Calculus

Problem 17701

Find the limit: limnn+(1)nnn(3n+2n)2\lim _{n \rightarrow \infty} \sqrt{\frac{n+(-1)^{n} \sqrt[n]{n}}{(3 n+\sqrt{2 n})^{2}}}.

See Solution

Problem 17702

Find the limit: limnn2+(1)nn(n+3)2\lim _{n \rightarrow \infty} \frac{n^{2}+(-1)^{n} \cdot n}{(n+\sqrt{3})^{2}}.

See Solution

Problem 17703

Soit f(x)=log2(x2+4)f(x)=\log _{2}(x^{2}+4). Trouvez f(x)f^{\prime}(x) et calculez f(2)f^{\prime}(2).

See Solution

Problem 17704

Find the limit: limnn+(1)nn4(3n+2n)2\lim _{n \rightarrow \infty} \sqrt{\frac{n+(-1)^{n} \sqrt[4]{n}}{(3 n+\sqrt{2 n})^{2}}}.

See Solution

Problem 17705

Find the limit as nn approaches infinity: limnn2+5nn2n\lim _{n \rightarrow \infty} \sqrt{n^{2}+5 n}-\sqrt{n^{2}-n}.

See Solution

Problem 17706

Find the limit: limn5n23nn5+8\lim _{n \rightarrow \infty} \sqrt{5 n^{2}-3 n}-n \sqrt{5}+8.

See Solution

Problem 17707

Find the electric potential VV for a charged disk when DRD \gg R: V=2πkeσ(D2+R2D)V=2 \pi k_{e} \sigma\left(\sqrt{D^{2}+R^{2}}-D\right).

See Solution

Problem 17708

Find a formula for the change in volume V=πr2hV=\pi r^{2} h of a cylinder when the radius changes from r0r_{0} to r0+drr_{0}+dr and height is constant.

See Solution

Problem 17709

Estimate the change in volume V=2x3V=2 x^{3} when edge lengths change from x0x_{0} to x0+dxx_{0}+d x.

See Solution

Problem 17710

Find the point (x,y)(x, y) in rectangle RR with corners (0,0),(1,0),(0,2),(1,2)(0,0),(1,0),(0,2),(1,2) where land price p(x,y)=21015(x15)220(y32)2p(x, y)=210-15\left(x-\frac{1}{5}\right)^{2}-20\left(y-\frac{3}{2}\right)^{2} is max.

See Solution

Problem 17711

Find the total profit from selling the first 60 tickets, given the marginal profit function P(x)=8x1176P'(x) = 8x - 1176.

See Solution

Problem 17712

Approximate the area under f(x)=0.04x42.25x2+82f(x)=0.04 x^{4}-2.25 x^{2}+82 from x=3x=3 to x=11x=11 using 4 left endpoints.

See Solution

Problem 17713

Find the total cost of roasting 160 lb of coffee if the marginal cost is C(x)=0.019x+4.75C'(x)=-0.019x+4.75 for x200x \leq 200. Total cost is \$\square.

See Solution

Problem 17714

Find intervals where f(x)=x3lnxf(x)=x^{3} \ln x is concave up and down for x>0x>0. Concave up: (0,1/e5/6)(1/e5/6,)(0,1/e^{5/6}) \cup (1/e^{5/6}, \infty); down: (0,1)(0,1).

See Solution

Problem 17715

Find where the function f(x)=x3lnxf(x)=x^{3} \ln x is concave up and down for x>0x>0.

See Solution

Problem 17716

Find intervals of concavity for f(x)=x3lnxf(x)=x^{3} \ln x and identify inflection points and critical numbers.

See Solution

Problem 17717

Find the critical point of f(x,y)=x2+2xy+2y26x+10y+8f(x, y) = x^2 + 2xy + 2y^2 - 6x + 10y + 8. Classify it using the second derivative test. Also, find relative extrema: min value 351, max value DNE.

See Solution

Problem 17718

Find the critical point of f(x,y)=x2+2xy+2y26x+10y+8f(x, y)=x^{2}+2xy+2y^{2}-6x+10y+8 and classify it using the second derivative test. Determine relative extrema.

See Solution

Problem 17719

Find the volume of the solid formed by rotating the region between x=2+(y4)2x=2+(y-4)^{2} and x=3x=3 around the xx-axis using cylindrical shells.

See Solution

Problem 17720

Determine if the sequence an=5n!2na_{n}=\frac{5 n !}{2^{n}} converges or diverges. If it converges, find the limit.

See Solution

Problem 17721

Determine why the integral 16dxx5\int_{1}^{6} \frac{d x}{x-5} is improper due to discontinuities or infinite intervals.

See Solution

Problem 17722

Evaluate the improper integral 8dxx29\int_{8}^{\infty} \frac{d x}{x^{2}-9} and identify its type.

See Solution

Problem 17723

Calculate the limit: limnn(n+1)23n(n1)23\lim _{n \rightarrow \infty} \sqrt[3]{n(n+1)^{2}} - \sqrt[3]{n(n-1)^{2}}.

See Solution

Problem 17724

Find the average rate of change of f(x)=3f(x)=3 from x=0x=0 to x=3x=3. Options: -3, 3, 0, 9.

See Solution

Problem 17725

Evaluate the improper integral 01tan(πx)dx\int_{0}^{1} \tan (\pi x) d x considering its discontinuities.

See Solution

Problem 17726

Given that f(x)f(x) is increasing at a decreasing rate, what are the signs of f(x)f^{\prime}(x) and f(x)f^{\prime \prime}(x)?

See Solution

Problem 17727

Find the partial derivative fx(x,y)f_{x}(x, y) for f(x,y)=4x2y216x2+4yf(x, y)=4 x^{2} y^{2}-16 x^{2}+4 y.

See Solution

Problem 17728

Determine if x=22x=22 is a relative max or min for f(x)f(x) given f(x)<0f'(x)<0 for x<22x<22 and f(x)>0f'(x)>0 for x>22x>22.

See Solution

Problem 17729

Find the first derivative of f(x)=x2f(x)=\frac{x}{2}. Options: 2, 0, 12\frac{1}{2}, 1.

See Solution

Problem 17730

Find the partial derivative fx(x,y)f_{x}(x, y) for f(x,y)=4x2+5x2y+12xy2f(x, y)=4 x^{2}+5 x^{2} y+12 x y^{2} and evaluate at x=12x=12, y=6y=6.

See Solution

Problem 17731

Find xx where the tangent line of f(x)=2x3+9x260x+4f(x)=2 x^{3}+9 x^{2}-60 x+4 is horizontal. Answer the smaller and larger values.

See Solution

Problem 17732

Is it true or false that if f(x)f(x) has a min at x=100x=100, then f(95)f^{\prime}(95) is negative?

See Solution

Problem 17733

Find the derivative of y=ln(4x+7)y=\ln(4x+7). Options: 1/(4x+7)1/(4x+7), 4/(4x+7)4/(4x+7), 1/4x1/4x, 4x+74x+7.

See Solution

Problem 17734

Soit f(x)=tan(x/10)f(x)=\tan (x / 10) pour 2πx3π2 \pi \leq x \leq 3 \pi. Estimez 2π3πf(x)dx\int_{2 \pi}^{3 \pi} f(x) d x par la méthode du point milieu avec 5 sous-intervalles.
a) Longueur commune Δx\Delta x ? b) Points milieux m1,m2,m3,m4,m5m_{1}, m_{2}, m_{3}, m_{4}, m_{5} ? c) Valeurs f(m1),f(m2),f(m3),f(m4),f(m5)f(m_{1}), f(m_{2}), f(m_{3}), f(m_{4}), f(m_{5}) ? d) Approximation de 2π3πf(x)dx\int_{2 \pi}^{3 \pi} f(x) d x ?

See Solution

Problem 17735

Considérez f(x)=tan(x/10)f(x)=\tan (x / 10) pour 2πx3π2 \pi \leq x \leq 3 \pi. Estimez 2π3πf(x)dx\int_{2 \pi}^{3 \pi} f(x) d x avec les étapes suivantes : a) Calculez Δx\Delta x. b) Trouvez les points milieux m1,m2,m3,m4,m5m_{1}, m_{2}, m_{3}, m_{4}, m_{5}. c) Listez f(m1),f(m2),f(m3),f(m4),f(m5)f\left(m_{1}\right), f\left(m_{2}\right), f\left(m_{3}\right), f\left(m_{4}\right), f\left(m_{5}\right).

See Solution

Problem 17736

Find critical points, domain endpoints, and local extremes for the function y=x4/5(x+2)y=x^{4/5}(x+2).

See Solution

Problem 17737

Find the intervals where f(x)=x49x3+3x2f(x)=-x^{4}-9 x^{3}+3 x-2 is concave up and down, and the xx-coordinates of inflection points.

See Solution

Problem 17739

Calculez l'intégrale x3x2+16dx\int \frac{x^{3}}{\sqrt{x^{2}+16}} d x avec substitution trigonométrique. Quelle identitié utiliser ? Quel est AA ?

See Solution

Problem 17740

Find the intervals where f(x)=14x2+5f(x)=\frac{1}{4 x^{2}+5} is concave up, concave down, and the inflection points at x=x=.

See Solution

Problem 17741

Soit f(x)=x24xf(x)=\sqrt{x^{2}-4 x} pour 4x74 \leq x \leq 7. Estimez 47f(x)dx\int_{4}^{7} f(x) d x avec la méthode de Simpson en 6 intervalles. Trouvez Δx\Delta x et l'approximation à 3 décimales.

See Solution

Problem 17742

Estimez 25f(x)dx\int_{2}^{5} f(x) d x par 3 méthodes (points médians, trapèzes, Simpson) en utilisant les valeurs du tableau.

See Solution

Problem 17743

Estimez 2π3πtan(x/10)dx\int_{2 \pi}^{3 \pi} \tan(x/10) dx par la méthode du point milieu avec 5 sous-intervalles. Donnez la réponse à 3 décimales.

See Solution

Problem 17744

Estimez 25f(x)dx\int_{2}^{5} f(x) d x en utilisant les méthodes suivantes : (a) points médians, (b) trapèzes, (c) Simpson.

See Solution

Problem 17745

Determine why the integral 18dxx7\int_{1}^{8} \frac{d x}{x-7} is improper.

See Solution

Problem 17746

Find the volume of the solid formed by rotating the area between x=4+(y5)2x=4+(y-5)^{2} and x=5x=5 around the xx-axis using cylindrical shells.

See Solution

Problem 17747

Evaluate the improper integral 8dxx29\int_{8}^{\infty} \frac{d x}{x^{2}-9} considering its discontinuities.

See Solution

Problem 17748

Find the derivative f(10)f^{\prime}(10) for the function f(x)=5xln(x)f(x)=5 x^{\ln (x)}.

See Solution

Problem 17749

Calculate the integral 8dxx29\int_{8}^{\infty} \frac{d x}{x^{2}-9}.

See Solution

Problem 17750

Find the derivative of f(x)=7sec1(2x)f(x)=7 \sec^{-1}(2x) and evaluate f(5)f^{\prime}(5).

See Solution

Problem 17751

Determine if n=1ln(an)\sum_{n=1}^{\infty} \ln(a_{n}) converges or diverges given that n=1an\sum_{n=1}^{\infty} a_{n} converges.

See Solution

Problem 17752

Given a convergent series n=1an\sum_{n=1}^{\infty} a_{n}, check if these series converge or diverge: a) n=1ln(an)\sum_{n=1}^{\infty} \ln(a_{n}), b) n=1ln(1an)\sum_{n=1}^{\infty} \ln(\frac{1}{a_{n}}).

See Solution

Problem 17753

Find the derivative of f(x)=cot1(x)f(x)=\cot^{-1}(x) and calculate f(0.5)f'(0.5).

See Solution

Problem 17754

Find the length of the curve y=ln(1x2)y=\ln(1-x^{2}) for 0x160 \leq x \leq \frac{1}{6}.

See Solution

Problem 17755

Given x=4tan(Q)x = 4 \tan(Q), find sin(Q)\sin(Q), csc(Q)\csc(Q), cos(Q)\cos(Q), tan(Q)\tan(Q), cot(Q)\cot(Q) and calculate dxdQ\frac{dx}{dQ}. Then, simplify x3x2+16dx=g(Q)dQ\int \frac{x^3}{\sqrt{x^2 + 16}} dx = \int g(Q) dQ. Evaluate g(Q)dQ\int g(Q) dQ and rewrite the result in terms of xx.

See Solution

Problem 17756

Find the volume of the solid formed by rotating the region between x=4+(y5)2x=4+(y-5)^{2} and x=5x=5 about the xx-axis using cylindrical shells.

See Solution

Problem 17757

Find the absolute max and min of f(x)=x36x263x+11f(x)=x^{3}-6 x^{2}-63 x+11 on these intervals:
(A) [4,0][-4,0]
(B) [1,8][-1,8]
(C) [4,8][-4,8]
Use -1000 for non-existent extrema.

See Solution

Problem 17758

Determine if the sequence an=9n!2na_{n}=\frac{9 n !}{2^{n}} converges or diverges. If it converges, find the limit.

See Solution

Problem 17759

Find the max and min of f(x)=(x2+x)23f(x)=-\left(x^{2}+x\right)^{\frac{2}{3}} on [3,4][-3,4]. Max at x=x=\square, min at x=x=\square.

See Solution

Problem 17760

Find the critical numbers of f(x)=4x53x3+1f(x)=-4 x^{5}-3 x^{3}+1 and sketch the variation table for max and min values.

See Solution

Problem 17761

Fonction f(x)=x22lnxf(x)=x^{2}-2 \ln x: 1. Trouvez le domaine. 2. Asymptotes. 3. Calculez f(x)f^{\prime}(x) et critiques. 4. Calculez f(x)f^{\prime \prime}(x) et critiques. 5. Tableau de variations.

See Solution

Problem 17762

Find critical points of f(x)=xex2f(x) = x e^{-x^{2}} and classify them using the Second Derivative Test.

See Solution

Problem 17763

Given xy=4xy=4, find dy/dtdy/dt when x=6x=6, dx/dt=14dx/dt=14 and dx/dtdx/dt when x=1x=1, dy/dt=8dy/dt=-8.

See Solution

Problem 17764

Given y=xy=\sqrt{x}, find dy/dtd y / d t when x=1x=1, dx/dt=4d x / d t=4, and dx/dtd x / d t when x=25x=25, dy/dt=3d y / d t=3.

See Solution

Problem 17765

Find the derivative of y=(6t-1)/(3t-4} with respect to tt.

See Solution

Problem 17766

A worker pulls a 5-meter plank up a wall at 0.15 m/s. Find the speed of the plank's end on the ground when it's 2.1 m from the wall. Round to two decimal places. m/sec\mathrm{m} / \mathrm{sec}

See Solution

Problem 17767

Find dy/dtd y / d t and dx/dtd x / d t for x2+y2=100x^2 + y^2 = 100.
(a) Given x=6,y=8,dx/dt=5x=6, y=8, d x / d t=5, find dy/dtd y / d t.
(b) Given x=8,y=6,dy/dt=4x=8, y=6, d y / d t=-4, find dx/dtd x / d t.

See Solution

Problem 17768

Two planes are flying towards a point at right angles. One is 150 miles away at 600 mph, the other is 200 miles away at 800 mph.
(a) Find the rate of distance change in mph\mathrm{mph}.
(b) Determine the time available to redirect one plane in hh.

See Solution

Problem 17769

A cube's edges expand at 7 cm/s. Find volume change rates when edges are 5 cm and 11 cm: cm3/sec\mathrm{cm}^{3} / \mathrm{sec}.

See Solution

Problem 17770

A 25-ft ladder leans against a wall. The base moves away at 2 ft/s. Find the top's velocity and area/angle rates at 7 ft.

See Solution

Problem 17771

A 25 ft ladder leans against a wall. The base moves away at 2 ft/sec. Find rates for top height, area, and angle at 7 ft from wall.

See Solution

Problem 17772

Find dyd y for the equation y=cos(7x2)dxay=\cos(7x^2)dx a.

See Solution

Problem 17773

Evaluate the integral from 4 to infinity: 411ey/2dy\int_{4}^{\infty} 11 e^{-y / 2} d y.

See Solution

Problem 17774

Evaluate the integral 16rer/4dr\int_{-\infty}^{16} r e^{r / 4} d r.

See Solution

Problem 17775

Evaluate the integral 16rer/4dr\int_{-\infty}^{16} r e^{r / 4} d r and determine if it is convergent or divergent.

See Solution

Problem 17776

Identify critical points, endpoints, and extreme values for the function y=x47(x24)y=x^{\frac{4}{7}}(x^{2}-4).

See Solution

Problem 17777

Find the general antiderivative of f(x)=4ex+3sec2(x)f(x)=4 e^{x}+3 \sec ^{2}(x).

See Solution

Problem 17778

Find the general antiderivative of g(x)=x56+x65g(x)=\sqrt[6]{x^{5}}+\sqrt[5]{x^{6}}.

See Solution

Problem 17779

Find values of cc for the equation f(1)f(2)1(2)=f(c)\frac{f(1)-f(-2)}{1-(-2)}=f^{\prime}(c) with f(x)=3x2+5x2f(x)=3x^{2}+5x-2.

See Solution

Problem 17780

Find the general antiderivative of f(x)=7x68x3+9x2f(x)=7 x^{6}-8 x^{3}+9 x^{2}.

See Solution

Problem 17781

Find the general antiderivative of f(x)=654x+x3xf(x)=\frac{6 \sqrt{5}-4 x+x^{3}}{\sqrt{x}}.

See Solution

Problem 17782

Find the antiderivative of the function f(x)=64x+x3xf(x)=\frac{6-4 x+x^{3}}{\sqrt{x}}.

See Solution

Problem 17783

Find the limit: limx0(x+ex/7)7/x\lim _{x \rightarrow 0}\left(x+e^{x / 7}\right)^{7 / x}.

See Solution

Problem 17784

Find the limit as xx approaches 1 from the left for x61xx^{\frac{6}{1-x}}.

See Solution

Problem 17785

Find the function ff given that f(x)=sinx+cosxf^{\prime \prime}(x)=\sin x+\cos x, f(0)=9f^{\prime}(0)=9, and f(0)=9f(0)=9.

See Solution

Problem 17786

Find the limit: limx1+x61x\lim _{x \rightarrow 1^{+}} x^{\frac{6}{1-x}}.

See Solution

Problem 17787

Find the particle's position at time t=9t=9 given a(t)=36t+10a(t)=36t+10, s(0)=15s(0)=15, and v(0)=15v(0)=15.

See Solution

Problem 17788

Find ff given f(t)=3csc(t)(csc(t)+5cot(t)),0<t<πf'(t)=3 \csc(t)(\csc(t)+5 \cot(t)), 0<t<\pi, and f(π4)=152f\left(\frac{\pi}{4}\right)=-15 \sqrt{2}.

See Solution

Problem 17789

A warship traveled 154 sea miles in 22 hours. Show its speed exceeded 6.6 knots using the Mean Value Theorem.

See Solution

Problem 17790

Find the absolute maximum of f(x)=2x2ln(1x)f(x)=2 x^{2} \ln \left(\frac{1}{x}\right) and its location.

See Solution

Problem 17791

Gegeben ist die Funktion f(x)=2e3x+1f(x)=2 e^{3 x}+1. Finde die Stelle, wo f(x)=4f(x)=4 und die Stelle mit der Steigung 3.

See Solution

Problem 17792

Untersuchen Sie die Funktion f1(t)=5t2+130tf_{1}(t)=-5 t^{2}+130 t auf Monotonie und Krümmungsverhalten im Intervall [0;12][0 ; 12].

See Solution

Problem 17793

Bestimme die Werte für aa und bb, damit die Funktionen f(x)=x22x+2f(x)=x^{2}-2x+2 und g(x)=a(x4)2+bg(x)=a(x-4)^{2}+b an P(2;2)P(2;2) tangential sind.

See Solution

Problem 17794

Calculate the integral 02(x22x+1)dx\int_{0}^{2}(x^{2}-2x+1) \, dx.

See Solution

Problem 17795

Calculate the integral 13(0.5x1)2dx\int_{1}^{3}(0.5 x-1)^{2} dx.

See Solution

Problem 17796

Calculate the integral 02(x1)3dx\int_{0}^{2}(x-1)^{3} dx.

See Solution

Problem 17797

Find the elasticity of the function p=D(x)=163e0.025xp=D(x)=163 e^{-0.025 x}.

See Solution

Problem 17798

Calculate the integral 02(x2)(x+2)dx\int_{0}^{2}(x-2)(x+2) dx.

See Solution

Problem 17799

Find the elasticity of the function p=D(x)=238e0.125xp=D(x)=238 e^{-0.125 x}.

See Solution

Problem 17800

Berechne den Gesamtflächeninhalt des markierten Bereichs für f(x)=12x254xf(x)= \frac{1}{2}x^2 - \frac{5}{4}x von x=2x=2 bis x=6x=6.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord