Calculus

Problem 10501

Find f(x)f^{\prime}(x) for f(x)=x24xf(x)=x^{2}-4x, then find slopes at x=2,0,4x=-2,0,4 and sketch tangent lines.

See Solution

Problem 10502

Find the instantaneous velocity function v=f(x)v=f^{\prime}(x) for y=f(x)=5x24xy=f(x)=5 x^{2}-4 x and evaluate at x=1,3,5x=1,3,5 sec.

See Solution

Problem 10503

Find the average velocity of y=f(x)=x2+xy=f(x)=x^{2}+x for xx from 2 to 5, then from 2 to 2+h2+h, and the instantaneous velocity at x=2x=2.

See Solution

Problem 10504

An object moves along the yy axis with y=f(x)=x2+xy=f(x)=x^{2}+x. Find: (A) average velocity from x=4x=4 to 66; (B) from 44 to 4+h4+h; (C) instantaneous velocity at x=4x=4.

See Solution

Problem 10505

Find the cylinder dimensions for maximum volume that fits inside a sphere of radius RR.

See Solution

Problem 10506

Find the limit: limxe+(lnx)1xe\lim _{x \rightarrow e^{+}}(\ln x)^{\frac{1}{x-e}}.

See Solution

Problem 10507

Find f(2)f^{\prime}(2) given f(x)=g(h(x))f(x)=g(h(x)), g(3)=12g^{\prime}(3)=\frac{1}{2}, h(2)=3h(2)=3, and h(2)=10h^{\prime}(2)=10.

See Solution

Problem 10508

Differentiate the equation x4=300+4y2x^{4}=300+4 y^{2} implicitly and find yy'. Choose the correct option from a to f.

See Solution

Problem 10509

Find the yy-intercept of the tangent line to y=3.14+4xy=\frac{3.1}{\sqrt{4+4 x}} at the point (2,0.8949)(2,0.8949).

See Solution

Problem 10510

Find the derivative of g(x)=35xg(x)=3^{5 x}. What is it? a. ln(3)35x\ln (3) 3^{5 x} b. 3ln(5)3x3 \ln (5) 3^{x} c. ln(3)3x\ln (3) 3^{x} d. 5ln(3)35x5 \ln (3) 3^{5 x} e. 5ln(3)3x5 \ln (3) 3^{x} f. 34x3^{4 x}

See Solution

Problem 10511

Find the instantaneous velocity function v=f(x)v=f^{\prime}(x) for y=f(x)=5x24xy=f(x)=5 x^{2}-4 x and evaluate it at x=1,3,5x=1,3,5.

See Solution

Problem 10512

Find the derivative f(x)f'(x) for f(x)=πsin(x)exx4f(x)=\pi \sin (x) e^{x} x^{4}. Choose the correct option.

See Solution

Problem 10513

Differentiate sin3(5cosx)\sin^{3}(5 \cos x) with respect to xx.

See Solution

Problem 10514

Find the velocity function v=f(x)v=f^{\prime}(x) for y=f(x)=5x24xy=f(x)=5 x^{2}-4 x and calculate it at x=1,3,5x=1, 3, 5 seconds.

See Solution

Problem 10515

Determine the true statement about inflection points for f(x)=(x5)6(x4)9(x+5)3f^{\prime \prime}(x)=(x-5)^{6}(x-4)^{9}(x+5)^{3}.

See Solution

Problem 10516

Find the absolute maximum of f(x)=x33x222x+136f(x)=\frac{x^{3}}{3}-\frac{x^{2}}{2}-2 x+\frac{13}{6} on [2,2][-2,2].

See Solution

Problem 10517

Identify conclusions about f(x)f(x) given critical points at x=8x=8, x=10x=10 and its behavior in intervals.

See Solution

Problem 10518

Find the minimum value of f(7)f(7) given f(4)=9f(4)=9 and f(x)3f^{\prime}(x) \geq 3 for all xx.

See Solution

Problem 10519

Find the minimum value of f(γ)f(\gamma) given that f(4)=9f(4)=9 and f(x)3f^{\prime}(x) \geq 3 for all xx.

See Solution

Problem 10520

Given 21f(x)dx=6\int_{-2}^{1} f(x) d x=6, 21f(x)dx=4\int_{-2}^{-1} f(x) d x=4, 01f(x)dx=2\int_{0}^{1} f(x) d x=2, find 10f(x)dx=\int_{-1}^{0} f(x) d x= and 016f(x)4dx=\int_{0}^{-1} 6 f(x)-4 d x=.

See Solution

Problem 10521

For f(x)=(x5)6(x4)9(x+5)3f^{\prime \prime}(x)=(x-5)^{6}(x-4)^{9}(x+5)^{3}, which statements about inflection points are true?

See Solution

Problem 10522

Let F(x)=0x1tt2+8dtF(x)=\int_{0}^{x} \frac{1-t}{t^{2}+8} d t.
(a) Find xx where FF has a maximum: x=x=
(b) Determine intervals where FF is increasing and decreasing (use "none" if applicable).
Increasing intervals: Decreasing intervals:
(c) Find intervals where FF is concave up and concave down (use "none" if applicable).
Concave up intervals: Concave down intervals:

See Solution

Problem 10523

Calculate the area of the surface formed by rotating y=13x3/2y=\frac{1}{3} x^{3 / 2}, for 0x120 \leq x \leq 12, around the yy-axis.

See Solution

Problem 10524

Find the marginal cost at a production level of 60 items for the functions C(q)=q310q2+53q+5000C(q)=q^{3}-10 q^{2}+53 q+5000 and R(q)=3q2+2500qR(q)=-3 q^{2}+2500 q.

See Solution

Problem 10525

Find the velocity of a projectile at t=2.6t = 2.6 seconds given the height function f(t)=16t2+301t+5f(t) = -16 t^{2} + 301 t + 5.

See Solution

Problem 10526

Cost function: C(q)=100q+98C(q)=100q+98, Revenue function: R(q)=100q+51qlnqR(q)=100q+\frac{51q}{\ln q}. Find marginal cost, profit function, and profit for 9 units sold when 8 units are sold.

See Solution

Problem 10527

Find the oblique asymptote for f(x)=2x32x2+x+12x21f(x)=\frac{2 x^{3}-2 x^{2}+x+1}{-2 x^{2}-1}. Answer: y=y=

See Solution

Problem 10528

Find the limit using I'Hopital's Rule: limx0+0xtcostdtx2\lim _{x \rightarrow 0^{+}} \frac{\int_{0}^{x} \sqrt{t} \cos t \, dt}{x^{2}}

See Solution

Problem 10529

Evaluate the limit of f(x)=3x22x2+2f(x) = \frac{3x^2 - 2}{x^2 + 2} as xx \to -\infty. What is the limit?

See Solution

Problem 10530

Find the oblique asymptote for f(x)=2x32x2+x+12x21f(x)=\frac{2 x^{3}-2 x^{2}+x+1}{-2 x^{2}-1}. Answer: y=y=

See Solution

Problem 10531

Evaluate f(x)=3x22x2+2f(x)=\frac{3 x^{2}-2}{x^{2}+2} as xx \to -\infty. What is the limit? limxf(x)=\lim _{x \rightarrow-\infty} f(x) =

See Solution

Problem 10532

Find limxf(x)\lim _{x \rightarrow \infty} f(x) and limxf(x)\lim _{x \rightarrow-\infty} f(x) for f(x)=2x+4x2+1f(x)=2x+\sqrt{4x^{2}+1}.

See Solution

Problem 10533

Evaluate limxf(x)\lim _{x \rightarrow \infty} f(x) and limxf(x)\lim _{x \rightarrow-\infty} f(x) for f(x)=(x1)(x+1)2(2x2+1)f(x)=-(x-1)(x+1)^{2}(2x^{2}+1).

See Solution

Problem 10534

Evaluate limxf(x)\lim _{x \rightarrow \infty} f(x) and limxf(x)\lim _{x \rightarrow-\infty} f(x) for f(x)=4+x42x35x+x2+1f(x)=\frac{-4+x^{4}-2 x^{3}}{-5 x+x^{2}+1}.

See Solution

Problem 10535

Find the derivative f(x)f^{\prime}(x) and evaluate it at c=0c=0 for the function f(x)=(x4+3x)(3x4+3x3)f(x)=(x^{4}+3x)(3x^{4}+3x-3).

See Solution

Problem 10536

Evaluate limxf(x)\lim _{x \rightarrow \infty} f(x) and limxf(x)\lim _{x \rightarrow -\infty} f(x) for f(x)=6cos(14x8)f(x)=6 \cos \left(\frac{1}{-4 x-8}\right).

See Solution

Problem 10537

Find the derivative f(x)f^{\prime}(x) for f(x)=xcos(x)f(x)=x \cos (x) and evaluate it at c=π4c=\frac{\pi}{4}.

See Solution

Problem 10538

Find the rate of change of the ant population given by P(t)=(t+120)ln(t+1)P(t)=(t+120) \ln (t+1) on days 4 and 7.

See Solution

Problem 10539

Find the derivatives f(x)f^{\prime}(x) and f(c)f^{\prime}(c) for f(x)=xcos(x)f(x)=x \cos(x) where c=π4c=\frac{\pi}{4}.

See Solution

Problem 10540

Evaluate the function f(x)=(3)x+3x2+12f(x)=-(\sqrt{3}) x+\sqrt{3 x^{2}+1}-2 as xx \rightarrow \infty and find its limit.

See Solution

Problem 10541

Find the integral: y=63x+1dxy=\int \frac{6}{\sqrt{3 x+1}} \, dx

See Solution

Problem 10542

Find the limit: limx10x3+x2584x4x3\lim _{x \rightarrow \infty} \frac{10 x^{3}+x^{2}-5}{8-4 x-4 x^{3}}. Choose the answer: \infty, 0, 52\frac{-5}{2}, -\infty.

See Solution

Problem 10543

Find the rate of change of the current A(t)=5sin(120πt)A(t)=5 \sin(120 \pi t) at t=2 st=2 \mathrm{~s}.

See Solution

Problem 10544

Use Newton's method to find a root of f(x)=7x2x2f(x)=7 x^{2}-\sqrt{x}-2 starting with x0=1x_{0}=1. Show your work in a table.

See Solution

Problem 10545

Differentiate the function F(X,Y)=(2X22X+4)(Y+6)F(X, Y)=(2 X^{2}-2 X+4)(-Y+6) with respect to XX: FX=\frac{\partial F}{\partial X}=

See Solution

Problem 10546

Find the derivative of f(x)=3x2f(x)=\frac{3}{x^{2}} using the limit definition: f(x)=limh0f(x+h)f(x)hf^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}.

See Solution

Problem 10547

Find the first and second derivatives of the function f(x)=sec(x)f(x)=\sec(x).

See Solution

Problem 10548

Find the integral cos(ln(x))dx\int \cos (\ln (x)) d x using integration by parts.

See Solution

Problem 10549

Find the first and second derivatives of the function f(x)=sec(x)f(x)=\sec(x). First derivative: f(x)=sec(x)tan(x)f'(x)=\sec(x) \cdot \tan(x).

See Solution

Problem 10550

Find the first and second derivatives of the function f(x)=sec(x)f(x)=\sec(x). First: f(x)=sec(x)tan(x)f'(x)=\sec(x) \cdot \tan(x); Second: f(x)=2sec2(x)tan(x)f''(x)=2 \sec^2(x) - \tan(x).

See Solution

Problem 10551

Find limxf(x)\lim _{x \rightarrow \infty} f(x) and limxf(x)\lim _{x \rightarrow-\infty} f(x) for f(x)=5x+25x2+3xf(x)=-5 x+\sqrt{25 x^{2}+3 x}.

See Solution

Problem 10552

Find the volume of soup in a hemispherical bowl with radius 5 cm5 \mathrm{~cm} filled to a height of 4 cm4 \mathrm{~cm}.

See Solution

Problem 10553

Find limxf(x)\lim _{x \rightarrow \infty} f(x) and limxf(x)\lim _{x \rightarrow -\infty} f(x) for f(x)=2x+4x2+1f(x) = 2x + \sqrt{4x^2 + 1}.

See Solution

Problem 10554

Find the maximum revenue for the function R(x)=x(4000.4x)R(x)=x(400-0.4x).

See Solution

Problem 10555

Find the integral for the area between y=x2+5y=x^{2}+5 and the xx-axis from x=2x=-2 to x=5x=5.

See Solution

Problem 10556

Find the derivative of y=x1x8+1y=\sqrt{\frac{x-1}{x^{8}+1}} using logarithmic differentiation. What is y(x)=?y^{\prime}(x)=?

See Solution

Problem 10557

(a) Find dAdt\frac{d A}{d t} for a circle's area AA in terms of radius change drdt\frac{d r}{d t}. dAdt=()drdt\frac{d A}{d t}=(\square) \frac{d r}{d t} (b) If the oil spill radius increases at 2 m/s2 \mathrm{~m/s}, how fast is the area increasing when r=39 mr=39 \mathrm{~m}? m2/s\mathrm{m}^{2} / \mathrm{s}

See Solution

Problem 10558

A culture starts with 500 bacteria and grows as P(t)=500(5+3t44+t2)P(t)=500\left(5+\frac{3 t}{44+t^{2}}\right). Find P(t)P^{\prime}(t) and P(3)P^{\prime}(3) (rounded to two decimal places).

See Solution

Problem 10559

Find the volume VV of a sphere with radius rr in terms of rr, then determine rr when diameter is 60 mm60 \mathrm{~mm}. Also, find the rate of volume increase when radius grows at 3 mm/s3 \mathrm{~mm/s} and diameter is 60 mm60 \mathrm{~mm}.

See Solution

Problem 10560

Find the period TT of a dwarf planet with a semimajor axis of 454AU454 \mathrm{AU}.

See Solution

Problem 10561

How fast (in m2/s\mathrm{m}^{2} / \mathrm{s}) is the area of an oil spill increasing when the radius is 39 m39 \mathrm{~m}?

See Solution

Problem 10562

A baseball diamond is a square (90 ft sides). A batter runs to first base at 24 ft/s. Find rates to second and third bases halfway.

See Solution

Problem 10563

Find the producer surplus for the supply function p(x)=3+0.01x2p(x)=3+0.01 x^{2} when X=10X=10.

See Solution

Problem 10564

Find the correct limits of integration for the region RR bounded by y=(x+5)22y=(x+5)^{2}-2 and y=2y=2 when rotated about x=7x=7.

See Solution

Problem 10565

Find the derivative dydx\frac{dy}{dx} for the parametric equations x=t3+1x=t^{3}+1 and y=t2ty=t^{2}-t.

See Solution

Problem 10566

Find the correct limits of integration for the region RR bounded by y=(x+5)22y=(x+5)^{2}-2 and y=2y=2 when rotated about x=7x=7.

See Solution

Problem 10567

Find the linear approximation L(x)L(x) of g(x)=1+x5g(x)=\sqrt[5]{1+x} at a=0a=0. Use it to approximate 0.955\sqrt[5]{0.95} and 1.15\sqrt[5]{1.1}.

See Solution

Problem 10568

Find the derivative of the function y=e4xy=e^{4 x}.

See Solution

Problem 10569

Find the differential of the function y=e4xy=e^{4 x}. What is dyd y?

See Solution

Problem 10570

Find the limit: limxg(x)=2xx\lim _{x \rightarrow \infty} g(x)=\frac{2-x}{|x|}.

See Solution

Problem 10571

A circular disk has a radius of 18 cm18 \mathrm{~cm} and a measurement error of 0.2 cm0.2 \mathrm{~cm}. Find the max area error (a) and relative & percentage errors (b).

See Solution

Problem 10572

Evaluate limxf(x)\lim _{x \rightarrow \infty} f(x) and limxf(x)\lim _{x \rightarrow -\infty} f(x) for f(x)=5x43x+2cos(3x3)f(x)=-5 x^{4}-3 x+2 \cos(3 x^{3}).

See Solution

Problem 10573

Find Δy\Delta y and dyd y for y=x3y=\sqrt{x-3} at x=4x=4 and Δx=0.8\Delta x=0.8. Round to three decimal places.

See Solution

Problem 10574

Find the second derivative of g(x)=x1010x5+16g(x)=x^{10}-10 x^{5}+16.

See Solution

Problem 10575

What is true about the function g(x)g(x) if its derivative is 100x94+50x4+28x6+13100 x^{94}+50 x^{4}+28 x^{6}+13 and g(0)=5g(0) = 5?

See Solution

Problem 10576

How many years will it take to become a millionaire by investing \1,000at1,000 at 9\%continuousinterest? continuous interest? \mathrm{yr}$

See Solution

Problem 10577

Bestimmen Sie die Ableitungen f,gf^{\prime}, g^{\prime} und hh^{\prime} für die Funktionen f(x)=x24f(x) = x^{2}-4, g(x)=x2+1g(x) = x^{2}+1, h(x)=x2+4h(x) = x^{2}+4.

See Solution

Problem 10578

Find the derivative of f(x)=tanxf(x)=\tan \sqrt{x}. Choices: A) 1+tan2x1+\tan ^{2} \sqrt{x} B) 1+tan2xx\frac{1+\tan ^{2} \sqrt{x}}{\sqrt{x}} C) 1+tan2x2x\frac{1+\tan ^{2} \sqrt{x}}{2 \sqrt{x}} D) x(1+tan2x)\sqrt{x}\left(1+\tan ^{2} \sqrt{x}\right)

See Solution

Problem 10579

Find the derivative of f(x)=1x22f(x)=\frac{-1}{\sqrt{x^{2}-2}}. Choose from the options A, B, C, or D.

See Solution

Problem 10580

Evaluate limxf(x)\lim _{x \rightarrow \infty} f(x) and limxf(x)\lim _{x \rightarrow-\infty} f(x) for f(x)=10csc(13x)f(x)=-10 \csc \left(\frac{1}{3 x}\right).

See Solution

Problem 10581

Evaluate limxf(x)\lim _{x \rightarrow \infty} f(x) and limxf(x)\lim _{x \rightarrow-\infty} f(x) for f(x)=10csc(13x)f(x)=-10 \csc \left(\frac{1}{3 x}\right).

See Solution

Problem 10582

Evaluate the limits: limxf(x)\lim _{x \rightarrow \infty} f(x) and limxf(x)\lim _{x \rightarrow -\infty} f(x) for f(x)=5+2ex5ex+6f(x) = \frac{-5 + 2 e^{-x}}{5 e^{-x} + 6}.

See Solution

Problem 10583

Evaluate limxf(x)\lim _{x \rightarrow \infty} f(x) and limxf(x)\lim _{x \rightarrow-\infty} f(x) for f(x)=cot1(14x+2x3)f(x)=\cot^{-1}(14x + 2x^3).

See Solution

Problem 10584

Find the derivative of the function y=(sec2x)2(tan2x)2y=(\sec 2 x)^{2}-(\tan 2 x)^{2}.

See Solution

Problem 10585

Find the instantaneous velocity v=f(x)v=f^{\prime}(x) for y=f(x)=5x24xy=f(x)=5 x^{2}-4 x and calculate it at x=1,3,5x=1,3,5 seconds.

See Solution

Problem 10586

Is the function f(x)=5xf(x)=5-|x| differentiable at x=0x=0? Consider the limit limh0f(h)f(0)h\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}.

See Solution

Problem 10587

How long for \$5,000 to grow to \$7,700 at a continuous compound rate of 2.50%?

See Solution

Problem 10588

How many years for \$1,000 to grow to \$1,700 at a continuous 3% interest rate?

See Solution

Problem 10589

An object is dropped from a height of 1600ft1600 \mathrm{ft}. Find the time to hit the ground and its impact velocity.

See Solution

Problem 10590

Find the point where the line y=4x+12y=-4x+12 is tangent to the curve y=100x+7y=\frac{100}{x+7}.

See Solution

Problem 10591

Find the derivative of the function (cot1+x2)(\cot \sqrt{1+x^{2}}).

See Solution

Problem 10592

Exercice 7 : 1) Calculez la circulation de V=y2ex+x2ey\vec{V}=y^{2} \vec{e}_{x}+x^{2} \vec{e}_{y} sur y2=x+1y^{2}=x+1 entre A(1,1) et B(-1,0). 2) a- Circulation de F=(x22y)ey+(y22x)ey\vec{F}=\left(x^{2}-2 y\right) \vec{e}_{y}+\left(y^{2}-2 x\right) \vec{e}_{y} sur [A B] avec A(-4,0) et B(0,2). b- Montrez que F\vec{F} dérive d'un potentiel. c- Trouvez le potentiel et la circulation de F\vec{F}.

See Solution

Problem 10593

An object drops from a tower at 1600ft1600 \mathrm{ft}. Height after xx seconds is s(x)=160016x2s(x)=1600-16 x^{2}. Find time to hit ground and impact velocity.

See Solution

Problem 10594

Find the average revenue change from producing 1,000 to 1,050 car seats using R(x)=32x0.010x2R(x)=32x-0.010x^2. Also, find R(x)R'(x) and evaluate it at x=1000x=1000.

See Solution

Problem 10595

Find the derivative f(x)f^{\prime}(x) of the function f(x)=9x63x8f(x)=\frac{9 x-6}{3 x-8} and evaluate it at x=3x=3.

See Solution

Problem 10596

Find the surface area of a parabolic antenna modeled by y=K4x2y=\sqrt{\frac{K}{4}} x^{2}, 0xR0 \leq x \leq R.

See Solution

Problem 10597

Given that f(π6)=8f\left(\frac{\pi}{6}\right)=-8 and f(π6)=8f^{\prime}\left(\frac{\pi}{6}\right)=8, find g(π/6)g^{\prime}(\pi / 6) and h(π/6)h^{\prime}(\pi / 6) for g(x)=f(x)sinxg(x)=f(x) \sin x and h(x)=cosxf(x)h(x)=\frac{\cos x}{f(x)}.

See Solution

Problem 10598

Given f(π6)=8f\left(\frac{\pi}{6}\right)=-8 and f(π6)=8f^{\prime}\left(\frac{\pi}{6}\right)=8, find g(π6)g^{\prime}(\frac{\pi}{6}) and h(π6)h^{\prime}(\frac{\pi}{6}) for g(x)=f(x)sinxg(x)=f(x) \sin x and h(x)=cosxf(x)h(x)=\frac{\cos x}{f(x)}.

See Solution

Problem 10599

Find the integral for the surface area of a tent modeled by the curve y=Rcosh(1xR)y=R \cosh \left(1-\frac{x}{R}\right) rotated around the yy-axis.

See Solution

Problem 10600

Find the tangent line to y=4xcosxy=4 x \cos x at (π,4π)(\pi,-4 \pi). Determine mm and bb for y=mx+by=m x+b.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord