Calculus

Problem 11301

Approximate 171/417^{1/4} using the linear approximation L(x)L(x) of f(x)=x1/4f(x)=x^{1/4} at a=16a=16.

See Solution

Problem 11302

Estimate the temperature rise in a snake cage with dTdt=0.008C/s\frac{d T}{d t}=0.008^{\circ} \mathrm{C} / \mathrm{s} over 12 s12 \mathrm{~s}. ΔT\Delta T \approx

See Solution

Problem 11303

Estimate the change in stopping distance F(s)=1.1s+0.054s2F(s)=1.1 s+0.05 \cdot 4 s^{2} for s=50s=50 and s=75s=75 mph using Linear Approximation. Give answers to two decimal places.

See Solution

Problem 11304

Estimate the change in stopping distance ΔF\Delta F (in ft) per mph increase at speeds s=50s=50 and s=75s=75 using F(s)=1.1s+0.054s2F(s)=1.1s+0.054s^2.

See Solution

Problem 11305

Estimate ln1.09\ln 1.09 using linearization L(x)L(x) of f(x)=ln(x)f(x)=\ln (x) at a=1a=1. Find ln(1.09)\ln(1.09) and percentage error.

See Solution

Problem 11306

Simplify the limit: limx0sin5xsin7x\lim _{x \rightarrow 0} \frac{\sin 5 x}{\sin 7 x}. Show all algebra steps.

See Solution

Problem 11307

Find the rate of change of the area A=πr2A=\pi r^{2} of a circular oil spill when r=4ftr=4 \mathrm{ft}.

See Solution

Problem 11308

Find the tangent line equation to the curve h(t)=t336t+4h(t)=t^{3}-36t+4 at the point (6,4).

See Solution

Problem 11309

Find the average speed of a watermelon falling y=16t2y=16 t^{2} ft in the first 5 sec and its speed at t=5t=5 sec.

See Solution

Problem 11310

Simplify f(2+h)f(2)h\frac{f(2+h)-f(2)}{h} for the function f(x)=163xf(x) = \sqrt{16 - 3x} where f(2)=3.16f(2)=3.16.

See Solution

Problem 11311

Find ddx(uv)\frac{d}{d x}(u v) at x=1x=1 given u(1)=3u(1)=3, u(1)=5u'(1)=-5, v(1)=6v(1)=6, v(1)=4v'(1)=-4.

See Solution

Problem 11312

In a 75m building, elevator A moves down at 3 m/s and B up at 1 m/s. What's the distance change after 6 seconds?

See Solution

Problem 11313

In an 80m building, elevators A (down at 3 m/s) and B (up at 1 m/s) start moving. Find distance change after 6s.

See Solution

Problem 11314

Zeigen Sie, dass die Funktion f(x)=e2x+1f(x)=e^{2x+1} umkehrbar ist.

See Solution

Problem 11315

A 20 ft ladder leans against a wall. If the base moves away at 8 ft/s, find the area change rate when it's 12 ft from the wall.

See Solution

Problem 11316

In a 40 m building, elevators A (down at 2ms2 \frac{\mathrm{m}}{\mathrm{s}}) and B (up at 1ms1 \frac{\mathrm{m}}{\mathrm{s}}) start moving. Find the distance change rate after 6 seconds. Answer to three decimal places.

See Solution

Problem 11317

Johanna's velocity data is given. Estimate v(16)v^{\prime}(16) using the table. Also, find Bob's acceleration at t=5t=5 for B(t)=t36t2+300B(t)=t^{3}-6t^{2}+300.

See Solution

Problem 11318

Solve the equation 5kx2x4 dx=k\int_{5}^{k} \frac{x-2}{x-4} \mathrm{~d} x=k for the value of kk.

See Solution

Problem 11319

Berechne den Flächeninhalt unter ff von aa bis bb mit abf(x)dx=F(b)F(a)\int_{a}^{b} f(x) d x=F(b)-F(a). Bestimme: (1) f(x)=2xf(x)=2 x, a=0.5a=0.5, b=3b=3; (2) f(x)=3x2f(x)=3 x^{2}, a=1a=1, b=2b=2.

See Solution

Problem 11320

Berechnen Sie die folgenden Integrale und skizzieren Sie die Flächen: a) 12(4x3)dx\int_{1}^{2}(4 x^{3}) d x b) 35(2x4)dx\int_{-3}^{5}(2 x-4) d x c) 11(9x21)dx\int_{-1}^{1}(9 x^{2}-1) d x d) 0π2(sin(x))dx\int_{0}^{\frac{\pi}{2}}(\sin (x)) d x e) 13(1x2)dx\int_{1}^{3}(\frac{1}{x^{2}}) d x f) 04(x(x1))dx\int_{0}^{4}(x \cdot(x-1)) d x g) 11(x3x)dx\int_{-1}^{1}(x^{3}-x) d x h) 20(5x42)dx\int_{-2}^{0}(5 x^{4}-2) d x.

See Solution

Problem 11321

Calculate the integral: 0π12(cosx+cosx)dx\int_{0}^{\pi} \frac{1}{2}(\cos x + |\cos x|) \, dx.

See Solution

Problem 11322

Find the absolute extremum of f(x)=1.07x311.17x2+23.71x+2.13f(x)=1.07 x^{3}-11.17 x^{2}+23.71 x+2.13 on 1x8-1 \leq x \leq 8. Choose from (A) -27.495, (B) 5.653, (C) 16.427, (D) 24.770.

See Solution

Problem 11323

Find the number of inflection points of the polynomial kk if its rate of change is given by R(x)=3.261x3+5.362x1.584R(x)=-3.261 x^{3}+5.362 x-1.584.

See Solution

Problem 11324

Ordnen Sie jeder Funktion f eine Stammfunktion F zu: f II 2x42x - 4, I 8x338x^{3} - 3, III (x+2)2(x + 2)^{2}, IV 3(x22x3)3(x^{2} - 2x^{3}), VI x29x3\frac{x^{2} - 9}{x - 3}, V 2x1x22x - \frac{1}{x^{2}}, A x332x42x^{3} - \frac{3}{2}x^{4} - 2, C 2x43x+22x^{4} - 3x + 2, D (x2)2(x - 2)^{2}, E 2x2+4x+13x3+C2x^{2} + 4x + \frac{1}{3}x^{3} + C, B 12x2+3x\frac{1}{2}x^{2} + 3x.

See Solution

Problem 11325

1- Find vertical/horizontal asymptotes for: a. f(x)=x2+2x2+1f(x)=\frac{x^{2}+2}{x^{2}+1} b. f(x)=5x2x23x4f(x)=\frac{5 x^{2}}{x^{2}-3 x-4} c. f(t)=t2+3t5t25t+6f(t)=\frac{t^{2}+3 t-5}{t^{2}-5 t+6}
2- Calculate limits: a. limx5(x23x10x5)\lim _{x \rightarrow 5}\left(\frac{x^{2}-3 x-10}{x-5}\right) b. limx(5xx4x3)\lim _{x \rightarrow \infty}\left(\frac{5-x}{x^{4}-x^{3}}\right) c. limx(7x2+3x3+18000x+6)\lim _{x \rightarrow-\infty}\left(7 x^{2}+3 x^{3}+18000 x+6\right)
3- Check continuity for: a. f(x)=x21x+1f(x)=\frac{x^{2}-1}{x+1} at x=1x=-1 b. f(x)=x5x3f(x)=x^{5}-x^{3} for all xx
4- Determine continuity conditions for: f(x)={13xif x<4Ax2+2x3if x4f(x)=\begin{cases}1-3 x & \text{if } x<4 \\ A x^{2}+2 x-3 & \text{if } x \geq 4\end{cases}
5- Find limits: a. limx2x54x+1010x5+x1\lim _{x \rightarrow \infty} \frac{2 x^{5}-4 x+10}{10 x^{5}+x-1} b. limx1x2+3x+14x29\lim _{x \rightarrow 1} \frac{x^{2}+3 x+1}{4 x^{2}-9} c. f(x)={x2+1if x32x+4if x<3f(x)=\begin{cases}x^{2}+1 & \text{if } x \geq 3 \\ 2 x+4 & \text{if } x<3\end{cases} (limit at 3)

See Solution

Problem 11326

Find the derivative of the function f(x)=x2+1f(x) = x^{2} + 1.

See Solution

Problem 11327

Finde die Extremstellen der Gleichung AR(u)=0A_{R}^{\prime}(u)=0, umgeformt zu u2=0-u^{-2}=0.

See Solution

Problem 11328

A 1 kg spring with k=100k=100 is released at 0.1 m0.1 \mathrm{~m} with no velocity. Graph position for c:10,15,20,25,30c: 10,15,20,25,30 and identify damping types. What graphing tool are you using?

See Solution

Problem 11329

Calculate the left and right Riemann sums for f(x)=2x+2f(x)=\frac{2}{x}+2 on [1,5][1,5] with n=4n=4.

See Solution

Problem 11330

Déterminez où la fonction f(x)=16x2+5f(x)=\frac{1}{6 x^{2}+5} est concave vers le haut ou vers le bas et trouvez les points d'inflexion.

See Solution

Problem 11331

Find the antiderivative of xpx^{p}. For which pp does it hold? Choose the correct option from A, B, C, or D.

See Solution

Problem 11332

Calculate the integral 55x2dx\int_{-5}^{5} x^{2} d x.

See Solution

Problem 11333

Find the derivative of f(x)=(x24)7f(x)=(x^{2}-4)^{7}.

See Solution

Problem 11334

Calculate the integral of (3x+5)2(3x + 5)^2 with respect to xx: (3x+5)2dx=\int(3 x+5)^{2} d x=\square

See Solution

Problem 11335

Find all antiderivatives of f(x)=6cosx+9f(x)=6 \cos x+9 and verify by differentiating your result.

See Solution

Problem 11336

A car accelerates at 3 m/s23 \mathrm{~m} / \mathrm{s}^{2} from 20 m/s20 \mathrm{~m} / \mathrm{s} for 5 seconds. How far does it travel?

See Solution

Problem 11337

Evaluate the integral: 1x(1+x)dx\int \frac{1}{\sqrt{x}(1+x)} dx

See Solution

Problem 11338

Find the antiderivative FF of f(t)=csc2tf(t)=\csc^{2} t such that F(π4)=5F\left(\frac{\pi}{4}\right)=5. What is F(t)=F(t)=\square?

See Solution

Problem 11339

Déterminez le domaine de f(x)=6+6x56xf(x)=\frac{6+6 x}{5-6 x}, les asymptotes, valeurs critiques et intervalles de concavité.

See Solution

Problem 11340

Solve the initial value problem: g(x)=8x(x718)g^{\prime}(x)=8 x\left(x^{7}-\frac{1}{8}\right), with g(1)=1g(1)=1.

See Solution

Problem 11341

Find the indefinite integral and verify by differentiating: 6x10dx\int 6 \sqrt[10]{x} \, dx

See Solution

Problem 11342

Find the max and min of f(x)=ln(x2+x+1)f(x)=\ln(x^{2}+x+1) on the interval [1,1][-1,1]. Provide exact values.

See Solution

Problem 11343

Analyze the limits of f(x)=x4f(x)=x^{4} as xx \rightarrow -\infty and xx \rightarrow \infty. What do they approach?

See Solution

Problem 11344

Find the indefinite integral and verify by differentiation: 7+4cosysin2ydy=\int \frac{7+4 \cos y}{\sin ^{2} y} d y = \square

See Solution

Problem 11345

Trouvez xx tel que la seconde dérivée de ff est nulle : 0=12(6x2+5)(518x2)(6x2+5)40=\frac{12 \cdot(6 x^{2}+5) \cdot(5-18 x^{2})}{(6 x^{2}+5)^{4}}.

See Solution

Problem 11346

Differentiate y=ln(tan1(s))y=\ln(\tan^{-1}(s)).

See Solution

Problem 11347

Differentiate y=8sin1(3α)y=8 \sin^{-1}(3 \alpha).

See Solution

Problem 11348

Differentiate y=csc1(e2x)y=\csc^{-1}(e^{2x}).

See Solution

Problem 11349

Solve the initial value problem: f(u)=12(cosusinu)f'(u) = 12(\cos u - \sin u) with f(π2)=7f\left(\frac{\pi}{2}\right) = 7.

See Solution

Problem 11350

Find the average speed of a watermelon falling y=16t2y=16 t^{2} ft in the first 55 sec and its speed at t=5t=5 sec.

See Solution

Problem 11351

Find the rate of change of area A=πr2A=\pi r^{2} with respect to radius rr when r=4ftr=4 \mathrm{ft}.

See Solution

Problem 11352

Solve the initial value problem: f(u)=8(cosusinu)f'(u) = 8(\cos u - \sin u) with f(π2)=2f\left(\frac{\pi}{2}\right) = 2.

See Solution

Problem 11353

Find the position function for an object with acceleration a(t)=40a(t)=-40, initial velocity v(0)=22v(0)=22, and initial position s(0)=0s(0)=0.

See Solution

Problem 11354

Determine the x-values DD, EE, and FF for inflection points of the function f(x)=12x5+45x4200x3+1f(x)=12 x^{5}+45 x^{4}-200 x^{3}+1.

See Solution

Problem 11355

Differentiate y=lnearctan(αx2)arccos(ex2)y=\ln e^{\arctan (\alpha x^{2})} \arccos (e x^{2}).

See Solution

Problem 11356

Trouvez la dérivée de f(x)=6+6x56xf(x)=\frac{6+6 x}{5-6 x}.

See Solution

Problem 11357

Find the tangent line to y=f(x)=5sinx2sinx+4cosxy=f(x)=\frac{5 \sin x}{2 \sin x+4 \cos x} at a=π3a=\frac{\pi}{3}, y=mx+by=mx+b.

See Solution

Problem 11358

Find the position function from the acceleration a(t)=0.4ta(t)=0.4 t with initial velocity v(0)=0v(0)=0 and position s(0)=7s(0)=7.

See Solution

Problem 11359

Differentiate y=lnearctan(αx2)arccos(ex2)y=\ln e^{\arctan(\alpha x^{2})} \arccos(e x^{2}).

See Solution

Problem 11360

Find the object's velocity over time given the acceleration a(t)=v(t)=ga(t)=v^{\prime}(t)=g with g=9.8 m/s2g=-9.8 \mathrm{~m} / \mathrm{s}^{2}.

See Solution

Problem 11361

Given f(π6)=8f\left(\frac{\pi}{6}\right)=-8 and f(π6)=7f^{\prime}\left(\frac{\pi}{6}\right)=7, find g(π/6)g^{\prime}(\pi / 6) and h(π/6)h^{\prime}(\pi / 6) for g(x)=f(x)sinxg(x)=f(x) \sin x and h(x)=cosxf(x)h(x)=\frac{\cos x}{f(x)}.

See Solution

Problem 11362

Analyze the motion of a softball shot up with 34 m/s34 \mathrm{~m/s}. Find its velocity, position, max height time, and ground strike time.

See Solution

Problem 11363

Find the derivative of y=sec(x2)y=\sqrt{\sec \left(\frac{x}{2}\right)}.

See Solution

Problem 11364

Trouvez la dérivée de f(x)=1xex2+exf(x)=\frac{1-x e^{x}}{2+e^{x}}.

See Solution

Problem 11365

Find the tangent line equation for y=xx2y=x-x^{2} at x=2x=-2. Options: A) y=5x+4y=5 x+4, B) y=3x+4y=-3 x+4, C) v=3x4v=-3 x-4.

See Solution

Problem 11366

Untersuchen Sie die Funktionen f(x)=x3+3x2f(x)=x^{3}+3 x^{2} und g(x)=12x4+2x2g(x)=-\frac{1}{2} x^{4}+2 x^{2} auf Symmetrie, Nullstellen, Extrema und Wendepunkte. Zeichnen Sie die Graphen und bestimmen Sie Schnittwinkel und Parameter.

See Solution

Problem 11367

Soit f(x)=16x2+5f(x)=\frac{1}{6 x^{2}+5}. Trouvez les intervalles de concavité et les points d'inflexion de ff.

See Solution

Problem 11368

Find the tangent line for f(x)=(2x2)1/5f(x)=(2 x-2)^{1 / 5} at x=2x=2. Also, find where the tangent line is horizontal.

See Solution

Problem 11369

Find g(x)g^{\prime}(x) if g(x)=f(x2)g(x)=f\left(x^{2}\right) and f(x)=x+4x1f^{\prime}(x)=\frac{x+4}{x-1}.

See Solution

Problem 11370

In einem Intervall I ist f(x)>0f^{\prime \prime}(x) > 0. Was bedeutet das für die Graphen von ff' und ff?

See Solution

Problem 11371

Bestimmen Sie die Kurvenrichtung und Sattelpunkte für die Funktionen: a) f(x)=13x3+x2+x2f(x)=\frac{1}{3} x^{3}+x^{2}+x-2, b) f(x)=16x3+x2+3f(x)=-\frac{1}{6} x^{3}+x^{2}+3, c) f(x)=x42xf(x)=x^{4}-2 x, d) f(x)=14x4x312x2+3x+4f(x)=\frac{1}{4} x^{4}-x^{3}-12 x^{2}+3 x+4.

See Solution

Problem 11372

Check if the integral 021(x1)2dx\int_{0}^{2} \frac{1}{(x-1)^{2}} d x converges or diverges.

See Solution

Problem 11373

Analyze the motion of an object in free fall with gravity 9.8 m/s29.8 \mathrm{~m/s}^2:
a. Find velocity v(t)v(t), b. position s(t)s(t), c. time and height at peak, d. time to hit ground from 500 m500 \mathrm{~m} at 13 m/s13 \mathrm{~m/s}.

See Solution

Problem 11374

Find the derivative of the function f(x)=6(4x2+3x5)2f(x)=\frac{6}{(4x^{2}+3x-5)^{2}}. What is f(x)f^{\prime}(x)?

See Solution

Problem 11375

Soit f(x)=16x2+5f(x)=\frac{1}{6 x^{2}+5}. Trouvez les intervalles où ff est concave vers le haut/bas et les points d'inflexion.

See Solution

Problem 11376

Find the rate of change of the bacteria mass P(t)=2+5tan1(t2)P(t)=2+5 \tan^{-1}\left(\frac{t}{2}\right) when P(t)=6P(t)=6 grams.

See Solution

Problem 11377

Untersuchen Sie die Funktion h(x)=2(x416)x24h(x)=\frac{2\left(x^{4}-16\right)}{x^{2}-4} bei x=2x=2 und bestimmen Sie den Grenzwert.

See Solution

Problem 11378

Soit la fonction f(x)=6+6x56xf(x)=\frac{6+6 x}{5-6 x}.
a) Trouvez le domaine de ff. b) Déterminez les asymptotes horizontales et verticales de ff. c) Identifiez les valeurs critiques, les intervalles de croissance/décroissance, et les extrémums relatifs. d) Indiquez les intervalles de concavité et les points d'inflexion.

See Solution

Problem 11379

Sand falls into a conical pile with radius r=3hr = 3h. If it falls at 120ft3min120 \frac{ft^{3}}{min}, how fast is hh changing when h=2h=2 ft?

See Solution

Problem 11380

Analyze the motion of a payload released from 400 m400 \mathrm{~m} at 11 m/s11 \mathrm{~m/s}. Find velocity, position, max height/time, and ground strike time.

See Solution

Problem 11381

Sand forms a cone with radius r=3hr = 3h. If sand falls at 120ft3min120 \frac{\mathrm{ft}^{3}}{\mathrm{min}}, find height change when h=2fth = 2 \mathrm{ft}.

See Solution

Problem 11382

Bestimmen Sie die Tangenten- und Normalengleichung am Punkt P(22)P(2 \mid-2) für f(x)=x2+xf(x)=-x^{2}+x.

See Solution

Problem 11383

Calculate the integrals: 32(f(x)g(x))dx\int_{-3}^{-2} (f(x)-g(x)) \, dx, f(x)=12x2f(x)=\frac{1}{2} x^{2}, g(x)=12(x3+x24x)g(x)=\frac{1}{2}(x^{3}+x^{2}-4x).

See Solution

Problem 11384

If F(x)=f(x)F^{\prime}(x)=f(x), is f(x)dx=F(x)+C\int f(x) d x=F(x)+C true or false? Explain your reasoning.

See Solution

Problem 11385

Find the linear approximation of f(x)=xf(x)=\sqrt{x} at x=0.16x=0.16 to estimate 0.18\sqrt{0.18}.
Estimate the change in volume VV of a sphere when radius rr changes from 5ft5 \mathrm{ft} to 5.1ft5.1 \mathrm{ft}.

See Solution

Problem 11386

Are f(x)=x3+3f(x)=x^{3}+3 and g(x)=x34g(x)=x^{3}-4 derivatives of the same function? Explain your reasoning.

See Solution

Problem 11387

Bestimmen Sie die allgemeine Stammfunktion für: d) f(x)=x34x+3f(x)=x^{3}-4 x+3, b) g(x)=3xg(x)=3 \sqrt{x}, ब) h(x)=(x1)(x4)h(x)=(x-1)(x-4).

See Solution

Problem 11388

Find the derivative of f(x)=(3x26)(7x+6)f(x)=(3x^{2}-6)(7x+6) and evaluate f(4)f^{\prime}(4).

See Solution

Problem 11389

Are F(x)=x34x+100F(x)=x^{3}-4x+100 and G(x)=x34x100G(x)=x^{3}-4x-100 antiderivatives of the same function? Choose true/false options.

See Solution

Problem 11390

Find yy^{\prime} for y=(x3+3x+5)3y=(x^{3}+3x+5)^{3} and the slope at x=0.4x=0.4, rounded to 1 decimal place.

See Solution

Problem 11391

Untersuchen Sie die Stetigkeit der Funktion ff an der Stelle x0=2x_{0}=2, wo f(x)=4x2162x4f(x)=\frac{4 x^{2}-16}{2 x-4} für x2x \neq 2 und f(2)=8f(2)=8.

See Solution

Problem 11392

If F(x)=G(x)F^{\prime}(x)=G^{\prime}(x), does it imply F(x)=G(x)F(x)=G(x)? Discuss true/false with examples.

See Solution

Problem 11393

Find the equation of the tangent line to f(x)=23xf(x)=\sqrt{23-x} at (7,4)(7,4) with slope 18-\frac{1}{8}. What is bb?

See Solution

Problem 11394

Find the slope of the tangent line to p(x)=5.6x1.8p(x)=5.6 x^{1.8} at x=1.2x=1.2. Round your answer to 3 decimal places.

See Solution

Problem 11395

Find the area between f(x)=2sinx+sin(2x)f(x)=2 \sin x+\sin (2 x) and the xx-axis from x=0x=0 to x=πx=\pi.

See Solution

Problem 11396

Find the slope of the tangent line to p(x)=5.6x1.8p(x)=5.6 x^{1.8} at the point (2.3,p(2.3))(2.3, p(2.3)) to 3 decimal places.

See Solution

Problem 11397

Berechnen Sie die mittlere Temperatur für f(x)=8,33+2,22x0,19x2f(x)=8,33+2,22 x-0,19 x^{2} über [0,12][0, 12] und beschreiben Sie mögliche Bedingungen.

See Solution

Problem 11398

Schreibgeschwindigkeit eines Typisten: v(t)=32429t4t2v(t)=324-29t-4t^{2}; a) Vergleiche v(0)v(0) und v(4)v(4), b) mittlere Geschwindigkeit, c) Gesamtanschläge.

See Solution

Problem 11399

Berechne die durchschnittlichen täglichen Lagerkosten für L(x)=43(x30)2L(x)=\frac{4}{3}(x-30)^{2} und KL=0,35K_{L}=0,35€.

See Solution

Problem 11400

Invest \$7000 at 5% interest compounded continuously. Find doubling time and sketch the growth graph.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord