1.5 hours. Express as a percentage.

See Solution

Problem 19540

What does a derivative value of approximately 0 for national health expenditures in 1990 imply about spending that year?

See Solution

Problem 19541

Find the value of yy for the integral y=x3costdty=\int_{x}^{3} \cos t \, dt.

See Solution

Problem 19542

Find the value of yy for the integral y=1sinx3t2dty=\int_{1}^{\sin x} 3 t^{2} d t.

See Solution

Problem 19543

Evaluate the integral from 0 to 3 of the function x2+4x1x^{2}+4x-1.

See Solution

Problem 19544

Find the max and min values of ff on the intervals:
10. f(x)=x33x+1,[0,3]f(x)=x^{3}-3 x+1,[0,3]
11. f(x)=4x3+x24x+1,[1,2]f(x)=4 x^{3}+x^{2}-4 x+1,[-1,2]
12. f(x)=sinx+cosx,[0,π3]f(x)=\sin x+\cos x,\left[0, \frac{\pi}{3}\right]

See Solution

Problem 19545

Find the maximum acceleration in the interval 0t30 \leq t \leq 3 for the particle with velocity v(t)=t33t2+12t+4v(t)=t^{3}-3 t^{2}+12 t+4.

See Solution

Problem 19546

Evaluate the integral sin1tdt1t2\int \frac{\sin ^{-1} t \, dt}{\sqrt{1-t^{2}}}.

See Solution

Problem 19547

Evaluate the integral: 1+sinxcos2xdx\int \frac{1+\sin x}{\cos ^{2} x} d x.

See Solution

Problem 19548

Find the Maclaurin series for f(x)=ex+e2xf(x)=e^{x}+e^{2x}.

See Solution

Problem 19549

Trouver le minimum de f(x)=x334x2+12x+13f(x)=\frac{x^{3}}{3}-4 x^{2}+12 x+\frac{1}{3} sur l'intervalle [1,8][-1,8].

See Solution

Problem 19550

Find the limit: limx0xln(1+x)x2\lim _{x \rightarrow 0} \frac{x-\ln (1+x)}{x^{2}}.

See Solution

Problem 19551

Calculate the area under the curve y=log(1+x)y=\log(1+x). Options: (A) log(62)\log(62), (B) log(64)2\log(64)-2, (C) log(32)+2\log(32)+2, (D) log(64)+2\log(64)+2.

See Solution

Problem 19552

Find the Taylor series of f(x)=exf(x) = e^x around the point a=3a = 3.

See Solution

Problem 19553

Find the Taylor series for f(x)=exf(x)=e^{x} centered at a=3a=3. Do not prove that Rn(x)R_n(x) is 0.

See Solution

Problem 19554

Find the Maclaurin series for f(x)=sin(πx)f(x)=\sin(\pi x).

See Solution

Problem 19555

Find the limit: limx0sinxx+16x3x5\lim _{x \rightarrow 0} \frac{\sin x - x + \frac{1}{6} x^{3}}{x^{5}}.

See Solution

Problem 19556

Juno invests \$ 85,000 at a 4% annual interest rate, compounded continuously. Find the account value in 12 years.

See Solution

Problem 19557

Find the area between the curves y=x2y=x^{2} and y=2x2y=2-x^{2}.

See Solution

Problem 19558

Evaluate the integral: ex1xdx\int \frac{e^{x}-1}{x} d x

See Solution

Problem 19559

Bestimme die Grenzwerte: a) limxx2+12x2\lim _{x \rightarrow \infty} \frac{x^{2}+1}{2 x^{2}}, b) limxx2+2x+14x2\lim _{x \rightarrow-\infty} \frac{x^{2}+2 x+1}{4 x^{2}}, c) limxx5x\lim _{x \rightarrow \infty} \frac{x}{5 x}. Verwende Termumformung und die h-Methode.

See Solution

Problem 19560

1. Calculate the area between the line y=2x+3y=2x+3, the x-axis, and the vertical lines x=1x=-1 and x=1x=1.
2. Show that 0af(x)dx=0af(ax)dx\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx.

See Solution

Problem 19561

A baseball diamond is a square (sides 90ft90 \, \text{ft}). A player runs to second base at 18ft/sec18 \, \text{ft/sec}.
a. Find the rate of distance from third base when 45ft45 \, \text{ft} from first base.
b. Determine the rates of angles θ1\theta_{1} and θ2\theta_{2} changing at that moment.
c. When sliding into second base at 15ft/sec15 \, \text{ft/sec}, find the rates of angles θ1\theta_{1} and θ2\theta_{2}.

See Solution

Problem 19562

Find the area under the curve y=3x2y=3x^{2} from x=1x=1 to x=2x=2.

See Solution

Problem 19563

Calculate the area under the curve y=3x2y=3 x^{2} from x=1x=1 to x=2x=2.

See Solution

Problem 19564

Berechnen Sie die Ableitung der Funktion f(x)=2x2+3f(x)=2 x^{2}+3 an den Stellen: a) -2, b) 1,25-1,25, c) 2,5.

See Solution

Problem 19565

Find the Taylor series for f(x)=cosxf(x) = \cos x centered at a=πa = \pi.

See Solution

Problem 19566

Finde die Stellen aa und bb für f(x)=x31,5x220xf(x)=x^{3}-1,5 x^{2}-20 x mit Steigung 40 und berechne {ba;(ab+1);b2+ab0}\{b-a ;-(a \cdot b+1) ; b^{2}+a-b^{0}\}.

See Solution

Problem 19567

Bestimme die Extremstellen der Funktion f(x)=x321x2+135x+19f(x)=x^{3}-21 x^{2}+135 x+19 und finde ein dreibuchstabiges Wort basierend auf den Hinweisen.

See Solution

Problem 19568

A particle moves on y=x2y=x^{2} with dx/dt=4 m/sdx/dt=4 \mathrm{~m/s}. Find the rate of change of angle θ\theta at x=1 mx=1 \mathrm{~m}.

See Solution

Problem 19569

A rectangle's length \ell increases at 2 cm/sec2 \mathrm{~cm/sec} and width ww decreases at 2 cm/sec2 \mathrm{~cm/sec}. At =24 cm\ell=24 \mathrm{~cm} and w=7 cmw=7 \mathrm{~cm}, find the rates of change for area, perimeter, and diagonals. Identify which are increasing, decreasing, or constant.

See Solution

Problem 19570

Kosten-Gewinn-Rechnung:
Gegeben ist die Kostenfunktion K(x)=0,01x3x2+50x+720K(x)=0,01 x^{3}-x^{2}+50 x+720.
a) Bestimme die Gewinnfunktion G(x)G(x) für den Verkaufspreis von 5353€.
b) Berechne den Gewinn für bestimmte Stückzahlen und skizziere GG.
c) Benenne markante Punkte und deren Bedeutung.
d) Finde die Nullstellen von GG und das Gewinnintervall.
e) Bestimme die erste Ableitung von GG und berechne den maximalen Gewinn.
f) Finde die Stückzahlen für ca. 500500€ Gewinn.
g) Erkläre die Bedeutung des Hochpunkts bei x=3313x=33 \frac{1}{3}.

See Solution

Problem 19571

Find the body's velocity, speed, acceleration, and jerk at t=π4t=\frac{\pi}{4} sec for s=3sint+12costs=3 \sin t + 12 \cos t.

See Solution

Problem 19572

Finde die Bedingungen für Extrema der Funktion fa(x)=ax44x3+a2xf_{a}(x)=a x^{4}-4 x^{3}+a^{2} x durch Berechnung der ersten und zweiten Ableitung.

See Solution

Problem 19573

Calculate the area between the curve y=2x+x2x3y=2 x+x^{2}-x^{3}, the xx-axis, and lines x=1x=-1 and x=1x=1.

See Solution

Problem 19574

Une compagnie achète un appareil à 2500\.Trouvezleprofitmaximalavec. Trouvez le profit maximal avec Ret et Cdonneˊspar donnés par \frac{d R}{d t}=100(18-3 \sqrt{t})et et \frac{d C}{d t}=100(2+\sqrt{t})$.

See Solution

Problem 19575

Find the dimensions and area of a rectangle on the xx-axis with vertices on the parabola y=64x2y=64-x^{2} that maximizes area.

See Solution

Problem 19576

Find the hourly growth rate for a bacteria population that grows from 1000 to 1124 in 2.5 hours.

See Solution

Problem 19577

Find the derivative f(x)f^{\prime}(x) and the critical numbers of f(x)=x33x1f(x)=x^{3}-3x-1.

See Solution

Problem 19578

Determine the convergence or divergence of the series an=nn2(n+1)n2a_{n}=\frac{n^{n^{2}}}{(n+1)^{n^{2}}}.

See Solution

Problem 19579

Find the area between the curves y=2x2y=2-x^{2} and y=xy=-x using the integral A=ab[f(x)g(x)]dxA=\int_{a}^{b}[f(x)-g(x)] dx.

See Solution

Problem 19580

Find the Taylor Series for x2ex2dx\int x^{2} e^{-x^{2}} dx using the Taylor Series of exe^{x} and state the radius of convergence.

See Solution

Problem 19581

Find the mass of a radioactive substance after 4 days, starting at 3542 kg and decaying at 13% per day. Round to the nearest tenth. kg \square \mathrm{kg}

See Solution

Problem 19582

Find the Taylor series of the function f(x)=x52x4+x3x2+2x1f(x) = x^{5}-2 x^{4}+x^{3}-x^{2}+2 x-1 at the point x0=1x_0=1.

See Solution

Problem 19583

Calculate the future value of an investment of \6,200ata96,200 at a 9% continuous compounding rate over 10 years using A = Pe^{rt}$.

See Solution

Problem 19584

Determine convergence type (absolute, conditional, or divergent) of the series n=1(1)nn+2n(n+1)\sum_{n=1}^{\infty}(-1)^{n} \frac{n+2}{n(n+1)}.

See Solution

Problem 19585

Calculate the sum k=14k1+3k1112k1\sum_{k=1}^{\infty} \frac{4^{k-1}+3^{k-1}-1}{12^{k-1}}.

See Solution

Problem 19586

Find the limit of f(x)=2x+1+x+1f(x) = 2 \sqrt{x+1} + x + 1 as xx \to \infty.

See Solution

Problem 19587

Find the rate of change of revenue when selling widgets at \270,given270, given x=\frac{90000}{\sqrt{3p+1}}$.

See Solution

Problem 19588

Is it true that 1130f(x)dx=3011f(x)dx\int_{11}^{30} f(x) dx = -\int_{30}^{11} f(x) dx for ff on (11,30)(11,30)? a) True b) False

See Solution

Problem 19589

Find the value of 04f(x)dx\int_{0}^{4} f(x) dx where f(x)=x1f(x)=x-1 for 0x<20 \leq x<2 and f(x)=1xf(x)=1-x for 2x42 \leq x \leq 4. Options: a) -4 b) 31 c) 12 d) 242 e) None.

See Solution

Problem 19590

Find the derivative: ddxπ2x2sin(u)du\frac{d}{d x} \int_{\frac{\pi}{2}}^{x^{2}} \sin (u) d u. Choose the correct option.

See Solution

Problem 19591

Calculate the total energy requirement for a female Collie between her third and fifth birthday using E(t)=5t0.2E(t)=5 t^{-0.2}. Options: a) 1022.616 b) 540.648 c) 494.790 d) 852.180

See Solution

Problem 19592

Find the total reaction from hour 2 to hour 3 for R(t)=6t+4t3+etR'(t)=\frac{6}{t}+\frac{4}{t^{3}}+e^{t}. Round up your answer. Choices: a) 15 b) 16 c) 18 d) 19

See Solution

Problem 19593

Check if the Mean Value Theorem applies to f(x)=9lnx10f(x)=9 \ln x-10 on [1,14][1,14]. If yes, find cc in [1,14][1,14]. DNE if not.

See Solution

Problem 19594

Calculate the limit: limx+2x+1+x+1\lim _{x \rightarrow+\infty} 2 \sqrt{x+1}+x+1.

See Solution

Problem 19595

Find the inflection points of f(x)=8x4+110x342x2+11f(x)=8 x^{4}+110 x^{3}-42 x^{2}+11. Answer as a list, e.g., 3,-2.

See Solution

Problem 19596

Find the inflection points of f(x)=8x4+110x342x2+11f(x)=8 x^{4}+110 x^{3}-42 x^{2}+11. List them as x1,x2x_1,x_2.

See Solution

Problem 19597

Solve for y(x)y(x) given dydx=xx25\frac{d y}{d x}=\frac{x}{x^{2}-5} and y(0)=ln(5)y(0)=\ln(5).

See Solution

Problem 19598

Is it true that 58f(x)dx=525f(x)dx825f(x)dx\int_{5}^{8} f(x) d x = \int_{5}^{25} f(x) d x - \int_{8}^{25} f(x) d x? a) True b) False

See Solution

Problem 19599

Which symbol represents "left" in the context of limits: xx \rightarrow \infty or xx \rightarrow -\infty?

See Solution

Problem 19600

Find dy/dxdy/dx using logarithmic differentiation for y=(9+x)4/xy=(9+x)^{4/x}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord