Calculus

Problem 29401

Calculate the integral: x3lnxdx\int x^{3} \ln x \, dx

See Solution

Problem 29402

Find limx4f(x)\lim _{x \rightarrow-4} f(x) if 2x+4f(x)x2+10x+202x + 4 \leq f(x) \leq x^2 + 10x + 20.

See Solution

Problem 29403

Evaluate the limit as x x approaches 0: limx0(1t1+t1t) \lim_{x \rightarrow 0} \left( \frac{1}{t \sqrt{1+t}}-\frac{1}{t} \right) . Choose from: 23-\frac{2}{3}, 12\frac{1}{2}, 2, 12-\frac{1}{2}.

See Solution

Problem 29404

Find the limit as xx approaches -\infty for e3x+1+4x62x3e^{3x} + \frac{\sqrt{1 + 4x^6}}{2 - x^3}.

See Solution

Problem 29405

Berechne die Integrale: a) 03(x45)dx\int_{0}^{3} (x^{4}-5) \, dx, b) 23(3x4+2x3)dx\int_{2}^{3} (3 x^{4}+2 x^{3}) \, dx, c) 14(x2)2dx\int_{1}^{4} (x-2)^{2} \, dx.

See Solution

Problem 29406

Find f(x)f^{\prime}(x) using the limit definition of a derivative for f(x)=xf(x)=\sqrt{x}. Options: 1x\frac{1}{\sqrt{x}}, 12x\frac{1}{2 \sqrt{x}}, x2\frac{\sqrt{x}}{2}, 2x\frac{2}{\sqrt{x}}.

See Solution

Problem 29407

Find the derivative of ex1ex\frac{e^{x}}{1-e^{x}}. Choices: A) ex(1ex)2\frac{-e^{x}}{(1-e^{x})^{2}}, B) ex(1e2x)2\frac{e^{x}}{(1-e^{2x})^{2}}, C) e2x(1ex)2\frac{e^{2x}}{(1-e^{x})^{2}}, D) ex(1ex)2\frac{e^{x}}{(1-e^{x})^{2}}.

See Solution

Problem 29408

Find the derivative of ln(xlog5x)\ln(x \log_{5} x).

See Solution

Problem 29409

Find the derivative: ddttan(esin(t))\frac{d}{d t} \tan \left(e^{\sin (t)}\right).

See Solution

Problem 29410

Find the derivative of y=(x)1xy=(\sqrt{x})^{\frac{1}{x}}.

See Solution

Problem 29411

Differentiate these functions: a. f(x)=ln(2x3)f(x)=\ln(2x^{3}), b. f(x)=ex7f(x)=e^{x^{7}}, c. f(x)=ln(11x7)f(x)=\ln(11x^{7}), d. f(x)=ex2+x3f(x)=e^{x^{2}+x^{3}}, e. f(x)=loge(7x2)f(x)=\log_{e}(7x^{-2}), f. f(x)=exf(x)=e^{-x}, g. f(x)=ln(ex+x3)f(x)=\ln(e^{x}+x^{3}), h. f(x)=ln(exx3)f(x)=\ln(e^{x}x^{3}), i. f(x)=ln(x2+1x3x)f(x)=\ln\left(\frac{x^{2}+1}{x^{3}-x}\right).

See Solution

Problem 29412

Find the derivative of (x)1x(\sqrt{x})^{\frac{1}{x}} with respect to xx.

See Solution

Problem 29413

Differentiate these functions: a. f(x)=ln(2x3)f(x)=\ln(2x^3), b. f(x)=ex7f(x)=e^{x^7}, c. f(x)=ln(11x7)f(x)=\ln(11x^7), d. f(x)=ex2+x3f(x)=e^{x^2+x^3}, e. f(x)=loge(7x2)f(x)=\log_e(7x^{-2}), f. f(x)=exf(x)=e^{-x}, g. f(x)=ln(ex+x3)f(x)=\ln(e^x+x^3), h. f(x)=ln(exx3)f(x)=\ln(e^xx^3), i. f(x)=ln(x2+1x3x)f(x)=\ln\left(\frac{x^2+1}{x^3-x}\right).

See Solution

Problem 29414

Calculate the integral: 5x3xx6dx\int \frac{5 x^{3-x}}{x^{6}} \, dx

See Solution

Problem 29415

Find the derivatives of these functions, where aa and bb are constants in (g), (h), and (p): (a) y=(x2+1)e3xy=(x^{2}+1)e^{3x}, (b) y=ex2+3xy=e^{x^{2}+3x}, (c) y=e2x+e2xx2y=\frac{e^{2x}+e^{-2x}}{x^{2}}, (d) y=3x2+3xy=3^{x^{2}+3x}, (e) y=x53xy=x5^{3x}, (f) y=3x3x2y=\frac{3^{x}-3^{-x}}{2}, (g) y=xeax2+1y=xe^{ax^{2}+1}, (h) y=1+aexy=\sqrt{1+ae^{x}}, (i) y=(2x+ex2)4y=(2x+e^{x^{2}})^{4}, (j) y=ln(x2+2x)y=\ln(x^{2}+2x), (k) y=log2(3x+4)y=\log_{2}(3x+4), (l) y=xln(x2+1)y=x\ln(x^{2}+1), (m) y=log3(x2+5)y=\log_{3}(x^{2}+5), (n) y=xlnxx2+1y=\frac{x\ln x}{x^{2}+1}, (o) y=ln(x+5e3x)y=\ln(x+5e^{3x}), (p) y=axln(x2+b2)y=ax\ln(x^{2}+b^{2}), (q) y=(3x)5xy=(3x)^{5x}, (r) y=xlnxy=x^{\ln x}, (s) y=(lnx)xy=(\ln x)^{x}, (t) y=(3x+2)2x1y=(3x+2)^{2x-1}.

See Solution

Problem 29416

Find the derivatives of these functions: (a) y=(x2+1)e3xy=(x^{2}+1)e^{3x}, (b) y=ex2+3xy=e^{x^{2}+3x}, (c) y=e2x+e2xx2y=\frac{e^{2x}+e^{-2x}}{x^{2}}, (d) y=3x2+3xy=3^{x^{2}+3x}, (e) y=x53xy=x5^{3x}, (f) y=3x3x2y=\frac{3^{x}-3^{-x}}{2}, (g) y=xeax2+1y=xe^{ax^{2}+1}, (h) y=1+aexy=\sqrt{1+ae^{x}}, (i) y=(2x+ex2)4y=(2x+e^{x^{2}})^{4}, (j) y=ln(x2+2x)y=\ln(x^{2}+2x), (k) y=log2(3x+4)y=\log_{2}(3x+4), (l) y=xln(x2+1)y=x\ln(x^{2}+1), (m) y=log3(x2+5)y=\log_{3}(x^{2}+5), (n) y=xlnxx2+1y=\frac{x\ln x}{x^{2}+1}, (o) y=ln(x+5e3x)y=\ln(x+5e^{3x}), (p) y=axln(x2+b2)y=ax\ln(x^{2}+b^{2}), (q) y=(3x)5xy=(3x)^{5x}, (r) y=xlnxy=x^{\ln x}, (s) y=(lnx)xy=(\ln x)^{x}, (t) y=(3x+2)2x1y=(3x+2)^{2x-1}.

See Solution

Problem 29417

Evaluate the integral: csc3x2cot3x2dx\int \csc 3 x^{2} \cot 3 x^{2} \, dx.

See Solution

Problem 29418

Find the derivative of ln(xlog5x)\ln(x \log_{5} x). What is ddxln(xlog5x)\frac{d}{d x} \ln(x \log_{5} x)?

See Solution

Problem 29419

Calculate the account balance after 5 years for a \$12,000 deposit at a 5.5% continuous interest rate.

See Solution

Problem 29420

Water leaks from a conical tank at 10,000 cm3/min10,000 \mathrm{~cm}^{3}/\mathrm{min}. Find the inflow rate when water is 2 m2 \mathrm{~m} high.

See Solution

Problem 29421

Find the derivatives of sinhx\sinh x and coshx\cosh x in terms of themselves. Then, find the derivatives of y=xsinhxy=x \sinh x and y=cosh(x2)y=\cosh(x^2).

See Solution

Problem 29422

Find the derivative of cot1(1x)+xcos1(x)\cot^{-1}\left(\frac{1}{x}\right) + x \cos^{-1}(\sqrt{x}).

See Solution

Problem 29423

Find the derivatives of sinhx\sinh x and coshx\cosh x in terms of themselves. Then find the derivatives of y=xsinhxy=x \sinh x and y=cosh(x2)y=\cosh(x^2).

See Solution

Problem 29424

Find the derivative of y=(x)1xy=(\sqrt{x})^{\frac{1}{x}}.

See Solution

Problem 29425

Identify the false statement about the function f(x)=e0.005xf(x)=e^{-0.005 x} from the options provided.

See Solution

Problem 29426

Sketch the graph of F(x)=x21x1F(x)=\frac{x^{2}-1}{|x-1|} and find the limits: 1. limx1+F(x)\lim _{x \rightarrow 1^{+}} F(x), 2. limx1F(x)\lim _{x \rightarrow 1^{-}} F(x), 3. limx1F(x)\lim _{x \rightarrow 1} F(x).

See Solution

Problem 29427

Find the average rate of change of f(t)=6416t2f(t)=64-16 t^{2} on 0t20 \leq t \leq 2. Choices: A. -4 B. 32 C. -32 D. -64

See Solution

Problem 29428

f(x)=cosxxf(x)=\frac{\cos x}{x} için doğru olanı seçin: A) x=π2x=\frac{\pi}{2} sonsuz süreksiz, B) kaldırılabilir süreksiz, C) x=0x=0 kaldırılabilir, D) sıçrama, E) x=0x=0 sonsuz süreksiz.

See Solution

Problem 29429

How fast is an object falling after 4sec4 \mathrm{sec} when dropped near Earth's surface? (Ignore air resistance.)

See Solution

Problem 29430

Find local extrema of f(x)=2x3+6x218x+12f(x)=2x^3+6x^2-18x+12: local max at x=x=, local min at x=x=.

See Solution

Problem 29431

Find the derivative h(x)h^{\prime}(x) of the function h(x)=cos(5x2)6x3+1h(x)=\frac{\cos(5x^{2})}{\sqrt{6x^{3}+1}}.

See Solution

Problem 29432

Find the integral of cosx2\cos \frac{x}{2} with respect to xx.

See Solution

Problem 29433

Evaluate the integral: (4x195x8x2)dx\int\left(\frac{4 x^{19}-5 x^{-8}}{x^{2}}\right) d x

See Solution

Problem 29434

Find the limits of the piecewise function f(x)f(x) as xx approaches -1 from both sides.

See Solution

Problem 29435

Find the limit of the piecewise function f(x)f(x) as xx approaches -1.

See Solution

Problem 29436

Given the piecewise function:
1. Find limx1f(x)\lim_{x \to -1^-} f(x).
2. Find limx1+f(x)\lim_{x \to -1^+} f(x).
3. Find limx1f(x)\lim_{x \to -1} f(x) and identify any discontinuity type.

See Solution

Problem 29437

Find the integral of (2x+1)2(2 x+1)^{2} with respect to xx.

See Solution

Problem 29438

Find the dimensions of an open box with maximum volume made from a 32-inch square material.

See Solution

Problem 29439

Find the limit of f(x)f(x) as xx approaches 3-3 from the left for the piecewise function defined above.

See Solution

Problem 29440

Find the limits of the piecewise function f(x)f(x) as xx approaches 2 from both sides and check for continuity.

See Solution

Problem 29441

Find the limits as xx approaches 3-3 from the left and right, and check continuity at x=3x=-3.

See Solution

Problem 29442

Find the limits as xx approaches 3-3 from the left and right for the piecewise function f(x)f(x) and check continuity at x=3x=-3.

See Solution

Problem 29443

Find the limits: [a] as xx approaches 3-3^{-} for f(x)f(x) [b] as xx approaches 3+-3^{+} for f(x)f(x).

See Solution

Problem 29444

Find f(3)f(3) and f(4)f(4) for f(x)=x33x22x7f(x)=x^{3}-3 x^{2}-2 x-7. Does the IVT guarantee a real zero between 3 and 4?

See Solution

Problem 29445

Evaluate the integral cectdtc \int e^{-c t} dt.

See Solution

Problem 29446

Let f(x)=x2x2x1f(x)=\frac{x^{2}-x-2}{x-1}. Find limits as x1x \to 1, \infty, verify f(x)=x2x1f(x)=x-\frac{2}{x-1}, and analyze asymptotes.

See Solution

Problem 29447

Find the limits of the piecewise function f(x)f(x) at x=1x = -1 and x=2x = 2, and check continuity at these points.

See Solution

Problem 29448

Given f(x)=x36x2+3f(x)=x^{3}-6 x^{2}+3 find: (a) f(1)f(-1) and f(5)f(5), (b) critical points, (c) max/min in [1,5][-1,5], (d) their values.

See Solution

Problem 29449

Evaluate the integral of xdx72x2\frac{x d x}{\sqrt{7-2 x^{2}}}.

See Solution

Problem 29450

What does limg(x)=6\lim g(x)=6 as x3+x \rightarrow 3^{+} mean? Choose the correct interpretation: A. xx approaches 3, g(x)g(x) approaches 6 B. g(x)g(x) approaches 6, xx approaches 3 from the left C. xx approaches 6, g(x)g(x) approaches 3 from the right D. xx approaches 3 from the right, g(x)g(x) approaches 6

See Solution

Problem 29451

Calculate sin24xdx\int \sin ^{2} 4 x \, dx. Choose the correct answer from the options given.

See Solution

Problem 29452

Evaluate the integral of (5x4)2(5 \sqrt{x}-4)^{2} with respect to xx.

See Solution

Problem 29453

Evaluate the integral: sin3x2dx\int \sin ^{3} \frac{x}{2} d x. Choose the correct answer from the options provided.

See Solution

Problem 29454

Estimate the integral of f(x)=5xf(x)=5 x from x=1x=1 to x=7x=7 using n=3n=3 intervals. What are the left Riemann sum xx-values?

See Solution

Problem 29455

Estimate the integral of f(x)=5xf(x)=5x from x=1x=1 to x=7x=7 using n=3n=3 intervals. What are the right Riemann sum xx-values?

See Solution

Problem 29456

Finde die Bedeutung von f(15)=8 f(15) = 8 , f(25)=0 f'(25) = 0 , f(25)<0 f''(25) < 0 und prüfe die Funktion f(t)=0,15(t15)e0,1t+8 f(t) = 0,15 \cdot (t - 15) \cdot e^{-0,1 t} + 8 . Bestimme h(x)=5x2ex h(x) = 5 x^{2} e^{x} für den Deich.

See Solution

Problem 29457

Calculate the integral 2x31x2+1dx\int \frac{2 x^{3}-1}{x^{2}+1} d x.

See Solution

Problem 29458

Find the limit: limx0x2+2xx33x\lim_{{x \to 0}} \frac{x^{2}+2x}{x^{3}-3x}.

See Solution

Problem 29459

Calculate the integral: xdx14x2\int \frac{x \cdot d x}{\sqrt{1-4 x^{2}}}.

See Solution

Problem 29460

Calculate the integral: xdx(3x2+4)3\int \frac{x d x}{\left(3 x^{2}+4\right)^{3}}

See Solution

Problem 29461

Find the integral: xsec2xdx\int x \sec^{2} x \, dx

See Solution

Problem 29462

Calculate the integral xsinxdx\int x \sin x \, dx.

See Solution

Problem 29463

Calculate the integral x2sinxdx\int x^{2} \sin x \, dx.

See Solution

Problem 29464

Evaluate the integral: 1elnxxdx\int_{1}^{e} \frac{\ln x}{x} d x

See Solution

Problem 29465

Approximate f(1)f(-1) using f(2)=5f(-2)=-5 and f(2)=7f'(-2)=-7.

See Solution

Problem 29466

Calculate the integral: x2cosxdx\int x^{2} \cos x \, dx

See Solution

Problem 29467

Find the integral: tan1xdx\int \tan^{-1} x \, dx

See Solution

Problem 29468

Verify if y=x4xcos(t)tdty=\sqrt{x} \int_{4}^{x} \frac{\cos (t)}{\sqrt{t}} d t solves 2xdydxy=2xcos(x)2 x \frac{d y}{d x}-y=2 x \cos (x).

See Solution

Problem 29469

Find the derivative of the function f(x)=x2ln(x3)f(x)=x^{2} \ln(x^{3}).

See Solution

Problem 29470

Find the growth of average computer devices per person over 10 years, given 2%2\% production and 1%1\% population growth.

See Solution

Problem 29471

Find the derivative of f(x)=x2+2exf(x)=\frac{x^{2}+2}{e^{x}}.

See Solution

Problem 29472

Find the tangent line equation to y=6sinxy=6 \sin x at (π6,3)\left(\frac{\pi}{6}, 3\right) in the form y=mx+by=m x+b.

See Solution

Problem 29473

Find the derivative of f(x)=x2+2exf(x)=\frac{x^{2}+2}{e^{x}}. Select the correct expression for yy'.

See Solution

Problem 29474

Find the tangent line equation for y=6sinxy=6 \sin x at the point (π6,3)\left(\frac{\pi}{6}, 3\right) in the form y=mx+by=m x+b.

See Solution

Problem 29475

Find the derivative of f(x)=x2ln(x3)f(x)=x^{2} \ln(x^{3}). What is f(x)f'(x)?

See Solution

Problem 29476

Find the stationary point of f(x)=4+(x8)2f(x)=4+(x-8)^{2}. Determine if it's a maximum or minimum.

See Solution

Problem 29477

Find the maximum of the function f(x)=4ln(x2)2xf(x)=4 \ln(x^{2}) - 2x.

See Solution

Problem 29478

Find the maximum of f(x)=4ln(x2)2xf(x)=4 \ln \left(x^{2}\right)-2 x. Choose from: (4, 2.09), (4, 3.09), (4, 1.09), (4, 0.09).

See Solution

Problem 29479

Find the stationary point of f(x)=4+(x8)2f(x)=4+(x-8)^{2}. Determine if it's a max or min. Options: 16 min16 \text{ min}, 28 min28 \text{ min}, 37 max37 \text{ max}, 45 max45 \text{ max}.

See Solution

Problem 29480

Find the stationary point of f(x)=4+(x8)2f(x)=4+(x-8)^2. Determine if it's a max or min. Options: 6 min, 8 min, 7 max, 5 max.

See Solution

Problem 29481

Find the stationary point of f(x)=4+(x8)2f(x)=4+(x-8)^{2} and determine if it's a max or min.

See Solution

Problem 29482

Find the partial derivatives fx\frac{\partial f}{\partial x} and fy\frac{\partial f}{\partial y} for f(x,y)=3x+2y2x2y2f(x, y)=3 x+2 y-2 x^{2}-y^{2}.

See Solution

Problem 29483

Find the stationary point of f(x,y)=3x+2y2x2y2f(x, y)=3 x+2 y-2 x^{2}-y^{2}. Determine if it's a max, min, or neither using second order conditions.

See Solution

Problem 29484

Find the stationary point of f(x,y)=3x+2y2x2y2f(x, y)=3x+2y-2x^{2}-y^{2} and classify it as max, min, or neither.

See Solution

Problem 29485

Find the rectangle with maximum area inside the ellipse (x5)2+(y7)2=1\left(\frac{x}{5}\right)^{2}+\left(\frac{y}{7}\right)^{2}=1.

See Solution

Problem 29486

Find the partial derivatives fx\frac{\partial f}{\partial x} and fy\frac{\partial f}{\partial y} for f(x,y)=3x+2y2x2y2f(x, y)=3x+2y-2x^2-y^2.

See Solution

Problem 29487

Maximize z=2x2+4y2z=2 x^{2}+4 y^{2} with the constraint 2x=2y42 x=2 y-4. Find x,y,λx, y, \lambda, and the max value of zz.

See Solution

Problem 29488

Find the tangent line equation for y=x3+3x2+2y=x^{3}+3 x^{2}+2 at its point of inflection.

See Solution

Problem 29489

Find the slope of the tangent line to y=ln(x2)y=\ln \left(\frac{x}{2}\right) at x=4x=4.

See Solution

Problem 29490

Determine the truth of these statements about the function f(x)f(x): I. limx3f(x)\lim _{x \rightarrow 3} f(x) exists. II. ff is continuous at x=3x=3. III. ff is differentiable at x=3x=3. Options: (A) None (B) I only (C) II only (D) I and II only (E) I, II, and III.

See Solution

Problem 29491

Find the 4th derivative of f(x)=(2x+1)4f(x)=(2x+1)^{4} at x=0x=0.

See Solution

Problem 29492

Determine where the function ff with derivative f(x)=x22xf^{\prime}(x)=x^{2}-\frac{2}{x} is decreasing. Choose from the options.

See Solution

Problem 29493

f(x)에서 limx1f(x)\lim _{x \rightarrow 1} f(x)의 값을 구하시오.

See Solution

Problem 29494

limx2f(x)\lim _{x \rightarrow 2} f(x)의 값을 구하시오, 여기서 f(x)={x24x+3(x2)3(x=2)f(x)=\begin{cases} x^{2}-4x+3 & (x \neq 2) \\ 3 & (x=2) \end{cases}.

See Solution

Problem 29495

극한값 limx2f(x)\lim _{x \rightarrow 2} f(x) 존재 시, 함수 f(x)f(x)에서 상수 kk의 값을 구하라.

See Solution

Problem 29496

limx(1+2x+x2+x)\lim _{x \rightarrow-\infty}\left(\sqrt{1+2 x+x^{2}}+x\right)의 값을 구하시오.

See Solution

Problem 29497

함수 f(x)={2(x<0)2x(2x)(0x<1)1x(x1)f(x)=\left\{\begin{array}{cl}2 & (x<0) \\ 2 x(2-x) & (0 \leq x<1) \\ 1-x & (x \geq 1)\end{array}\right.에서 limx0f(x)+limx1f(x)\lim _{x \rightarrow 0-} f(x)+\lim _{x \rightarrow 1-} f(x)의 값을 구하시오.

See Solution

Problem 29498

두 함수 f(x)f(x), g(x)g(x)에 대해 limx1f(x)=\lim _{x \rightarrow 1} f(x)=-\infty이고 limx1{f(x)+3g(x)}=4\lim _{x \rightarrow 1}\{f(x)+3 g(x)\}=4일 때, limx1f(x)g(x)5f(x)+2g(x)\lim _{x \rightarrow 1} \frac{f(x)-g(x)}{5 f(x)+2 g(x)}의 값을 구하시오.

See Solution

Problem 29499

함수 f(x)f(x)에 대해 limxf(x)x=3\lim _{x \rightarrow \infty} \frac{f(x)}{x}=3일 때, limxf(x)+3x22x2f(x)\lim _{x \rightarrow \infty} \frac{f(x)+3 x^{2}}{2 x^{2}-f(x)}의 값을 구하시오.

See Solution

Problem 29500

함수 f(x)f(x)limxf(x)x=3\lim _{x \rightarrow \infty} \frac{f(x)}{x}=3일 때, limxx2+xf(x)x2f(x)\lim _{x \rightarrow \infty} \frac{x^{2}+x f(x)}{x^{2}-f(x)}의 값을 구하라.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord