Calculus

Problem 6401

For each function, determine the signs of f(x)f'(x) and f(x)f''(x) over the given interval.
(a) f(x)f(x) values: 7.1, 7.9, 8.8, 9.8, 10.9, 12.1 (b) f(x)f(x) values: 10.1, 8.6, 7.0, 5.3, 3.5, 1.6 (c) f(x)f(x) values: 3000, 3024, 3049, 3075, 3102, 3130

See Solution

Problem 6402

Find the derivative f(4)f^{\prime}(4) for the function f(x)=1x2xf(x)=\frac{1}{x}-\frac{2}{\sqrt{x}} as a single simplified fraction.

See Solution

Problem 6403

True or false: Prove or provide a counterexample for each statement about sequences and integrals.

See Solution

Problem 6404

Test the following series for convergence or divergence: (a) n=12+cosn1+n\sum_{n=1}^{\infty} \frac{2+\cos n}{\sqrt{1+n}} (b) n=1(21/n21/(n+1))\sum_{n=1}^{\infty}(2^{1/n}-2^{1/(n+1)}) (c) n=12n1\sum_{n=1}^{\infty} \sqrt[n]{2}-1 (d) n=1n21n3+2n+5\sum_{n=1}^{\infty} \frac{\sqrt{n^{2}-1}}{n^{3}+2n+5} (e) n=21(lnn)lnn\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}} (f) n=11n+nsinn\sum_{n=1}^{\infty} \frac{1}{n+\sqrt{n} \sin n} (g) n=15n2n7n6n\sum_{n=1}^{\infty} \frac{5^{n}-2^{n}}{7^{n}-6^{n}} (h) n=31nlnnln(lnn)\sum_{n=3}^{\infty} \frac{1}{n \ln n \ln (\ln n)}

See Solution

Problem 6405

Find the production level xx that minimizes the cost function C(x)=x2140x+7900C(x)=x^{2}-140x+7900 and determine the minimum cost.

See Solution

Problem 6406

Find the time for a sphere to fall from height h=6rh=6r to h=2rh=2r in a viscous fluid using dhdt=αrh\frac{d h}{d t}=-\frac{\alpha}{r} h.

See Solution

Problem 6407

An object is thrown up at 14 m/s14 \mathrm{~m/s} with height s=0.7t2+14ts=-0.7 t^{2}+14 t. Find velocity, highest point, height, ground strike time, strike velocity, and speed intervals.

See Solution

Problem 6408

Find the average growth rate from 1991 to 2001 using p(t)=0.28t2+111t+6423p(t)=-0.28 t^{2}+111 t+6423. Also, find growth rates in 19951995 and 20012001. Graph pp^{\prime} for 0t100 \leq t \leq 10 and analyze.

See Solution

Problem 6409

Determine the vertical, horizontal, and oblique asymptotes of the function T(x)=x3x416T(x)=\frac{x^{3}}{x^{4}-16}.

See Solution

Problem 6410

Calculate the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for h=0h=0 with the function f(x)=4x24x+8f(x)=-4 x^{2}-4 x+8.

See Solution

Problem 6411

Find 14f(8x)dx\int_{1}^{4} f\left(\frac{8}{x}\right) d x given that 28f(x)x2dx=6\int_{2}^{8} \frac{f(x)}{x^{2}} d x=6.

See Solution

Problem 6412

Calculate the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for the function f(x)=3x25x8f(x)=3 x^{2}-5 x-8, where h0h \neq 0.

See Solution

Problem 6413

Find the limit of f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=2x23x5f(x)=2 x^{2}-3 x-5 where h0h \neq 0.

See Solution

Problem 6414

Find the limit of f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for the function f(x)=2x23x5f(x)=2 x^{2}-3 x-5, where h0h \neq 0.

See Solution

Problem 6415

Finde den Wendepunkt der Funktion f(x)=13x32x2+3x1f(x)=\frac{1}{3} x^{3}-2 x^{2}+3 x-1.

See Solution

Problem 6416

Bestimme die Intervalle der Monotonie für die Funktion f(x)=16x3+34x2+1f(x)=-\frac{1}{6} x^{3}+\frac{3}{4} x^{2}+1 und prüfe die Aussagen zu ff'.

See Solution

Problem 6417

Bestimmen Sie die mittlere Fläche f(t)f(t) im Intervall [0;t][0; t] für f(t)=10001+4992tf(t)=\frac{1000}{1+499 \cdot 2^{-t}} und tt \rightarrow \infty.

See Solution

Problem 6418

Finde den Wendepunkt der Funktion f(x)=x4f(x)=x^{4}.

See Solution

Problem 6419

Bestimmen Sie die mittlere Temperatur von T(t)=10+8sin(π12t)T(t)=10+8 \cdot \sin \left(\frac{\pi}{12} t\right) zwischen 9 und 21 Uhr.

See Solution

Problem 6420

Finde Nullstellen von f(x)=(x+3)exf(x)=(x+3)e^{-x}, berechne Ableitungen, untersuche Extrempunkte und skizziere den Graphen. Bestimme Tangente und Normale bei A(03)A(0 \mid 3).

See Solution

Problem 6421

Bestimmen Sie den Flächeninhalt zwischen der Funktion f(x)=x3+x22xf(x)=x^{3}+x^{2}-2 x und der xx-Achse im Intervall I=[2;1]I=[-2 ; 1].

See Solution

Problem 6422

Gegeben ist die Funktion f(x)=(x+3)exf(x)=(x+3) \cdot e^{-x}. Finde Nullstellen, Ableitungen, Hoch-/Tiefpunkte und skizziere den Graphen. Berechne die Tangente und Normale im Punkt A(03)A(0 \mid 3).

See Solution

Problem 6423

Find the derivatives of these functions: a) f(x)=sin(3x+3)f(x)=\sin (3x+3), d) f(x)=4sin(πx)f(x)=-4\sin(\pi-x).

See Solution

Problem 6424

Zeichne den Graphen von ff und bestimme I0(x)=0xf(t)dtI_{0}(x) = \int_{0}^{x} f(t) dt für die Funktionen a) bis d).

See Solution

Problem 6425

Find the limit: limx20.5x2x\lim _{x \rightarrow 2} \frac{0.5 x}{2-x}.

See Solution

Problem 6426

Find the absolute extrema of f(x)=6x248xf(x)=6 x^{2}-48 x on the interval [0,7][0,7]. Provide your answer as (x,f(x))(x, f(x)).

See Solution

Problem 6427

Calculate the integral f(x)=04xdxf(x)=\int_{0}^{4} \sqrt{x} \, dx.

See Solution

Problem 6428

Find the absolute extrema of f(x)=4x3+42x2+144xf(x)=4 x^{3}+42 x^{2}+144 x on [8,5][-8,5]. Give your answer as (x,f(x))(x, f(x)).

See Solution

Problem 6429

Finde die Extrempunkte der Funktion h(x)=255x4+2588x211160h(x) = -\frac{2}{55}x^4 + \frac{25}{88}x^2 - \frac{11}{160}.

See Solution

Problem 6430

Berechnen Sie die Untersumme UnU_n und Obersumme OnO_n für f(x)=x1f(x)=x-1 auf I=[0,1]I=[0, 1] im Grenzwert gegen \infty.

See Solution

Problem 6431

Evaluate the integral: nx2n1dx\int n \cdot x^{2 n-1} \, dx

See Solution

Problem 6432

Gegeben ist die Funktion f(x)=19(3x+2)3f(x)=\frac{1}{9}(3 x+2)^{3}. Bestimme: a) Steigung bei P(2f(2))P(2 \mid f(2)), b) Punkte mit waagerechter Tangente, c) Punkte mit Tangente der Steigung 1 und deren Gleichungen.

See Solution

Problem 6433

Simplify f(x)=tan(x)1sec(x)f(x)=\frac{\tan (x)-1}{\sec (x)} using sin(x)\sin(x) and cos(x)\cos(x), then find its derivative.

See Solution

Problem 6434

Find the velocity and acceleration from x(t)=4sin(t)x(t) = 4\sin(t), then evaluate at t=2π/3t=2\pi/3 and determine the direction.

See Solution

Problem 6435

Find the derivative of y=x1+x23y=x \sqrt[3]{1+x^{2}} with respect to xx.

See Solution

Problem 6436

Bestimme die Tangentengleichung der Funktion f(x)=(14)xf(x)=\left(\frac{1}{4}\right)^{x} am Punkt A(1,4)A(-1, 4).

See Solution

Problem 6437

Evaluate the integral: x+1x2+2x+7dx\int \frac{x+1}{x^{2}+2 x+7} d x using substitution with u=x2+2x+7u=x^{2}+2 x+7.

See Solution

Problem 6438

Find the derivative of y=sinxcosxtan3xxy=\frac{\sin x \cos x \tan^{3} x}{\sqrt{x}} with respect to xx.

See Solution

Problem 6439

Bestimme den Flächeninhalt zwischen dem Graphen der Funktionen und der xx-Achse für die angegebenen Intervalle.

See Solution

Problem 6440

Find the derivative of y=sinxcosxtan3xxy=\frac{\sin x \cos x \tan^{3} x}{\sqrt{x}} using logarithmic differentiation.

See Solution

Problem 6441

Evaluate the integral: 01(3x+5)2 dx\int_{0}^{1}(3 x+5)^{2} \mathrm{~d} x and show it equals 58u213 du\int_{5}^{8} u^{2} \frac{1}{3} \mathrm{~d} u.

See Solution

Problem 6442

Bestimmen Sie, ob die Folge ana_{n} konvergent oder divergent ist. Geben Sie den Grenzwert an, falls konvergent. a) an=1n2a_{n}=\frac{1}{n^{2}}, b) an=na_{n}=-n, c) an=n+1na_{n}=n+\frac{1}{n}, d) an=4nn+2a_{n}=\frac{4 n}{n+2}, e) an=na_{n}=\sqrt{n}, f) an=(1)nn2a_{n}=\frac{(-1)^{n}}{n^{2}}, g) an=n22na_{n}=\frac{n}{2}-\frac{2}{n}, h) an=n(1)na_{n}=n \cdot(-1)^{n}, i) an=nn+1a_{n}=\frac{\sqrt{n}}{n+1}, j) an=sinna_{n}=\sin n.

See Solution

Problem 6443

Find the derivative of logx2\log_{x} 2 with respect to xx: ddx[logx2]\frac{d}{d x}\left[\log_{x} 2\right].

See Solution

Problem 6444

Find the derivative of logxe\log_{x} e with respect to xx.

See Solution

Problem 6445

Evaluate the integral: x(2x2+2)1/2dx\int x\left(2 x^{2}+2\right)^{1 / 2} d x

See Solution

Problem 6446

Find the limits: (a) limΔx0ln(e2+Δx)2Δx\lim _{\Delta x \rightarrow 0} \frac{\ln \left(e^{2}+\Delta x\right)-2}{\Delta x}, (b) limw1lnww1\lim _{w \rightarrow 1} \frac{\ln w}{w-1}.

See Solution

Problem 6447

Find the derivative dydx\frac{dy}{dx} for sin(x2y2)=x\sin(x^{2}y^{2})=x using implicit differentiation.

See Solution

Problem 6448

Find dy/dxd y / d x using implicit differentiation for the following equations:
11. x2+y2=100x^{2}+y^{2}=100
12. x3+y3=3xy2x^{3}+y^{3}=3xy^{2}
13. x2y+3xy3x=3x^{2}y+3xy^{3}-x=3
14. x3y25x2y+x=1x^{3}y^{2}-5x^{2}y+x=1
15. 1x+1y=1\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=1
16. x2=x+yxyx^{2}=\frac{x+y}{x-y}
17. sin(x2y2)=x\sin(x^{2}y^{2})=x
18. cos(xy2)=y\cos(xy^{2})=y
19. tan3(xy2+y)=x\tan^{3}(xy^{2}+y)=x
20. xy31+secy=1+y4\frac{xy^{3}}{1+\sec y}=1+y^{4}

See Solution

Problem 6449

Untersuchen Sie die Funktionen f(x)=e0,5xf(x)=e^{0,5x} und g(x)=e1,50,25xg(x)=e^{1,5-0,25x}: Graphen skizzieren, Ableitungen finden, Schnittpunkt und Winkel bestimmen, Tangente ermitteln, Fläche A berechnen.

See Solution

Problem 6450

Bestimme die Grenzwerte: a) limx5x225x5\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}, b) limx33x227x3\lim _{x \rightarrow 3} \frac{3 x^{2}-27}{x-3}, c) limx1x3xx1\lim _{x \rightarrow 1} \frac{x^{3}-x}{x-1}, d) limx2x416x+2\lim _{x \rightarrow-2} \frac{x^{4}-16}{x+2}.

See Solution

Problem 6451

Solve the integral xlnx dx\int x \ln x \mathrm{~d} x using integration by parts.

See Solution

Problem 6452

Verify the linear approximation at a=0a=0: (1+3x)4112x(1+3x)^{-4} \approx 1-12x. Find xx where it's accurate within 0.1. xx \in

See Solution

Problem 6453

Estimate e0.01e^{0.01} using linear approximation or differentials.

See Solution

Problem 6454

Estimate the paint volume (in m3m^3) for a 0.06 cm0.06 \mathrm{~cm} thick coat on a hemispherical dome with a 42 m42 \mathrm{~m} diameter. Round to two decimal places.

See Solution

Problem 6455

Vereinfachen Sie f(s)=2s3s5f(s)=\frac{2}{\sqrt{s}}-3 s^{5} und bestimmen Sie die Ableitung.

See Solution

Problem 6456

Calculate the balance after 3 years for an investment of \$2,500 at 12\% interest, compounded continuously.

See Solution

Problem 6457

Untersuchen Sie die Kurvenschar fa(x)=x+aexf_{a}(x)=x+a \cdot e^{-x} auf Extrema, Wendepunkte und zeichnen Sie die Graphen für a=1,0.5,1a=1, 0.5, -1.

See Solution

Problem 6458

Find the second derivative of f(x)=x3+3cos(x)f(x)=\sqrt[3]{x}+3\cos(x).

See Solution

Problem 6459

Beschreibe die Funktion f(x)=20(1ex)+0,5xf(x)=20 \cdot(1-e^{-x})+0,5 \cdot x. a) Trainingseffekt für x=5,0x=5,0 Minuten. b) Wann übersteigt der Trainingseffekt 17kcal/17 \mathrm{kcal}/Minute?

See Solution

Problem 6460

Find the relation between dAdt\frac{d A}{d t}, dldt\frac{d l}{d t}, and dwdt\frac{d w}{d t} for l=9l=9 and w=10w=10.

See Solution

Problem 6461

Find the equation for dAdt\frac{d A}{d t} in terms of dldt\frac{d l}{d t} and dwdt\frac{d w}{d t} for l=9l=9 and w=10w=10.

See Solution

Problem 6462

Find the relation between dAdt\frac{d A}{d t}, dldt\frac{d l}{d t}, and dwdt\frac{d w}{d t} for l=9l=9, w=10w=10.

See Solution

Problem 6463

Find the relation between dAdt\frac{d A}{d t}, dldt\frac{d l}{d t}, and dwdt\frac{d w}{d t} for l=18l=18, w=13w=13.

See Solution

Problem 6464

Radioaktivität: Gegeben ist N(t)=1000e0,069tN(t)=1000 \cdot e^{-0,069 t}. Bestimme den Anfangsbestand, den Bestand nach 1 Tag und den täglichen Zerfall in %.

See Solution

Problem 6465

A ball is dropped. What is its acceleration in m/s2\mathrm{m} / \mathrm{s}^{2} while falling, assuming no air resistance?

See Solution

Problem 6466

Find the equation for dAdt\frac{d A}{d t} in terms of dldt\frac{d l}{d t} and dwdt\frac{d w}{d t} when l=8l=8 and w=4w=4.

See Solution

Problem 6467

Find dzdt\frac{d z}{d t} given z4=x3+y2z^{4}=x^{3}+y^{2}, dxdt=1\frac{d x}{d t}=-1, dydt=3\frac{d y}{d t}=3, at (x,y)=(0,4)(x, y)=(0,4).

See Solution

Problem 6468

Find the equation for dAdt\frac{d A}{d t} in terms of dldt\frac{d l}{d t} and dwdt\frac{d w}{d t} for l=19l=19 and w=14w=14.

See Solution

Problem 6469

Beurteilen Sie Naels Aussage zum Grenzwert der Funktion f(x)=0,001x40,11x2+3f(x) = 0,001 x^{4}-0,11 x^{2}+3 im Unendlichen.

See Solution

Problem 6470

A woman 5 ft tall walks away from an 18 ft pole at 8 ft/s. Find the speed of her shadow's tip when she's 12 ft from the pole.

See Solution

Problem 6471

Find the derivative of y=sin(4x3)+sin5(3x2)y=\sin(4x^3)+\sin^5(3x^2) and simplify the answer.

See Solution

Problem 6472

Understand upper/lower sums, antiderivatives, definite integrals, area between functions, and solve initial value problems.

See Solution

Problem 6473

An airplane at 12000ft12000 \mathrm{ft} flies away from a man 5000ft5000 \mathrm{ft} from a tower. If it moves at 400ft/s400 \mathrm{ft/s}, find the rate the distance increases when over the tower.

See Solution

Problem 6474

Calculate the amount in an account after 10 years with a \$24,000 deposit at 7.25% continuous interest. Choices: \$46,414.20, \$48,326.40, \$49,553.54, \$47,897.10.

See Solution

Problem 6475

Find the derivative of y=(5x+732x)4y = \left(\frac{5x+7}{3-2x}\right)^4 and simplify the answer.

See Solution

Problem 6476

Gegeben ist die Funktion f(x)=13x3xf(x)=\frac{1}{3} x^{3}-x. Untersuche das Verhalten, die Symmetrie, Extremwerte und Wendepunkte sowie Tangenten.

See Solution

Problem 6477

Gegeben ist fe(x)=49t2x3+tx2+xf_{e}(x)=\frac{4}{9} t^{2} x^{3}+t x^{2}+x. a) Zeigen Sie, dass alle Kurven im Ursprung berühren. Bestimmen Sie die Tangente. b) Finden Sie die Kurven PtP_{t} mit Steigung 1. c) Zeichnen Sie Wendetangenten für drei tt-Werte und beschreiben Sie Ihre Beobachtungen.

See Solution

Problem 6478

Bestimmen Sie die Obersumme und Untersumme für:
a) f(x)=x+1f(x)=x+1 auf I=[0;1]I=[0 ; 1]
b) f(x)=2xf(x)=2-x auf I=[0;2]I=[0 ; 2]
c) f(x)=12x2f(x)=\frac{1}{2} x^{2} auf I=[0;1]I=[0 ; 1]

See Solution

Problem 6479

Differentiate y=xtan(x)y=\sqrt{x} \tan (\sqrt{x}) and simplify the result.

See Solution

Problem 6480

Find the gradient of f(x,y,z)=(x2z)eyf(x, y, z)=(x-2 z) e^{y} at the origin and state its components.

See Solution

Problem 6481

Find the derivative of y=(x3+5)4sec(2x)y=\left(x^{3}+5\right)^{4} \sec (2 x) and simplify it.

See Solution

Problem 6482

Find the expressions that compute the rate of change of ff at aa with respect to h\mathbf{h}. Options include:
1. [Df]ahb[D f]_{a} \frac{\mathbf{h}}{\|\mathbf{b}\|}
2. (f)ah(\nabla f)_{a} \cdot \mathbf{h}
3. (f)h(\nabla f) \cdot h
4. (f)ahh(\nabla f)_{a} \cdot \frac{\mathbf{h}}{\|\mathbf{h}\|}
5. [Df]ah[D f]_{a} h
6. [Df]hb[D f] \cdot \frac{\mathbf{h}}{\|\mathbf{b}\|}
7. [Df]h[D f] \cdot \mathbf{h}

See Solution

Problem 6483

Find the tangent plane equation to the surface 3x2xy+2z2=43 x^{2}-x y+2 z^{2}=4 at the point (1,1,1)(1,1,1).

See Solution

Problem 6484

Find the derivative of y=cos(x3)(3x2+1)5y=\frac{\cos(x^{3})}{(3x^{2}+1)^{5}} and simplify it.

See Solution

Problem 6485

If z=exyx2yz=e^{x y}-x^{2} y, find the differential dzd z. Choose the correct expression for dzd z.

See Solution

Problem 6486

Identify the incorrect Taylor series expansions about x=0x=0 from the following list (ignore convergence radii).

See Solution

Problem 6487

Expand f(x,y)=ex2ysin(3y)f(x, y)=e^{x^{2} y} \sin(3y) using Taylor series. Find the coefficient of x4y5x^{4} y^{5}. Provide a decimal.

See Solution

Problem 6488

Find the Hessian matrix, D2fD^{2} f, of the function f(x,y)=x33xy2+x2xy+2y+5x17f(x, y)=x^{3}-3xy^{2}+x^{2}-xy+2y+5x-17.

See Solution

Problem 6489

Expand f(x,y)=ex2ysin(3y)f(x, y)=e^{x^{2} y} \sin (3 y) using Taylor series. Find the coefficient of the x4y5x^{4} y^{5} term. Provide a decimal.

See Solution

Problem 6490

If z=exyx2yz=e^{x y}-x^{2} y, find the differential dzd z. What is dzd z equal to?

See Solution

Problem 6491

Find the derivative of y=(3x21)3(2x+5)2y=(3 x^{2}-1)^{3}(2 x+5)^{2} and simplify the expression.

See Solution

Problem 6492

Find the derivative of y=x2+5x25y=\sqrt{\frac{x^{2}+5}{x^{2}-5}} and simplify your answer.

See Solution

Problem 6493

Find the derivative of y=x2+32x5y=\frac{x^{2}+3}{\sqrt{2 x-5}} and simplify it.

See Solution

Problem 6494

Evaluate the integral xlnxdx\int x \ln x \, dx using integration by parts with u=xu' = x and v=lnxv = \ln x.

See Solution

Problem 6495

Berechne die Stammfunktion von f(x)=3x2+7xf(x)=3 x^{2}+7 x mit dem Punkt P(2,16)P(2, 16).

See Solution

Problem 6496

Untersuchen Sie das Verhalten der Funktionen für x±x \to \pm \infty:
a) f(x)=3x4+2x3+x2+10x3f(x)=3 x^{4}+2 x^{3}+x^{2}+10 x-3
b) f(x)=2x2f(x)=2^{x-2}

See Solution

Problem 6497

Find the derivative of y=sec35x+sec5xy=\sqrt{\sec^{3} 5x} + \sec \sqrt{5x} and simplify using chain rule and secant rules.

See Solution

Problem 6498

Use integration by parts to solve the integral xexdx\int x e^{x} \, dx.

See Solution

Problem 6499

Evaluate the integral: xexdx\int x e^{x} \, dx and show that it equals xexex+cx e^{x} - e^{x} + c.

See Solution

Problem 6500

Bestimmen Sie die Steigung und den Steigungswinkel von ff an den Stellen x0x_{0}: a) f(x)=2x3f(x)=2 x^{3}, x0=1x_{0}=-1; b) f(x)=2xf(x)=-2 \sqrt{x}, x0=3x_{0}=3; c) f(x)=x25xf(x)=-x^{2}-5 x, x0=0x_{0}=0; d) f(x)=4xf(x)=-\frac{4}{x^{\prime}}, x0=2x_{0}=-2; e) f(x)=(2x+1)2f(x)=(2 x+1)^{2}, x0=12x_{0}=-\frac{1}{2}; f) f(x)=12x2f(x)=\frac{1}{2 x^{2}}, x0=3x_{0}=-3.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord