Calculus

Problem 1101

Find the limit: limxx63x42x22x+1\lim _{x \rightarrow-\infty} \frac{x^{6}-3 x^{4}}{2 x^{2}-2 x+1}.

See Solution

Problem 1102

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=3xx+3f(x)=\frac{3x}{x+3}, with h0h \neq 0. Simplify your answer.

See Solution

Problem 1103

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=10x2f(x)=\frac{10}{x^{2}}, where h0h \neq 0. Simplify your answer.

See Solution

Problem 1104

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=11x2f(x)=\frac{11}{x^{2}}, simplifying your answer.

See Solution

Problem 1105

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=5xx+6f(x)=\frac{5 x}{x+6}, where h0h \neq 0. Simplify your answer.

See Solution

Problem 1106

A rifle fires bullets with speed v=(5.35×107)t2+(2.30×105)tv=(-5.35 \times 10^{7}) t^{2}+(2.30 \times 10^{5}) t. Find acceleration, position, time, speed, and barrel length.

See Solution

Problem 1107

Which table shows values of gg with limx7g(x)=6\lim_{x \to 7} g(x) = 6? Options: (A), (B), (C), (D).

See Solution

Problem 1108

What does limx3f(x)=5\lim _{x \rightarrow 3} f(x)=5 mean? Choose the correct interpretation: (A), (B), (C), or (D).

See Solution

Problem 1109

A car's distance is s(t)s(t) in feet after tt seconds. Estimate its velocity at t=6t=6 using options (A) to (D).

See Solution

Problem 1110

Find limx2+f(x)\lim _{x \rightarrow 2^{+}} f(x) for the piecewise function: f(x)={5x3 if x<2,9 if x=2,4x+3 if x>2}f(x)=\{5x-3 \text{ if } x<2, 9 \text{ if } x=2, 4x+3 \text{ if } x>2\}.

See Solution

Problem 1111

Given the table of values for f(x)f(x) at xx near 4, what limit conclusion is supported? (A) limx4f(x)=6\lim _{x \rightarrow 4} f(x)=6, (B) limx4f(x)=7\lim _{x \rightarrow 4} f(x)=7, (C) limx4f(x)=6\lim _{x \rightarrow 4^{-}} f(x)=6 and limx4+f(x)=7\lim _{x \rightarrow 4^{+}} f(x)=7, (D) limx4f(x)=7\lim _{x \rightarrow 4^{-}} f(x)=7 and limx4+f(x)=6\lim _{x \rightarrow 4^{+}} f(x)=6.

See Solution

Problem 1112

Given the table of xx and f(x)f(x) values, which limit conclusion about f(x)f(x) as xx approaches 6 is correct? (A) limx6f(x)=0\lim _{x \rightarrow 6} f(x)=0 (B) limx6f(x)=6\lim _{x \rightarrow 6} f(x)=6 (C) limx6f(x)=10\lim _{x \rightarrow 6} f(x)=10 (D) limx6f(x)\lim _{x \rightarrow 6} f(x) does not exist.

See Solution

Problem 1113

Given the table values of f(x)f(x) for xx near 4, which limit conclusion is correct? (A) limx4f(x)=6\lim _{x \rightarrow 4} f(x)=6 (B) limx4f(x)=7\lim _{x \rightarrow 4} f(x)=7 (C) limx4f(x)=6\lim _{x \rightarrow 4^{-}} f(x)=6 and limx4+f(x)=7\lim _{x \rightarrow 4^{+}} f(x)=7 (D) limx4f(x)=7\lim _{x \rightarrow 4^{-}} f(x)=7 and limx4+f(x)=6\lim _{x \rightarrow 4^{+}} f(x)=6

See Solution

Problem 1114

Find limx2(h(x)(5f(x)+g(x)))\lim _{x \rightarrow 2}(h(x)(5 f(x)+g(x))) given f(2)=3f(2)=3, g(2)=6g(2)=-6, h(2)=3h(2)=-3, limits at x=2x=2.

See Solution

Problem 1115

Find limx5(f(x)+3g(x))\lim _{x \rightarrow 5}(f(-x)+3 g(x)) given limx5f(x)=4\lim _{x \rightarrow-5} f(x)=4, limx5f(x)=2\lim _{x \rightarrow 5} f(x)=2, limx5g(x)=5\lim _{x \rightarrow 5} g(x)=5.

See Solution

Problem 1116

Find limx3x29x22x15\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}-2 x-15}. Options: (A) 0 (B) 35\frac{3}{5} (C) 34\frac{3}{4} (D) 1 (E) nonexistent.

See Solution

Problem 1117

Find limx0tan(2x)6xsec(3x)\lim _{x \rightarrow 0} \frac{\tan (2 x)}{6 x \sec (3 x)}. Choose from (A) 0, (B) 16\frac{1}{6}, (C) 13\frac{1}{3}, (D) nonexistent.

See Solution

Problem 1118

Find limx2f(x)\lim _{x \rightarrow 2} f(x) for the function f(x)=x24x2+x6f(x)=\frac{x^{2}-4}{x^{2}+x-6}. Choices: (A) 0, (B) 23\frac{2}{3}, (C) 45\frac{4}{5}, (D) nonexistent.

See Solution

Problem 1119

Find the value of kk such that limx2f(x)=3\lim _{x \rightarrow 2} f(x)=3 for f(x)=(x2)(x2k2)(x24)(xk)f(x)=\frac{(x-2)(x^{2}-k^{2})}{(x^{2}-4)(x-k)}.

See Solution

Problem 1120

Find limx1f(x)\lim _{x \rightarrow 1} f(x) for f(x)=x21x1f(x)=\frac{x^{2}-1}{\sqrt{x}-1}. Choices: (A) 4, (B) 2, (C) 0, (D) nonexistent.

See Solution

Problem 1121

Find limxπ4g(x)\lim _{x \rightarrow \frac{\pi}{4}} g(x) for g(x)=cosxsinx12sin2xg(x)=\frac{\cos x-\sin x}{1-2 \sin ^{2} x}. Options: (A) 0 (B) 12\frac{1}{\sqrt{2}} (C) 2\sqrt{2} (D) Limit does not exist.

See Solution

Problem 1122

Find the derivative of y=1xy=\frac{1}{x}, calculate limx4x7x3\lim_{x \to \infty} \frac{-4x}{7x-3}, and find two numbers with a difference of 4 that minimize their product.

See Solution

Problem 1123

Find the average rate of change of f(x)=sinxf(x)=\sin x from x1=π4x_{1}=\frac{\pi}{4} to x2=3π2x_{2}=\frac{3\pi}{2}.

See Solution

Problem 1124

Differentiate the following using the Product Rule:
1. y=x2(x+1)y=x^{2}(x+1)
2. y=(x2+3)(x+6)y=(x^{2}+3)(x+6)
3. y=x(x3+6)y=\sqrt{x}(x^{3}+6)
4. y=(2x2+4x3)(3x+4)y=(2 x^{2}+4 x-3)(3 x+4)

See Solution

Problem 1125

Differentiate these functions using the quotient rule: y=x+2x+3y=\frac{x+2}{x+3}, y=1x(2x+1)y=\frac{1}{x(2x+1)}, y=4x+13x+8y=\frac{4x+1}{3x+8}, y=23x1+xy=\frac{2-3x}{1+x}.

See Solution

Problem 1126

Find the limit as xx approaches 2 for the expression x24x+3x^{2} - 4x + 3.

See Solution

Problem 1127

Find the limit as xx approaches 3 for the expression 4x+2x+4\frac{4x+2}{x+4}.

See Solution

Problem 1128

Find the limit: limxπ3sin2xsinx\lim _{x \rightarrow \frac{\pi}{3}} \frac{\sin 2 x}{\sin x}.

See Solution

Problem 1129

Calculate the limit: limx0(1cos2x2x)\lim _{x \rightarrow 0}\left(\frac{\sqrt{1-\cos 2 x}}{\sqrt{2} x}\right).

See Solution

Problem 1130

Determina la velocidad de una moneda en caída libre tras 2.0 s2.0 \mathrm{~s} desde reposo en la Torre Colpatria.

See Solution

Problem 1131

Calculate the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for the function f(x)=7x+6f(x)=-7x+6, where h0h \neq 0.

See Solution

Problem 1132

Find the derivatives of the following functions:
1. f(x)=x45x3+9x27x+5f(x)=x^{4}-5 x^{3}+9 x^{2}-7 x+5
2. y=3x26xx3y=\frac{3 x^{2}-6 x}{x^{3}}
3. g(x)=8x6x23g(x)=8 \sqrt{x}-\frac{6}{\sqrt[3]{x^{2}}}
4. h(x)=3x+2x2+1h(x)=\frac{3 x+2}{x^{2}+1}
5. f(x)=3x(8x3)7f(x)=3 x(8 x-3)^{7}
6. f(x)=3x44x2+7x11f(x)=3 x^{4}-4 x^{2}+7 x-11
7. k(x)=x9x2k(x)=x \sqrt{9-x^{2}}
8. f(x)=3(2x25x+1)f(x)=-3\left(2 x^{2}-5 x+1\right)
9. g(x)=x233x2g(x)=\frac{x^{2}}{3}-\frac{3}{x^{2}}
10. y=9x28x3+2x4y=\frac{9}{x^{2}}-\frac{8}{x^{3}}+\frac{2}{x^{4}}
11. y=x23x+43y=\sqrt[3]{x^{2}-3 x+4}
12. y=5x25x3xy=5 x^{2}-5 \sqrt{x}-\frac{3}{x}
13. y=x1xy=\sqrt{x}-\frac{1}{\sqrt{x}}
14. y=(3x2)(2x+1)y=(3 x-2)(2 x+1)
15. y=x+1x1y=\frac{\sqrt{x}+1}{\sqrt{x}-1}
16. f(x)=4x33x2+2xf(x)=4 x^{3}-3 x^{2}+2 x
17. y=z5ezlnzy=z^{5}-e^{z} \ln z
18. f(x)=2ex8xf(x)=2 e^{x}-8^{x}

See Solution

Problem 1133

Find the derivatives of these functions: 1. f(x)=x45x3+9x27x+5f(x)=x^{4}-5 x^{3}+9 x^{2}-7 x+5; 2. g(x)=8x6x23g(x)=8 \sqrt{x}-\frac{6}{\sqrt[3]{x^{2}}}; 3. h(x)=3x+2x2+1h(x)=\frac{3 x+2}{x^{2}+1}; 4. f(x)=3x(8x3)7f(x)=3 x(8 x-3)^{7}; 5. f(x)=3x44x2+7x11f(x)=3 x^{4}-4 x^{2}+7 x-11; 6. k(x)=x9x2k(x)=x \sqrt{9-x^{2}}; 7. f(x)=3(2x25x+1)f(x)=-3(2 x^{2}-5 x+1); 8. g(x)=x233x2g(x)=\frac{x^{2}}{3}-\frac{3}{x^{2}}; 9. y=9x28x3+2x4y=\frac{9}{x^{2}}-\frac{8}{x^{3}}+\frac{2}{x^{4}}.

See Solution

Problem 1134

A golf ball is hit at 130 ft/s at 4545^{\circ}. Find the distance to max height using h(x)=32x21302+xh(x)=\frac{-32 x^{2}}{130^{2}}+x.

See Solution

Problem 1135

The expression f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} is called the derivative of ff.

See Solution

Problem 1136

Find the derivatives of the following functions:
10. y=3x26xx3y=\frac{3 x^{2}-6 x}{x^{3}}
11. y=x23x+43y=\sqrt[3]{x^{2}-3 x+4}
12. y=5x25x3xy=5 x^{2}-5 \sqrt{x}-\frac{3}{x}
13. y=x1xy=\sqrt{x}-\frac{1}{\sqrt{x}}
14. y=(3x2)(2x+1)y=(3 x-2)(2 x+1)
15. y=x+1x1y=\frac{\sqrt{x}+1}{\sqrt{x}-1}
16. f(x)=4x33x2+2xf(x)=4 x^{3}-3 x^{2}+2 x
17. y=z5ezlnzy=z^{5}-e^{z} \ln z
18. f(x)=2ex8xf(x)=2 e^{x}-8^{x}

See Solution

Problem 1137

Find the rate of change of y=cos5xy=\cos 5 x. Choices: A. sin5x\sin 5 x, B. 5sin5x5 \sin 5 x, C. sin5x-\sin 5 x, D. 5sin5x-5 \sin 5 x.

See Solution

Problem 1138

Find the derivative of f(x)=5x2f(x) = 5x^2.

See Solution

Problem 1139

Find the integral of 1x2x(12x)\frac{1-x^{2}}{x(1-2 x)} and simplify to get the final expression.

See Solution

Problem 1140

Calculate the integral 03(1ex)dx\int_{0}^{3}(1-e^{-x}) \, dx with h=2h=2.

See Solution

Problem 1141

Calculate the integral vttcos(t5)dt\int_{v}^{t} t \cdot \cos \left(\frac{t}{5}\right) \cdot d t.

See Solution

Problem 1142

Show that f(x)=x26x+1f(x)=x^{2}-6x+1 on [1,3] meets Lagrange's theorem. Find where the tangent is parallel to the line joining A(1,-4) and B(3,-8).

See Solution

Problem 1143

Find the derivative of y=x2+3(4x2+2)4y=x^{2}+3(4x^{2}+2)^{4}.

See Solution

Problem 1144

Find the derivatives of these functions: 1. y=exy=e^{-x}, 2. y=ex+1y=e^{x+1}, 3. y=1e5xy=\frac{1}{e^{5x}}.

See Solution

Problem 1145

Find the tangent line equation for the function f(x)=exln(x)f(x)=e^{-x} \ln (x) at the point (1,0)(1,0).

See Solution

Problem 1146

Find the average rate of change of D(t)D(t) from t=0.2t=0.2 to t=0.4t=0.4. Use units of miles per hour.

See Solution

Problem 1147

A cube's volume increases at 312 cm3 s13 \frac{1}{2} \mathrm{~cm}^{3} \mathrm{~s}^{-1}. Find the base's change rate when length is 6 cm6 \mathrm{~cm}.

See Solution

Problem 1148

Find the derivative, integral, domain, range, and solution for the function g(x)=ln(2x4)g(x)=\ln(2x-4).

See Solution

Problem 1149

Evaluate the limit using the Squeeze Theorem: limx0x2cos(1x2)\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x^{2}}\right).

See Solution

Problem 1150

Weekly cost to make xx cars and yy trucks is C(x,y)=240,000+6,000x+4,000yC(x, y)=240,000+6,000x+4,000y. Find marginal costs and describe graphs.

See Solution

Problem 1151

Which statements are true for all cc? I. limxcf(x)=0limxcf(x)=0\lim _{x \rightarrow c} f(x)=0 \Rightarrow \lim _{x \rightarrow c}|f(x)|=0. II. limxcf(x)=0limxcf(x)=0\lim _{x \rightarrow c}|f(x)|=0 \Rightarrow \lim _{x \rightarrow c} f(x)=0.

See Solution

Problem 1152

Determine the truth of these statements for all cc and LL: I. limxcf(x)=Llimxcf(x)=L\lim _{x \rightarrow c} f(x)=L \Rightarrow \lim _{x \rightarrow c}|f(x)|=|L|; II. limxcf(x)=Llimxcf(x)=L\lim _{x \rightarrow c}|f(x)|=|L| \Rightarrow \lim _{x \rightarrow c} f(x)=L.

See Solution

Problem 1153

Find all values of aa where limxaf(x)\lim_{x \to a} f(x) exists for the piecewise function f(x)f(x) defined above.

See Solution

Problem 1154

Determine if the limits L1=limx0+sin(πx)L_{1} = \lim _{x \rightarrow 0+} \sin(\frac{\pi}{x}) and L2=limx0sin(πx)L_{2} = \lim _{x \rightarrow 0-} \sin(\frac{\pi}{x}) exist.

See Solution

Problem 1155

Find the average velocity of a ball thrown upward on the moon, given y(t)=25t3t2y(t)=25t-3t^2, over the interval from 1 to 1+h1+h.

See Solution

Problem 1156

A ball is thrown with a velocity of 40ft/s40 \mathrm{ft/s}. Find average velocity from t=2t=2 for (a) 0.5s, 0.05s, 0.1s, 0.01s and (b) instantaneous velocity at t=2t=2.

See Solution

Problem 1157

Find the limit as xx approaches -1 for the expression x2+9x+88x+8\frac{x^{2}+9 x+8}{8 x+8}.

See Solution

Problem 1158

Find the limit as xx approaches -8 for the expression x2644x+32\frac{x^{2}-64}{4 x+32}.

See Solution

Problem 1159

Find the limit as xx approaches 5 for the expression x213x+40x28x+15\frac{x^{2}-13 x+40}{x^{2}-8 x+15}.

See Solution

Problem 1160

Find limx03x2sin2x2xsin3x\lim _{x \rightarrow 0} \frac{3 x^{2}-\sin 2 x}{2 x-\sin 3 x}. What is the result? A) -1 B) 0 C) 2 D) Does not exist.

See Solution

Problem 1161

Find the limit: limx32xx3\lim _{x \rightarrow 3^{-}} \frac{2-x}{x-3}. What is the result? A) -\infty B) ++\infty C) 0 D) 1

See Solution

Problem 1162

Find the limit: limx04sinx22cosx\lim _{x \rightarrow 0} \frac{4 \sin x}{2-2 \cos x}. What is the result? A) 2 B) π\pi C) 0 D) does not exist.

See Solution

Problem 1163

Find limxc[2f(x)+3g(x)]\lim _{x \rightarrow c}[2 f(x)+3 g(x)] given limxcf(x)=23\lim _{x \rightarrow c} f(x)=\frac{-2}{3} and limxcg(x)=54\lim _{x \rightarrow c} g(x)=\frac{5}{4}.

See Solution

Problem 1164

Determine which statement about the function f(x)={x3x<063x0x<3(x3)2x3f(x)=\left\{\begin{array}{cr}|x-3| & x<0 \\ 6-3 x & 0 \leq x<3 \\ -(x-3)^{2} & x \geq 3\end{array}\right. is false: A) limx2f(x)=0\lim _{x \rightarrow 2} f(x)=0 B) limx3f(x)=3\lim _{x \rightarrow 3^{-}} f(x)=-3 C) limx0f(x)=6\lim _{x \rightarrow 0^{-}} f(x)=6 D) limx3+f(x)=0\lim _{x \rightarrow 3^{+}} f(x)=0

See Solution

Problem 1165

Find the limit: limx5x225x22x35\lim _{x \rightarrow -5} \frac{x^{2}-25}{x^{2}-2x-35}.

See Solution

Problem 1166

Find the half-life of a substance decaying as y=y0e0.019ty = y_{0} e^{-0.019 t}. Round your answer to the nearest tenth.

See Solution

Problem 1167

Find the half-life of a substance decaying at 5.7%5.7\% per day. Round your answer to the nearest hundredth.

See Solution

Problem 1168

How long does it take for a bacteria population to double at a continuous growth rate of 1%1\% per hour? Round to the nearest hundredth.

See Solution

Problem 1169

Find the annual interest rate for an investment of \$3000 that grows to \$3240 in 2 years, compounded continuously.

See Solution

Problem 1170

A rifle fires 22LR22 L R bullets with speed v=(5.35×107)t2+(2.30×105)tv=(-5.35 \times 10^{7}) t^{2}+(2.30 \times 10^{5}) t.
(a) Find acceleration a=dvdta=\frac{d v}{d t} and position x=vdtx=\int v d t.
(b) Time of acceleration (s).
(c) Speed when leaving barrel (m/s).
(d) Length of barrel (m).

See Solution

Problem 1171

Is the function f(x)=x2x20x29x+20f(x) = \frac{x^{2}-x-20}{x^{2}-9 x+20} for x5x \neq 5 and f(5)=9f(5) = 9 continuous at x=5x=5?

See Solution

Problem 1172

Calculate the integral: 2xx21dx\int \frac{2 x}{x^{2}-1} d x

See Solution

Problem 1173

Find the difference quotient of f(x)=x2+4f(x)=x^{2}+4: calculate f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}, h0h \neq 0, and simplify.

See Solution

Problem 1174

Find the output level xx that minimizes the marginal cost C(x)=x2140x+7100C(x)=x^{2}-140x+7100 and determine the minimum cost.

See Solution

Problem 1175

Given a continuous function ff on [2,2][-2,2] with f(2)=1f(-2)=1 and f(2)=1f(2)=-1, which properties hold by the Intermediate Value Theorem? A. f(c)=0f(c)=0 for some cc in (1,1)(-1,1); B. f(x)+10f(x)+1 \geq 0 on (2,2)(-2,2); C. f2(c)1f^{2}(c) \leq 1 for all cc in (2,2)(-2,2).

See Solution

Problem 1176

Find the limit limx7+F(x)\lim _{x \rightarrow 7^{+}} F(x) for the function F(x)=x249x7F(x)=\frac{x^{2}-49}{|x-7|}. Does it exist?

See Solution

Problem 1177

Find limx1+f(x)\lim _{x \rightarrow-1^{+}} f(x) for the function f(x)f(x) with a hole at x=5x=-5 and a value at x=1x=-1.

See Solution

Problem 1178

Find the limit: limx22f(x)g(x)3f(x)g(x)\lim _{x \rightarrow 2} \frac{2 f(x) g(x)}{3 f(x)-g(x)} given that limx2f(x)=4,limx2g(x)=1.\lim _{x \rightarrow 2} f(x)=4, \quad \lim _{x \rightarrow 2} g(x)=-1.

See Solution

Problem 1179

Find the average rate of change of the function f(x)=2x2+4f(x)=2x^{2}+4 over the interval [5,1][-5,1]. Include units if needed.

See Solution

Problem 1180

Find the average rate of change of f(x)=3x2x2f(x)=3 x^{2}-\frac{x}{2} over the interval [5,10][5,10]. Specify units if needed.

See Solution

Problem 1181

Find the integral of the function: 4xcos(23x)dx\int 4 x \cos (2-3 x) d x

See Solution

Problem 1182

Is the function f(x)f(x), defined as f(x)=lnx+413+xf(x)=\ln \frac{\sqrt{x+4}-1}{3+x} for x3x \neq -3 and f(3)=2f(-3)=2, continuous at x=3x=-3?

See Solution

Problem 1183

Is the function f(x)=x24f(x) = \sqrt{x^{2}-4} continuous at x=0x=0?

See Solution

Problem 1184

Check if the function f(x)={ex/(x+1)if x1e1if x=1f(x)=\begin{cases} e^{x /(x+1)} & \text{if } x \neq-1 \\ e^{-1} & \text{if } x=-1 \end{cases} is continuous at x=1x=-1.

See Solution

Problem 1185

Is the function f(x)=1x+1f(x)=\frac{1}{x+1} continuous at x=cx=c for c=1c=1?

See Solution

Problem 1186

Is the function f(x)={sinxx if x01 if x=0f(x)=\left\{\begin{array}{ll}\frac{\sin x}{x} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{array}\right. continuous at x=0x=0?

See Solution

Problem 1187

Is the function f(x)=tan(2πx)f(x)=\tan \left(\frac{2}{\pi} x\right) continuous at x=cx=c, where c=π2c=\frac{\pi}{2}?

See Solution

Problem 1188

Is the function f(x)={1lnxπ/2 if x>eπ0 if xeπf(x)=\left\{\begin{array}{ll}\frac{1}{\ln \sqrt{x}-\pi / 2} & \text { if } x>e^{\pi} \\ 0 & \text { if } x \leqslant e^{\pi}\end{array}\right. continuous at x=eπx=e^{\pi}?

See Solution

Problem 1189

Check if the function f(x)={x2+11x2 if x012 if x=0f(x)=\left\{\begin{array}{ll}\frac{\sqrt{x^{2}+1}-1}{x^{2}} & \text { if } x \neq 0 \\ \frac{1}{2} & \text { if } x=0\end{array}\right. is continuous at x=0x=0.

See Solution

Problem 1190

Check if the function f(x)f(x) is continuous at x=0x=0, where f(x)={arctan1xif x>0x+π2if x0f(x)=\begin{cases}\arctan \frac{1}{x} & \text{if } x>0 \\ x+\frac{\pi}{2} & \text{if } x \leq 0\end{cases}.

See Solution

Problem 1191

Is the function f(x)=elnxf(x)=e^{\ln x} continuous at x=0x=0?

See Solution

Problem 1192

Is the function f(x)={sin2x+cos2x if x>11 if x1f(x)=\left\{\begin{array}{ll}\sqrt{\sin ^{2} x+\cos ^{2} x} & \text { if } x>1 \\ 1 & \text { if } x \leqslant 1\end{array}\right. continuous at x=1x=1?

See Solution

Problem 1193

Is the function f(x)={x+42x if x>0x0.25 if x0f(x)=\left\{\begin{array}{ll}\frac{\sqrt{x+4}-2}{x} & \text { if } x>0 \\ x-0.25 & \text { if } x \leqslant 0\end{array}\right. continuous at x=cx = c? Explain.

See Solution

Problem 1194

Check if the function f(x)={x+42xif x>0x0.25if x0f(x)=\begin{cases} \frac{\sqrt{x+4}-2}{x} & \text{if } x > 0 \\ x-0.25 & \text{if } x \leq 0 \end{cases} is continuous at x=0x=0.

See Solution

Problem 1195

How long to double a bacteria population growing at 5.4%5.4\% per hour using continuous exponential growth? Round to the nearest hundredth.

See Solution

Problem 1196

Find the half-life of a radioactive substance with a decay rate of 4.3%4.3\% per day using continuous exponential decay.

See Solution

Problem 1197

Find the time for a bacteria population to double with a growth rate of 1.5%1.5\% per hour using continuous growth.

See Solution

Problem 1198

Compare the rates of change of f(x)=ln(x3)f(x)=\ln (x-3) at x=4x=4 and x=10x=10. Use the graph of ff for justification.

See Solution

Problem 1199

Calculate the limit as tt approaches 4 for the expression t22t8t4\frac{t^{2}-2t-8}{t-4}.

See Solution

Problem 1200

Sketch the graph of f(x)f(x), then find limx0f(x)\lim_{x \rightarrow 0} f(x) and limx2f(x)\lim_{x \rightarrow 2} f(x). Function: f(x)={sinxif x<0x2if 0x<9xif x2f(x)=\begin{cases} \sin x & \text{if } x<0 \\ x^{2} & \text{if } 0 \leq x<9 \\ x & \text{if } x \geq 2 \end{cases}

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord