Calculus

Problem 6801

Find the derivative of y=54x23y=\frac{5}{4} x^{\frac{2}{3}}.

See Solution

Problem 6802

Maximize profit by finding qq from C(q)=100+20qe0.02qC(q)=100+20 q e^{-0.02 q} and p=80e0.02qp=80 e^{-0.02 q}.

See Solution

Problem 6803

Find the Taylor expansion of f(x,y)=ex2ysin(3y)f(x, y)=e^{x^{2} y} \sin (3 y) and determine the coefficient of the x4y5x^{4} y^{5} term.

See Solution

Problem 6804

Find the points where these functions have horizontal tangents: a) f(x)=x3e2xf(x)=x^{3} e^{2 x}, b) f(x)=2sinx+sin2xf(x)=2 \sin x+\sin ^{2} x, c) f(x)=x2x21f(x)=\frac{x^{2}}{\sqrt{x^{2}-1}}.

See Solution

Problem 6805

Maximize profit by finding price PP per unit from cost C(q)=100+20qe0.02qC(q)=100+20 q e^{-0.02 q} and price p=80e0.02qp=80 e^{-0.02 q}.

See Solution

Problem 6806

Find the second derivative of f(x)=x26+xf(x)=\frac{x^{2}}{6+x} and calculate f(0)f^{\prime \prime}(0) and f(5)f^{\prime \prime}(5).

See Solution

Problem 6807

Find the second derivative f(x)f^{\prime \prime}(x) of f(x)=x2+100f(x)=\sqrt{x^{2}+100}, then compute f(0)f^{\prime \prime}(0) and f(7)f^{\prime \prime}(7).

See Solution

Problem 6808

Find the derivative of the function y=x2/3y=x^{2/3}.

See Solution

Problem 6809

Find the tangent line to y=(x+1)2(x3)3y=(x+1)^{2}(x-3)^{3} at x=1x=1 using point-slope form.

See Solution

Problem 6810

Differentiate (x3+2)x3+3x(x^{3}+2) \sqrt{x^{3}+3 x}.

See Solution

Problem 6811

Find the critical points of the function f(x)=(x3)2(x+2)f(x)=(x-3)^{2}(x+2), given one is at x=13x=-\frac{1}{3}.

See Solution

Problem 6812

Find the tangent line to y=(x2)x5y=(x-2) \sqrt{x-5} at x=6x=6 in slope-intercept form.

See Solution

Problem 6813

Find the derivative dydx\frac{d y}{d x} of the function y=3x4+(3x)44x3+cot(3x)sec(π)y=3 x^{4}+(3 x)^{4}-\frac{4}{\sqrt[3]{x}}+\cot (3 x)-\sec (\pi) and simplify.

See Solution

Problem 6814

Find the derivative dydx\frac{d y}{d x} and simplify for y=3x4+(3x)44x3+cot(3x)sec(π)y=3 x^{4}+(3 x)^{4}-\frac{4}{\sqrt[3]{x}}+\cot (3 x)-\sec (\pi).

See Solution

Problem 6815

Find the derivative of y=sin(4x3)+sin5(3x2)y = \sin(4x^3) + \sin^5(3x^2) and simplify it.

See Solution

Problem 6816

Find the derivative of y=(5x+732x)4y=\left(\frac{5 x+7}{3-2 x}\right)^{4} and simplify it.

See Solution

Problem 6817

Find the derivative of y=x2+32x5y=\frac{x^{2}+3}{\sqrt{2 x-5}} and simplify your answer.

See Solution

Problem 6818

Find the derivative of y=x2+5x25y=\sqrt{\frac{x^{2}+5}{x^{2}-5}} and simplify it.

See Solution

Problem 6819

Find the derivative of y=sec35x+sec5xy=\sqrt{\sec ^{3} 5 x}+\sec \sqrt{5 x} and simplify it.

See Solution

Problem 6820

Find aa and bb for the function f(x)={2x32x2+6,x<2ax+b,x2f(x)=\begin{cases} 2x^3-2x^2+6, & x<-2 \\ ax+b, & x \geq-2 \end{cases} to be continuous and differentiable.

See Solution

Problem 6821

Find the points where the functions have horizontal tangents: a) f(x)=x36x2+9x+4f(x)=x^{3}-6 x^{2}+9 x+4 b) f(x)=(2x+1)3(x3)4f(x)=(2 x+1)^{3}(x-3)^{4}.

See Solution

Problem 6822

Find the second derivative of f(x)=lnx11xf(x)=\frac{\ln x}{11 x}, then calculate f(0)f^{\prime \prime}(0) and f(9)f^{\prime \prime}(9).

See Solution

Problem 6823

Find the points where the functions have horizontal tangents: a) f(x)=x36x2+9x+4f(x)=x^{3}-6 x^{2}+9 x+4 b) f(x)=(2x+1)3(x3)4f(x)=(2 x+1)^{3}(x-3)^{4}.

See Solution

Problem 6824

Find the limit: limx12x2144x+12\lim _{x \rightarrow-12} \frac{x^{2}-144}{x+12}. State if it does not exist.

See Solution

Problem 6825

Find the limit: limx56x(x+5)3\lim _{x \rightarrow-5} \frac{6 x}{(x+5)^{3}}. State if it does not exist.

See Solution

Problem 6826

Ein Stau entsteht um 06:00 Uhr und löst sich bis 10:00 Uhr auf. Analysiere die Funktion f(x)=516x4+3x39x2+8xf(x) = -\frac{5}{16} x^{4}+3 x^{3}-9 x^{2}+8 x. Bestimme Nullstellen, Bedeutung von f(2)<0f(2)<0, Zeitpunkt maximaler Staulänge und wann der Stau am längsten ist.

See Solution

Problem 6827

Calculate the limit: limx3+x29\lim _{x \rightarrow 3^{+}} \sqrt{x^{2}-9}.

See Solution

Problem 6828

Find the value of aa for the substitution x=asecθx=a \sec \theta to simplify the integral x4dxx24\int \frac{x^{4} d x}{\sqrt{x^{2}-4}}. What new integral do you get?

See Solution

Problem 6829

Find the limits of the function f(x)f(x) given that it levels out at y=1y=-1 as xx \to \infty and decreases as xx \to -\infty. Calculate:
limxf(x)andlimxf(x) \lim _{x \rightarrow \infty} f(x) \quad \text{and} \quad \lim _{x \rightarrow-\infty} f(x)

See Solution

Problem 6830

Find the limits as xx \rightarrow \infty and xx \rightarrow -\infty for 12x2+3\frac{1}{2 x^{2}}+3.

See Solution

Problem 6831

Find the derivative and roots of the function f(x)=akxk13125x6+543125x412963125x2+116643125f(x) = a_{k} x^{k} - \frac{1}{3125} x^{6} + \frac{54}{3125} x^{4} - \frac{1296}{3125} x^{2} + \frac{11664}{3125}.

See Solution

Problem 6832

Calculate the integral: x3dx9x2=\int \frac{x^{3} d x}{\sqrt{9-x^{2}}}=.

See Solution

Problem 6833

Find the instantaneous velocity of the object at t=3t=3 for the position function s(t)=4t2+3t+5s(t)=4 t^{2}+3 t+5.

See Solution

Problem 6834

Evaluate the integral: x1+x2dx=\int \frac{x}{\sqrt{1+x^{2}}} d x=. What is the result?

See Solution

Problem 6835

Find the average rate of change for f(x)=x2+10xf(x)=x^{2}+10x from x=0x=0 to x=4x=4. Which formula is correct? A, B, C, or D?

See Solution

Problem 6836

Find the derivative dydx\frac{d y}{d x} using implicit differentiation for xy=9+x2y6\sqrt{x y}=9+x^{2} y^{6}.

See Solution

Problem 6837

Find the limits of (x1)(x2+x)(x+2)2(x3)\frac{(x-1)(x^{2}+x)}{(x+2)^{2}(x-3)} as xx \to \infty and xx \to -\infty.

See Solution

Problem 6838

Solve the integral x3dx9x2\int \frac{x^{3} d x}{\sqrt{9-x^{2}}} and choose the correct option from the list.

See Solution

Problem 6839

Find the rate of change of f(x)=x32exf(x)=x^{3}-2 e^{x} at x=1x=1 and estimate g(2)g^{\prime}(2) for g(x)=ln(3x)g(x)=\ln(3x) over [1.9,2.1][1.9,2.1].

See Solution

Problem 6840

Find the second derivative of h(x)=(6x2)(5x+18)h(x)=(6-x^{2})(5x+18).

See Solution

Problem 6841

Find terminal velocity vtermv_{\text{term}} in terms of gg and DD from d2sdt2=g0.008D(dsdt)2\frac{d^{2}s}{dt^{2}}=g-\frac{0.008}{D}\left(\frac{ds}{dt}\right)^{2}.
Then calculate vterm(103)v_{\text{term}}(10^{-3}) and vterm(104)v_{\text{term}}(10^{-4}) to three decimal places.

See Solution

Problem 6842

Is f(100)=2f^{\prime}(100)=2 means each extra \$1 spent on ads increases revenue by \$2? True or False?

See Solution

Problem 6843

Evaluate the limit: f(3)=limx3x29x3f^{\prime}(3)=\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}. What is f(3)f^{\prime}(3)?

See Solution

Problem 6844

If limx1f(x)=3\lim _{x \rightarrow 1^{-}} f(x)=3 and limx1+f(x)=7\lim _{x \rightarrow 1^{+}} f(x)=7, does limx1f(x)\lim _{x \rightarrow 1} f(x) exist? True or False?

See Solution

Problem 6845

Help with the function h(x)=log(x)h(x)=-\log (x): graph it, find its derivative, or calculate its value for a specific xx.

See Solution

Problem 6846

Find the limit as xx approaches 1 for the expression x1x21\frac{x-1}{x^{2}-1}. Choices: 0.5, 0, 2, 1.

See Solution

Problem 6847

A feverish person's temperature had a positive first derivative and negative second derivative for three minutes. What happened?

See Solution

Problem 6848

Find the limit as xx approaches 0 from the left for the expression 7xx\frac{7 x}{x}.

See Solution

Problem 6849

Select the correct interpretation of f(2012)<0f^{\prime}(2012)<0 and f(2012)<0f^{\prime \prime}(2012)<0 for population P=f(t)P=f(t).

See Solution

Problem 6850

True or False: f(a)f^{\prime}(a) represents the average rate of change of ff on [a,a+h][a, a+h] for small hh.

See Solution

Problem 6851

Find the limit as xx approaches 0 for the expression 7xx\frac{7 x}{x}.

See Solution

Problem 6852

Find the integral: x1+x2dx\int \frac{x}{\sqrt{1+x^{2}}} d x

See Solution

Problem 6853

Calculate the integral tan5(x6)dx\int \tan ^{5}\left(\frac{x}{6}\right) d x.

See Solution

Problem 6854

Find the value of aa for the substitution x=asecθx=a \sec \theta to simplify the integral x4dxx24\int \frac{x^{4} d x}{\sqrt{x^{2}-4}}. What is the resulting integral?

See Solution

Problem 6855

Calculate the volume from rotating the area between y=4xx2y=4x-x^{2} and y=xy=x around the y-axis using cylindrical shells.

See Solution

Problem 6856

A grindstone with radius 6.5 cm6.5 \mathrm{~cm} rotates at 6500rpm6500 \mathrm{rpm}. Find centripetal acceleration in multiples of gg and linear speed in m/s\mathrm{m/s}.

See Solution

Problem 6857

Find the volume using cylindrical shells for these curves rotated around the yy-axis:
1. y=x3y=\sqrt[3]{x}, y=0y=0, x=1x=1
2. y=x3y=x^{3}, y=0y=0, x=1x=1, x=2x=2
3. y=ex2y=e^{-x^{2}}, y=0y=0, x=0x=0, x=1x=1
4. y=4xx2y=4x-x^{2}, y=xy=x
5. y=x2y=x^{2}, y=6x2x2y=6x-2x^{2}.

See Solution

Problem 6858

A car moves at v=14.3 m/sv=14.3 \mathrm{~m/s} with tire diameter d=0.71 md=0.71 \mathrm{~m}. Find centripetal acceleration aca_{c} and the ratio an/aca_{n}/a_{c} if speed doubles.

See Solution

Problem 6859

Calculate the integral: x3dx9x2\int \frac{x^{3} d x}{\sqrt{9-x^{2}}}.

See Solution

Problem 6860

Determine if the series converges or diverges and find the sum if it converges: k=14(32)k1\sum_{k=1}^{\infty} 4\left(\frac{3}{2}\right)^{k-1}

See Solution

Problem 6861

Find f(2)f^{\prime}(2) for f(x)=g(x)xf(x)=g(x)^{x} given g(2)=3g(2)=3 and g(2)=2g^{\prime}(2)=2.

See Solution

Problem 6862

Calculate the volume of revolution for the area between y=x3y=x^{3}, y=8y=8, x=0x=0, x=3x=3 around x=3x=3 using cylindrical shells.

See Solution

Problem 6863

Sketch the graph of the function f(x)f(x) given: f(0)=3f(0) = 3, limx±f(x)=0\lim_{x \to \pm\infty} f(x) = 0, limx0+f(x)=2\lim_{x \to 0^{+}} f(x) = 2, and limx0f(x)=2\lim_{x \to 0^{-}} f(x) = -2.

See Solution

Problem 6864

Find the rate of change of power P(R)=2.5R(R+0.5)2P(R)=\frac{2.5 R}{(R+0.5)^{2}} W at R=10ΩR=10 \Omega. Round to four decimal places.

See Solution

Problem 6865

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=6x2f(x)=6x^{2}, simplify your answer.

See Solution

Problem 6866

Find the centripetal acceleration of a satellite at a distance of 42,250.0 km42,250.0 \mathrm{~km} from Earth's center. ac= a_{\mathrm{c}}=

See Solution

Problem 6867

Find f(2)f^{\prime}(2) for f(x)=g(x)xf(x)=g(x)^{x}, given g(2)=3g(2)=3 and g(2)=2g^{\prime}(2)=2.

See Solution

Problem 6868

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=2x2x+2f(x)=2x^{2}-x+2, with h0h \neq 0. Simplify your answer.

See Solution

Problem 6869

Find the rate of change of power P(R)=2.5R(R+0.5)2P(R)=\frac{2.5 R}{(R+0.5)^{2}} at R=10ΩR=10 \Omega. Round to four decimal places.

See Solution

Problem 6870

Find the 1st, 2nd, and 3rd derivatives of y(x)=x9y(x)=\sqrt[9]{x}. y(x)=y'(x)= y(x)=y''(x)= y(x)=y'''(x)=

See Solution

Problem 6871

Calculate the volume of the solid formed by rotating the area between y=42xy=4-2x, y=0y=0, and x=0x=0 around x=1x=-1 using cylindrical shells.

See Solution

Problem 6872

Differentiate sin(2x)+cos(8y)=sin(2x)cos(8y)\sin (2 x)+\cos (8 y)=\sin (2 x) \cos (8 y) implicitly to find dydx\frac{d y}{d x}.

See Solution

Problem 6873

Find the ball's velocity, acceleration, jerk, and snap at t=1.0t=1.0 s from the motion equation s(t)=2.0t4+1.0t3+3.5t2+2.6t+0.2s(t)=-2.0 t^{4}+1.0 t^{3}+3.5 t^{2}+2.6 t+0.2. Round to one decimal place.

See Solution

Problem 6874

Differentiate implicitly: sin(2x)+cos(8y)=sin(2x)cos(8y)\sin(2x) + \cos(8y) = \sin(2x) \cos(8y) to find dydx\frac{dy}{dx}.

See Solution

Problem 6875

Find yy^{\prime \prime} and yy^{\prime \prime \prime} for y(t)=2t2+4t5/3y(t)=2 t^{-2}+4 t^{-5/3}.

See Solution

Problem 6876

Sketch a graph of F(x)F(x) where F(x)<0F'(x) < 0 on (,5)(-\infty,-5) and (2,7)(-2,7), and F(x)>0F'(x) > 0 on (5,2)(-5,-2) and (7,)(7, \infty).

See Solution

Problem 6877

Find the fourth derivative d4ydx4\frac{d^{4} y}{d x^{4}} of the function y3x2+tan(yx)3xy3+2tan(xy6)\frac{y^{3} x^{2}+\tan (y x)}{3 x y^{3}+2 \tan \left(x y^{6}\right)}.

See Solution

Problem 6878

Find the second and third derivatives of y(x)=5exxy(x)=\frac{5 e^{x}}{x}. Calculate y(x)y^{\prime \prime}(x) and y(x)y^{\prime \prime \prime}(x).

See Solution

Problem 6879

Evaluate the integral π/4π/4(x2+lncosx)sinx2dx\int_{-\pi / 4}^{\pi / 4}\left(x^{2}+\ln |\cos x|\right) \sin \frac{x}{2} \, dx.

See Solution

Problem 6880

Find the third derivative of f(t)=5t6tf(t)=5 t^{6}-t at t=4t=4: f(4)=f^{\prime \prime \prime}(4)=

See Solution

Problem 6881

Find a formula for f(n)f^{(n)} where f(x)=(x+8)1f(x)=(x+8)^{-1}. What is f(n)(x)=?f^{(n)}(x)=?

See Solution

Problem 6882

Determine a formula for the nn-th derivative f(n)f^{(n)} of f(x)=5x2exf(x)=5 x^{2} e^{x}.

See Solution

Problem 6883

Differentiate yy implicitly from ln(7y)=4xy\ln(7y) = 4xy. Find d2ydx2\frac{d^2y}{dx^2}, set it to 0, and solve for (x,y)(x, y).

See Solution

Problem 6884

Calculate the integral: I=6x2ex3dxI = \int 6 x^{2} e^{x^{3}} \, dx.

See Solution

Problem 6885

Find the integral f(x)=0xln(cosh(t))dtf(x)=\int_{0}^{x} \ln (\cosh (t)) d t.

See Solution

Problem 6886

Find the tangent line equation to g(x)=f(x)g(x)=f^{\prime}(x) at x=1x=-1 for f(x)=5x3+3x2+2xf(x)=5 x^{3}+3 x^{2}+2 x.

See Solution

Problem 6887

Evaluate the integral: 2x5+12x43x3+15x293x+476x62x5+6x450x3+16x248x+16dx\int \frac{-2 x^{5}+12 x^{4}-3 x^{3}+15 x^{2}-93 x+47}{6 x^{6}-2 x^{5}+6 x^{4}-50 x^{3}+16 x^{2}-48 x+16} d x

See Solution

Problem 6888

Find the second derivative of h(x)=(7x2)(5x+13)h(x) = (7 - x^2)(5x + 13). What is h(x)h''(x)?

See Solution

Problem 6889

Find the tangent line equation for g(x)=f(x)g(x)=f^{\prime}(x) at x=1x=-1, where f(x)=5x3+3x2+2xf(x)=5 x^{3}+3 x^{2}+2 x.

See Solution

Problem 6890

Evaluate the Riemann sum for I=02xdxI=\int_{0}^{2} x \, dx and determine which error statement is optimal as n+n \rightarrow+\infty.

See Solution

Problem 6891

Bestimme die Stammfunktion von 4ex\frac{4}{e} x.

See Solution

Problem 6892

Find terminal velocity vtermv_{\text{term}} in terms of gg and DD, then calculate vtermv_{\text{term}} for D=103D=10^{-3} m and D=104D=10^{-4} m.

See Solution

Problem 6893

Soit f(x)=xexf(x)=\frac{x}{e^{x}}. Quelle est la dérivée f(x)f^{\prime}(x) parmi les options suivantes ? a. f(x)=exf^{\prime}(x)=\mathrm{e}^{-x} b. f(x)=xexf^{\prime}(x)=x \mathrm{e}^{-x} c. f(x)=(1x)exf^{\prime}(x)=(1-x) \mathrm{e}^{-x} d. f(x)=(1+x)exf^{\prime}(x)=(1+x) \mathrm{e}^{-x}

See Solution

Problem 6894

Find the derivative of ln(xex3)\ln(x e^{x^{3}}).

See Solution

Problem 6895

Find F(0)F^{\prime}(0) for F(x)=f(g(x))F(x)=f(g(x)) given f(1)=7f(1)=7, f(1)=2f^{\prime}(1)=2, f(0)=3f^{\prime}(0)=3, g(0)=1g(0)=1, g(0)=5g^{\prime}(0)=5.

See Solution

Problem 6896

Gegeben ist die Funktion f(x)=x36x2+8xf(x)=x^{3}-6 x^{2}+8 x. Warum ist A=A0(4)A0(0)=0A=A_{0}(4)-A_{0}(0)=0 nicht korrekt? Bestimmen Sie den echten Flächeninhalt.

See Solution

Problem 6897

Find kk such that 1k(4x318x)dx=12\int_{1}^{k}(4 x^{3}-18 x) dx=-12.

See Solution

Problem 6898

Bestimmen Sie, wo die lokale Änderungsrate von f(x)f(x) negativ oder positiv ist, und skizzieren Sie ff^{\prime}. Funktion: f(x)=13x33,5x2+10xf(x)=\frac{1}{3} x^{3}-3,5 x^{2}+10 x.

See Solution

Problem 6899

Bestimme die Integrale: a) 25xdx\int_{2}^{5} x \, dx, b) 11(2x+1)dx\int_{-1}^{1}(2x+1) \, dx, c) 122tdt\int_{-1}^{2}-2t \, dt, d) 042dx\int_{0}^{4}-2 \, dx, e) 50(t5)dt\int_{-5}^{0}(-t-5) \, dt.

See Solution

Problem 6900

Berechne die Oberstufe von f(x)=x2f(x)=x^{2} im Intervall [0,1][0, 1] mit 16 Rechtecken.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord