Calculus

Problem 5501

Zeigen Sie, dass die Gerade gg mit y=f(a)(xa)+f(a)y=f^{\prime}(a)(x-a)+f(a) eine Tangente an ff im Punkt P(af(a))P(a \mid f(a)) ist, indem Sie (1) P auf gg und (2) die Steigung f(a)f^{\prime}(a) überprüfen.

See Solution

Problem 5502

Find the coordinates where f(x)=x312xf(x)=x^{3}-12x has a horizontal tangent line (zero slope) using differentiation shortcuts.

See Solution

Problem 5503

A stone is thrown up at 20 ms120 \mathrm{~ms}^{-1}. Find the max height, time to max height, and distance in 3 seconds.

See Solution

Problem 5504

An investor bought two buildings with growth rates r1(t)=0.062(1.043t)r_{1}(t)=0.062(1.043^{t}) and r2(t)=0.046(1.039t)r_{2}(t)=0.046(1.039^{t}). Find the area between their graphs from 0t100 \leq t \leq 10. What does this area represent?

See Solution

Problem 5505

1) Show that f(x)=(x3)(x+3)x2f'(x)=\frac{(x-3)(x+3)}{x^{2}} for f(x)=(x+1)(x+9)xf(x)=\frac{(x+1)(x+9)}{x}. 2) Find f(x)f'(x) for f(x)=9x2+32x3f(x)=\frac{9x^{2}+3}{2\sqrt[3]{x}}. 3) Find the derivative of y=(2x3)2x3y=\frac{(2\sqrt{x}-3)^{2}}{\sqrt{x^{3}}}.

See Solution

Problem 5506

Solve the differential equation 2dydx=6x2 \frac{d y}{d x}=6 x to find yy.

See Solution

Problem 5507

Calculate the average rate of change of f(x)=1x2+3x8f(x)=-1 x^{2}+3 x-8 from x=4x=-4 to x=0x=0. Average rate of change ==

See Solution

Problem 5508

Find the tangent plane equation to the surface x2+y2z259=0x^{2}+y^{2}-z^{2}-59=0 at points (8,2,3)(8,2,3) and (2,8,3)(-2,-8,3).

See Solution

Problem 5509

Find the derivative of y=2x33xe4x(sin2(x))y=\frac{2 x \sqrt{3-3 x}}{e^{4 x}\left(\sin ^{2}(x)\right)} using logarithmic differentiation. y=y'=

See Solution

Problem 5510

Find the derivative of d(t)=16t2d(t)=16 t^{2}, its units, and compute the height for t=4.9t=4.9 s and speed at impact in mph.

See Solution

Problem 5511

Find the derivative of the piecewise function:
f(x)={x2+1if x02x2+x+1if x>0f(x)=\begin{cases} x^{2}+1 & \text{if } x \leq 0 \\ 2x^{2}+x+1 & \text{if } x > 0 \end{cases}

See Solution

Problem 5512

Gegeben ist ft(x)=(xt)exf_{t}(x)=(x-t) \cdot e^{x}. Bestimme Schnittpunkt mit yy-Achse, Nullstellen, Extrem- und Wendepunkte für t=2,1,0,1,2t=-2, -1, 0, 1, 2.

See Solution

Problem 5513

Evaluate the integral 013dx1+9x2\int_{0}^{\frac{1}{3}} \frac{d x}{1+9 x^{2}}. Options: A. π12\frac{\pi}{12} B. π6\frac{\pi}{6} C. ln(2)18\frac{\ln (2)}{18} D. π4\frac{\pi}{4} E. ln(2)\ln (2)

See Solution

Problem 5514

1. Find f(x)f^{\prime}(x) and f(2)f^{\prime}(2) for f(x)=3x10xf(x)=3 x 10^{x}.
2. Find f(x)f^{\prime}(x) and f(9)f^{\prime}(9) for f(x)=9x5x+3f(x)=\frac{9 x}{5 x+3}.

See Solution

Problem 5515

Find the tangent line equation for f(x)=2xln(x+7)f(x)=-2 x \ln (x+7) at x=1x=1. Answer: y=y=

See Solution

Problem 5516

Find the population growth rate in thousands at t=6t=6 for P(t)=(0.8t7)(0.4t+6)+45P(t)=(0.8 t-7)(0.4 t+6)+45. Round to two decimal places.

See Solution

Problem 5517

Find the derivative of f(x)=8x5x+6f(x)=\frac{8 \sqrt{x}}{5 x+6} using the Product or Quotient Rule.

See Solution

Problem 5518

Find the derivative of f(t)=(4+1t)(t414)f(t)=\left(4+\frac{1}{t}\right)\left(t^{4}-\frac{1}{4}\right) using Product or Quotient Rule.

See Solution

Problem 5519

Find the derivative of g(t)=(98t2)(t4+2t27)g(t)=\left(9-\frac{8}{t^{2}}\right)\left(t^{4}+2 t^{2}-7\right) using the Product or Quotient Rule.

See Solution

Problem 5520

Find the derivative of g(x)=7xx6g(x)=\frac{-7 x}{x-6} using the Product or Quotient Rule.

See Solution

Problem 5521

Find the derivative of f(x)=x2(4x5+4)f(x)=x^{2}(4 x^{5}+4) using the Product or Quotient Rule.

See Solution

Problem 5522

Find the derivative of f(x)=(2x27)(x3)f(x)=(-2 x^{-2}-7)(-x-3) using the Product or Quotient Rule.

See Solution

Problem 5523

Find the derivative of f(x)=(2x2+1)(5x+9)f(x)=(-2 x^{-2}+1)(-5 x+9) using the Product or Quotient Rule.

See Solution

Problem 5524

Find the derivative of the function using the Quotient Rule: f(x)=(x22)(2x3+7)f(x)=\left(-x^{-2}-2\right)\left(-2 x^{-3}+7\right).

See Solution

Problem 5525

Find the derivative of f(x)=8x52x2+2f(x)=\frac{8 x-5}{2 x^{2}+2} using the Product or Quotient Rule.

See Solution

Problem 5526

Find the marginal revenue for the demand function D(x)=1683x+3D(x)=\frac{168}{3x+3} at x=7x=7, rounded to the nearest cent.

See Solution

Problem 5527

Find the population growth rate in thousands for the city in 21 years, where P(t)=(0.7t8)(0.2t+4)+85P(t)=(0.7 t-8)(0.2 t+4)+85.

See Solution

Problem 5528

Find the marginal revenue for the demand function D(x)=1714x+3D(x)=\frac{171}{4 x+3} at x=8x=8. Round to the nearest cent.

See Solution

Problem 5529

Find the marginal revenue for the demand function D(x)=1954x+2D(x)=\frac{195}{4x+2} at x=8x=8. Round to the nearest cent.

See Solution

Problem 5530

City planners use A(t)=140t2+2t+30A(t)=-\frac{1}{40} t^{2}+2 t+30 for city size. Find A(t)A'(t), its units, and what it measures.

See Solution

Problem 5531

Find the derivative of h(x)=2x2x+7h(x)=\frac{2 \sqrt{x}}{2 x+7} using the Product or Quotient Rule.

See Solution

Problem 5532

Find the absolute extrema of the function f(x)=x36f(x)=-x^{3}-6 on the interval [5,7][-5,7]. Provide your answer as (x,f(x))(x, f(x)).

See Solution

Problem 5533

Geben Sie Beispiele für Folgen an: a) an3a_n \to 3, monoton steigend; b) bngb_n \to g, monoton fallend; c) cnc_n divergent; d) dnd_n konvergent mit unendlich vielen positiven und negativen Gliedern.

See Solution

Problem 5534

Gegeben ist die Funktion f(x)=4+5e2x4e0,5xf(x)=4+5 e^{-2 x}-4 e^{-0,5 x}.
a) Bestimme den Anfangsbestand, erstelle eine Tabelle für 10 Jahre und plotte die Funktion. b) Finde Extremal- und Wendepunkt von ff und erkläre deren Bedeutung. c) Berechne die Fläche AA unter ff im Intervall I=[0;10]I = [0 ; 10]. d) Was bedeutet der Term 110010f(x)\frac{1}{10} \int_{0}^{10} f(x)?

See Solution

Problem 5535

Find the absolute extrema of f(x)=7x242x6f(x)=-7 x^{2}-42 x-6 on [7,7][-7,7]. Present your answer as (x,f(x))(x, f(x)).

See Solution

Problem 5536

Find the absolute extrema of f(x)=2x3+24xf(x)=-2 x^{3}+24 x on [5,5][-5,5]. Provide your answer as (x,f(x))(x, f(x)) pairs.

See Solution

Problem 5537

Berechne die verbleibende Menge an Cs 137 nach 2, 5, 10, 33 und n Jahren, beginnend mit 500 g und 2.1\% Zerfall pro Jahr.

See Solution

Problem 5538

What will \$ 4,000,000 grow to in 25 years at a continuous 5% interest rate? A. \$ 13,853,617.10 B. \$ 13,961,371.83 C. \$ 13,925,161.81 D. \$ 13,748,434.88

See Solution

Problem 5539

Finde die Stelle im Intervall [1;2][1 ; 2], wo die Steigung der Tangente gleich der Sekantensteigung ist. Zeichne beide ein.

See Solution

Problem 5540

The nth derivative dndxn(5x3+2x+5)\frac{d^{n}}{d x^{n}}\left(5 x^{3}+2 x+5\right) is 0 for n3n \geq 3. True or False?

See Solution

Problem 5541

Find the tangent lines at x=4x=4 for: a. y=f(x)+g(x)y=f(x)+g(x), b. y=f(x)4g(x)y=f(x)-4g(x), c. y=2f(x)y=2f(x).

See Solution

Problem 5542

Find possible values for the limit limx0(f(x)xg(x)x)\lim _{x \rightarrow 0}\left(\frac{f(x)}{x}-\frac{g(x)}{x}\right) given f(0)=1f(0)=1 and g(0)=1g(0)=1. Options: A 0, B 1, C 17, D DNE.

See Solution

Problem 5543

Find the slope of the tangent line for f(x)=9x211x5f(x)=9 x^{2}-11 x-5 at x=5x=5.

See Solution

Problem 5544

(a) What are the units of f(x)f^{\prime}(x)? (Write each word in its entirety, in lower case). Units: (b) Estimate the cost of producing one more sheet after 1660 sheets if f(1660)=1400f^{\prime}(1660)=1400. Cost:

See Solution

Problem 5545

Find the function f(x)f(x) and the number aa such that limh0(2+h)38h=f(a)\lim _{h \rightarrow 0} \frac{(2+h)^{3}-8}{h} = f^{\prime}(a). f(x)= f(x)= a= a=

See Solution

Problem 5546

Find the slope of the tangent line for f(x)=5x2+2x+2f(x)=5 x^{2}+2 x+2 at x=12x=12.

See Solution

Problem 5547

Find the tangent line equation for the function f(x)=9x23x10f(x)=-9 x^{2}-3 x-10 at x=6x=6.

See Solution

Problem 5548

Find the slope of the tangent line for f(x)=x2+7f(x)=x^{2}+7 at x=1x=1.

See Solution

Problem 5549

Find the equation of the tangent line for f(x)=2x211x+6f(x)=-2 x^{2}-11 x+6 at x=1x=-1.

See Solution

Problem 5550

Find the derivative of the function f(x)=2x3+xf(x)=2 x^{3}+x using the limit definition. No simplification needed.

See Solution

Problem 5551

Find the tangent line equation for f(x)=x2+12f(x)=x^{2}+12 at x=10x=10.

See Solution

Problem 5552

Find the tangent line equation for the function f(x)=7x2+10x1f(x)=7 x^{2}+10 x-1 at x=7x=-7.

See Solution

Problem 5553

Find the derivative of f(x)=x+5f(x)=\sqrt{x+5} at x=3x=3 using the limit method provided. No need to simplify.

See Solution

Problem 5554

Find the instantaneous rate of change of f(x)=ln(x+4)f(x)=\ln (x+4) at x=4x=4 using the limit definition. No simplification needed.

See Solution

Problem 5555

Find the slope of the tangent line for f(x)=5x3f(x)=5x-3 at x=11x=-11.

See Solution

Problem 5556

Find the slope of the tangent line for f(x)=3x3+x5f(x)=3 x^{3}+x^{5} at x=4x=4 using the limit method. No need to simplify.

See Solution

Problem 5557

Find the slope of the tangent line for f(x)=3x3+x5f(x)=3 x^{3}+x^{5} at x=4x=4 using the given limit. No need to simplify.

See Solution

Problem 5558

Find the instantaneous rate of change of f(x)=cosxf(x)=\cos x at x=πx=\pi using the limit definition. No need to simplify.

See Solution

Problem 5559

Find the instantaneous rate of change of f(x)=x+4f(x)=\sqrt{x+4} at x=3x=-3 using the limit definition.

See Solution

Problem 5560

Finde den Fehler in den Ableitungen der Funktionen:
a) f(x)=2x34x2+5f(x)=2 x^{3}-4 x^{2}+5, f(x)=6x2+8x+5f^{\prime}(x)=6 x^{2}+8 x+5
b) f(x)=4x2+1x+2f(x)=4 x^{2}+\frac{1}{x}+2, f(x)=8x+1x2f^{\prime}(x)=8 x+\frac{1}{x^{2}}
c) f(x)=x2+c3+2x+3f(x)=x^{2}+c^{3}+2 x+3, f(x)=2x+3c2+2f^{\prime}(x)=2 x+3 c^{2}+2
d) f(x)=x+x3+1xf(x)=\sqrt{x}+x^{3}+\frac{1}{x}, f(x)=1x+3x2+1x2f^{\prime}(x)=\frac{1}{\sqrt{x}}+3 x^{2}+\frac{1}{x^{2}}

See Solution

Problem 5561

Find the instantaneous rate of change of f(x)=3xx5f(x)=3x-x^5 at x=8x=-8 using the limit definition.

See Solution

Problem 5562

Find the instantaneous rate of change of f(x)=x+4f(x)=\sqrt{x+4} at x=3x=-3 using the limit definition. No simplification needed.

See Solution

Problem 5563

Find the derivative of the function f(x)=x5f(x)=x^{5} using the limit definition of a derivative. No need to simplify.

See Solution

Problem 5564

Find the slope of the tangent line for f(x)=e3xf(x)=e^{3x} at x=5x=-5 using the limit definition of the derivative.

See Solution

Problem 5565

Find the derivative of the function f(x)=5x4+x2f(x)=5 x^{4}+x^{2} using the limit definition, without simplifying.

See Solution

Problem 5566

Find the derivative of f(x)=4x3xf(x)=4 x^{3}-x at x=2x=-2 using the limit definition. No need to simplify.

See Solution

Problem 5567

Find the derivative of the function f(x)=5x+3f(x)=\frac{5}{x+3} using the limit definition, without simplifying.

See Solution

Problem 5568

Find the derivative of f(x)=exf(x)=e^{x} at x=7x=7 using the limit definition. No simplification needed.

See Solution

Problem 5569

Find the derivative of the function f(x)=2x52xf(x)=2 x^{5}-2 x using the limit definition without simplifying.

See Solution

Problem 5570

Find the derivative of f(x)=x+4f(x)=\sqrt{x+4}.

See Solution

Problem 5571

Given f(7)=3f(-7)=3 and f(0)=6f(0)=6, use the Intermediate Value Theorem on (7,0)(-7,0) to find possible values of f(x)f(x).

See Solution

Problem 5572

Find the derivative of f(x)=ex5f(x)=e^{x-5} at x=1x=-1 using the limit definition. No need to simplify your answer.

See Solution

Problem 5573

Find the derivative of f(x)=ex5f(x)=e^{x-5} at x=1x=-1 using the limit definition. No need to simplify.

See Solution

Problem 5574

Given f(6)=6f(-6)=6 and f(1)=4f(-1)=4, use the Intermediate Value Theorem on (6,1)(-6,-1) to draw conclusions about f(x)f(x).

See Solution

Problem 5575

Find the slope of the tangent line of f(x)=3xf(x)=\sqrt{3 x} at x=6x=6 using the limit definition. No need to simplify.

See Solution

Problem 5576

Find where the tangent line lTl_{T} is horizontal for y=x1/3(4x)2/3y=x^{1/3}(4-x)^{2/3}.

See Solution

Problem 5577

Find the derivative of f(x)=ex5f(x)=e^{x-5} at x=1x=-1 using the limit definition. No need to simplify.

See Solution

Problem 5578

Determine conclusions from the Intermediate Value Theorem for f(x)f(x) on (1,5)(-1,5) given f(1)=2f(-1)=2 and f(5)=4f(5)=4.

See Solution

Problem 5579

Find the derivative of f(θ)=4sinθθf(\theta) = 4\sin\theta - \theta at the point (0,0)(0,0).

See Solution

Problem 5580

Find the slope of the tangent line for f(x)=4ln(x+1)f(x)=4 \ln (x+1) at x=8x=8 using the limit method.

See Solution

Problem 5581

Find the slope of the tangent line for f(x)=5x1f(x)=\frac{5}{x-1} at x=3x=-3 using the limit definition of the derivative.

See Solution

Problem 5582

Find the derivative of f(x)=4ln(x+5)f(x)=4 \ln (x+5) at x=4x=-4 using the given limit. No need to simplify your answer.

See Solution

Problem 5583

Find the slope of the tangent line for f(x)=5x1f(x)=\frac{5}{x-1} at x=3x=-3 using the limit definition of the derivative.

See Solution

Problem 5584

Find the derivative of the function f(x)=2x3+x4f(x)=2 x^{3}+x^{4} using the limit definition. No simplification needed.

See Solution

Problem 5585

Determine the horizontal asymptote of the function f(x)=(2x24x)exf(x)=(2x^{2}-4x)e^{x}.

See Solution

Problem 5586

Find the slope of the tangent line for f(x)=x4+x3f(x)=x^{4}+x^{3} at x=8x=-8 using the limit definition.

See Solution

Problem 5587

Find where the tangent line to y=x2cosxy=x-2 \cos x is horizontal.

See Solution

Problem 5588

Use the Intermediate Value Theorem for f(x)f(x) on (2,1)(-2,1) given f(2)=2f(-2)=2 and f(1)=6f(1)=-6. What can you conclude?

See Solution

Problem 5589

Find the derivative of the function f(x)=5cosxf(x)=5 \cos x using the limit definition without simplifying.

See Solution

Problem 5590

Find the derivative of y=(3x+1)4(x2+1)3(3x41)2y=(3x+1)^{4}(x^{2}+1)^{3}(3x^{4}-1)^{2}.

See Solution

Problem 5591

Find the derivative of f(x)=3x3f(x)=3 x^{3} at x=2x=-2 using the limit definition. No need to simplify your answer.

See Solution

Problem 5592

Find the derivative of the function f(x)=3x2+x5f(x)=3 x^{2}+x^{5} using the limit definition. No need to simplify.

See Solution

Problem 5593

Find the limit: limx8x24xx+2\lim _{x \rightarrow-\infty} \frac{\sqrt{8 x^{2}-4 x}}{x+2}.

See Solution

Problem 5594

Find the derivative of f(x)=x3(x+3)f(x)=\sqrt[3]{x}(\sqrt{x}+3).

See Solution

Problem 5595

Find the derivative of y=x4sin(1x)y=x^{4} \sin \left(\frac{1}{x}\right).

See Solution

Problem 5596

Find the derivative of f(x)=x42x5f(x)=x^{4}-2 x^{5} at x=7x=-7 using the limit definition of the derivative.

See Solution

Problem 5597

Find the tangent line equation for the function f(x)=x2+11f(x)=x^{2}+11 at the point where x=5x=5.

See Solution

Problem 5598

Find the slope of the tangent line for the function f(x)=3x29x+7f(x)=-3 x^{2}-9 x+7 at x=9x=-9.

See Solution

Problem 5599

Determine conclusions from the Intermediate Value Theorem for f(x)f(x) on (5,2)(-5,2), given f(5)=3f(-5)=-3 and f(2)=7f(2)=7.

See Solution

Problem 5600

Find the slope of the secant line for f(x)=x2+6f(x)=x^{2}+6 between x=3x=-3 and x=3x=3.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord