Calculus

Problem 13601

Find the derivative of f(x)=ax3+cf(x)=a x^{3}+c and f(x)=1x2f(x)=\frac{1}{x^{2}}.

See Solution

Problem 13602

Estimate the total light intensity 106106I(θ)dθ\int_{-10^{-6}}^{10^{-6}} I(\theta) d \theta using the Midpoint Rule with n=10n=10.

See Solution

Problem 13604

Estimate the total light intensity 106106I(θ)dθ\int_{-10^{-6}}^{10^{-6}} I(\theta) d \theta using the Midpoint Rule with n=10n=10.

See Solution

Problem 13605

Convert D(t)D(t) from hours to seconds. Use Simpson's Rule to estimate A(43200)36003[sum of D(t)]A(43200) \approx \frac{3600}{3}[\text{sum of } D(t)]. Round to the nearest thousand megabits.

See Solution

Problem 13606

Find the tangent equation to the curve at t=0t=0 for x=lnat+bct+dx=\ln \frac{a t+b}{c t+d} and y=at+bct+dy=\frac{a t+b}{c t+d}.

See Solution

Problem 13607

Find the value of 214[3f(x)+2g(x)h(x)]dx\int_{2}^{14}[-3 f(x)+2 g(x)-h(x)] d x given 214f(x)dx=28\int_{2}^{14} f(x) d x=28, 214g(x)dx=39\int_{2}^{14} g(x) d x=39, 214h(x)dx=8\int_{2}^{14} h(x) d x=8.

See Solution

Problem 13608

Find 27f(x)dx\int_{2}^{7} f(x) d x given 17f(x)dx=6\int_{1}^{7} f(x) d x=-6 and 12f(x)dx=10\int_{1}^{2} f(x) d x=10.

See Solution

Problem 13609

Compare the integrals F=15(x+5+4)dxF=\int_{1}^{5}(\sqrt{x+5}+4) dx and G=15(x+1+1)dxG=\int_{1}^{5}(\sqrt{x+1}+1) dx using \leq or \geq.
Provide your answer below: FG F \square G

See Solution

Problem 13610

Find lower and upper bounds for F=43(x+6+2)dxF=\int_{-4}^{3}(\sqrt{x+6}+2) d x using the comparison theorem.

See Solution

Problem 13611

A passenger on the London Eye rises at 0.032 m/s0.032 \mathrm{~m/s} after 1 minute. Find their horizontal speed at that moment.

See Solution

Problem 13612

Find the sum: k=0(2)kxk+1k+1\sum_{k=0}^{\infty} \frac{(-2)^{k} x^{k+1}}{k+1}.

See Solution

Problem 13613

Find 168f(x)dx\int_{1}^{6} 8 f(x) d x given 91f(x)dx=9\int_{9}^{1} f(x) d x=-9 and 69f(x)dx=8\int_{6}^{9} f(x) d x=-8.

See Solution

Problem 13614

Find the value of 152f(x)dx\int_{1}^{5} 2 f(x) d x given 61f(x)dx=13\int_{6}^{1} f(x) d x=13 and 56f(x)dx=2\int_{5}^{6} f(x) d x=-2.

See Solution

Problem 13615

Find lower and upper bounds for FF using the comparison theorem, where F=23(6x+3)dx.F=\int_{2}^{3}(6 x+3) d x.

See Solution

Problem 13616

Find the best lower and upper bounds for FF using the comparison theorem for the integral F=06(x+2+3)dxF=\int_{0}^{6}(\sqrt{x+2}+3) d x.

See Solution

Problem 13617

Find lower and upper bounds for F=06(x+2+3)dxF = \int_{0}^{6}(\sqrt{x+2}+3) dx using the comparison theorem. F\square \leq F \leq \square

See Solution

Problem 13618

Find the tangent line(s) to the curve x=t54t3x=t^{5}-4 t^{3} and y=t5y=t^{5} at (0,32)(0,32). Write as a Cartesian equation.

See Solution

Problem 13619

Given the function f(x)=x34xf(x)=x^{3}-4x, find local max/min values and corresponding xx values, rounded to two decimal places.

See Solution

Problem 13620

Evaluate the integrals F=15(2x2+5)dxF = \int_{1}^{5}(2x^2 + 5)dx and G=15(4x2+6)dxG = \int_{1}^{5}(4x^2 + 6)dx. Which statements are true?

See Solution

Problem 13621

Find the best lower and upper bounds for F=15(6x+5)dxF = \int_{1}^{5}(6x+5) \, dx using the comparison theorem.

See Solution

Problem 13622

Given the parametric equations x=sin(t),y=sin(2t)x=\sin(t), y=\sin(2t):
a) Find where the tangent line is horizontal in the first quadrant.
b) Determine the Cartesian equations of the two tangents at the origin.

See Solution

Problem 13623

Find the value of the integral 60f(x)dx\int_{-6}^{0} f(x) d x given that 06f(x)dx=4\int_{0}^{6} f(x) d x = -4 and f(x)f(x) is odd.

See Solution

Problem 13624

Evaluate the integral aa(4x3+5x)dx\int_{-a}^{a}\left(-4 x^{3}+5 x\right) d x and select the true statement from the options provided.

See Solution

Problem 13625

Find the limit of the sequence: a1=3,a2=3a1,a3=3a2,a_1 = \sqrt{3}, a_2 = \sqrt{3 a_1}, a_3 = \sqrt{3 a_2}, \ldots

See Solution

Problem 13626

Find the derivative f(x)f^{\prime}(x) of the function f(x)=2xx3(t318)5dtf(x)=\int_{2 x}^{x^{3}}\left(t^{3}-18\right)^{5} d t.

See Solution

Problem 13627

Evaluate the integral aa(2x7+2x5)dx\int_{-a}^{a}(2 x^{7}+2 x^{5}) dx and identify the correct equality from the options.

See Solution

Problem 13628

Approximate tan10.1\tan^{-1} 0.1 to three decimal places using the Maclaurin series for tan1x\tan^{-1} x.

See Solution

Problem 13629

Find the antiderivative of 1(x2)21(x4)2dx\int \sqrt{\frac{1}{(x-2)^{2}}-\frac{1}{(x-4)^{2}}} d x.

See Solution

Problem 13630

A right triangle has legs of 36 in and 48 in. Short leg decreases by 5in/sec5 \mathrm{in/sec}, long leg increases by 7in/sec7 \mathrm{in/sec}. Find the hypotenuse's rate of change.

See Solution

Problem 13631

Find the radius of convergence for the series k=0xk+2k!\sum_{k=0}^{\infty} \frac{x^{k+2}}{k !}.

See Solution

Problem 13632

Find the values of t0t \geq 0 for which the speed of the particle, given by v(t)=t3+2t2+2tv(t)=-t^{3}+2 t^{2}+2^{-t}, is increasing.

See Solution

Problem 13633

Find when the speed of a particle with velocity v(t)=t3+2t2+2tv(t)=-t^{3}+2 t^{2}+2^{-t} is increasing for t0t \geq 0. Options: (A) (0,0.177)(0,0.177) and (1.256,)(1.256, \infty) (B) (0,1.256)(0,1.256) (C) (0,2.057)(0,2.057) (D) (0.177,1.256)(0.177,1.256) (E) (0.177,1.256)(0.177,1.256) and (2.057,)(2.057, \infty).

See Solution

Problem 13634

Find the limit: limxπ6cot(x)\lim _{x \rightarrow \frac{\pi}{6}} \cot (x).

See Solution

Problem 13635

Evaluate the integral: 4x2ex36dx\int 4 x^{2} e^{\frac{-x^{3}}{6}} d x

See Solution

Problem 13636

Find the value of the limit: limxπ2sec(x)\lim _{x \rightarrow \frac{\pi}{2}} \sec (x).

See Solution

Problem 13637

Differentiate the function f(x)=x(x9x)f(x) = x(x - 9 \sqrt{x}).

See Solution

Problem 13638

Find the limit: limx0tan(x)\lim _{x \rightarrow 0} \tan (x).

See Solution

Problem 13639

Find the limit as xx approaches π\pi for cos(x)\cos(x). What is it?

See Solution

Problem 13640

Berechnen Sie die Durchschnittsgeschwindigkeit des Schlittens für s(t)=12t2s(t)=\frac{1}{2} \cdot t^{2} in den ersten 5 Sekunden.

See Solution

Problem 13641

Find the derivative of the function f(x)=x3+7x2xf(x)=\frac{x^{3}+7 x^{2}}{x}. What is f(x)f^{\prime}(x)?

See Solution

Problem 13642

Find the rate of water level rise in a 20-ft equilateral triangle trough when water is pumped in at 4ft3/min4 \mathrm{ft}^{3} / \mathrm{min} and is 1 ft deep.

See Solution

Problem 13643

Determine where the function f(x)=x3x2f(x)=\frac{x-3}{x^{2}} is increasing or decreasing.

See Solution

Problem 13644

Find the derivative of the function f(x)=x(8x2+6x+4)f(x)=\sqrt{x}(8x^{2}+6x+4). What is f(x)f'(x)?

See Solution

Problem 13645

Find the limit as xx approaches 3 for the expression x39xx23x\frac{x^{3}-9 x}{x^{2}-3 x}.

See Solution

Problem 13646

Analyze the vertical motion of a softball with initial velocity 29 m/s29 \mathrm{~m/s} and gravity g=9.8 m/s2g=-9.8 \mathrm{~m/s}^2. Find: a. Velocity over time. b. Position over time. c. Time and height at the highest point. d. Time when it hits the ground.

See Solution

Problem 13647

Determine which inequality shows that the number of people in a building is increasing: f(t)f(t) in, g(t)g(t) out. Choices: (A) f(t)>0f(t)>0, (B) f(t)>0f^{\prime}(t)>0, (C) f(t)g(t)>0f(t)-g(t)>0, (D) f(t)g(t)>0f(t)-g^{\prime}(t)>0.

See Solution

Problem 13648

Find intervals where y=f(x)y=f(x) is concave up/down and identify points of inflection for f(x)=(x29)exf(x)=(x^{2}-9)e^{x}.

See Solution

Problem 13649

Calculate the left and right Riemann sums for f(x)=1x+2f(x)=\frac{1}{x}+2 on [1,5][1,5] with n=4n=4. Round to two decimal places.

See Solution

Problem 13650

Given the velocities (in mi/hr) of a car over 2 hours, sketch a curve through the points. Then, find the midpoint Riemann sum for n=2n=2 and n=4n=4.

See Solution

Problem 13651

Find the function F such that F''(x) = cos x, F'(0) = 4, and F(π) = 4.

See Solution

Problem 13652

Determine which inequality shows that the rate of change of people in a building is increasing at time tt: (A) f(t)>0f(t)>0 (B) f(t)>0f'(t)>0 (C) f(t)g(t)>0f(t)-g(t)>0 (D) f(t)g(t)>0f'(t)-g'(t)>0

See Solution

Problem 13653

A cube's volume V(x)=x3V(x)=x^{3} is increasing at 40 cm³/min. Find the rate of change of xx when x=2x=2.

See Solution

Problem 13654

How fast is the area of a circular paint spill increasing at a radius of 18 inches, given the radius grows at 2.5 in/min?

See Solution

Problem 13655

Find the limit using l'Hôpital's Rule:
limx3x2+11x+24152x+x2\lim _{x \rightarrow-3} \frac{x^{2}+11 x+24}{-15-2 x+x^{2}}
Rewrite it as:
limx3()\lim _{x \rightarrow-3}(\square)
Then, evaluate:
\lim _{x \rightarrow-3} \frac{x^{2}+11 x+24}{-15-2 x+x^{2}}=\square($ Simplify your answer. $)

See Solution

Problem 13656

A paint spill grows circularly with a radius increase of 2.5 in/min. Find the area increase rate when the radius is rr in. Options: (A) 5πin2/min5 \pi \mathrm{in}^{2} / \mathrm{min} (B) 36πin2/min36 \pi \mathrm{in}^{2} / \mathrm{min} (C) 45πin2/min45 \pi \mathrm{in}^{2} / \mathrm{min} (D) 90πin2/min90 \pi \mathrm{in}^{2} / \mathrm{min}

See Solution

Problem 13657

What is the marginal cost of producing the 50,001th50,001^{\text{th}} pizza if total cost is \10,000.10?Averagetotalcostis10,000.10? Average total cost is \square$.

See Solution

Problem 13658

Find the function FF such that F(x)=cosxF''(x)=\cos x, F(0)=7F'(0)=7, and F(π)=7F(\pi)=7. What is F(x)=F(x)=\square?

See Solution

Problem 13659

Calculate the integral from -8 to 5 of the function x-|x|.

See Solution

Problem 13660

A circle's radius increases at 0.5 m/s. Find the circumference's increase rate when the radius is 3 m. Choices: (A) 0.5 m/s, (B) 1.5 m/s, (C) π\pi m/s, (D) 3π3\pi m/s.

See Solution

Problem 13661

Evaluate the integrals: a. C1izz2+2iz+3dz=4π\oint_{C} \frac{1-i z}{z^{2}+2 i z+3} d z = -4 \pi; b. ccos(z)z5dz=2πi\oint_{c} \frac{\cos (z)}{z^{5}} d z = 2 \pi i.

See Solution

Problem 13662

Evaluate the limit:
limx16x4+4x3+4x+2x+1\lim _{x \rightarrow-1} \frac{6 x^{4}+4 x^{3}+4 x+2}{x+1}
using l'Hôpital's Rule. What is the result?

See Solution

Problem 13663

Find the dimensions and maximum area of a rectangle under the parabola y=441x2y=441-x^{2} on the xx-axis.
Area function: A=A=\square.
Interval: \square.
Shorter dimension: \square, longer dimension: \square.
Maximum area: \square.

See Solution

Problem 13664

Find the rate of change of wave velocity v(h)=3hv(h) = 3 \sqrt{h} at depth h=2h = 2 m. Choices: (A) 342-\frac{3}{4 \sqrt{2}}, (B) 382-\frac{3}{8 \sqrt{2}}, (C) 322\frac{3}{2 \sqrt{2}}, (D) 32\frac{3}{\sqrt{2}}, (E) 424 \sqrt{2}.

See Solution

Problem 13665

Find the critical points of y(x)=39x27/1381xy(x)=39 x^{27/13}-81 \sqrt{x}. Provide answers as a comma-separated list or DNE if none exist.

See Solution

Problem 13666

Find the critical point of f(x)=3ex15e2xf(x)=3 e^{-x}-15 e^{-2 x}. Is it a local minimum? True or False?

See Solution

Problem 13667

Find the critical points of y(x)=39x27/1381xy(x)=39 x^{27/13}-81 \sqrt{x}. List them as x=x= or DNE if none exist.

See Solution

Problem 13668

Deposit \$7000 at 5.6% annual interest compounded continuously. How long to double the investment? Round to nearest hundredth.

See Solution

Problem 13669

What indeterminate form does limxexx2\lim _{x \rightarrow \infty} e^{-x} x^{2} represent? a. \infty-\infty b. +\infty+\infty c. \frac{\infty}{\infty} d. 00 \cdot \infty e. 00\frac{0}{0}

See Solution

Problem 13670

Find the derivative of f(x)=x3f(x)=x^{3} and evaluate f(6)f^{\prime}(-6), f(0.5)f^{\prime}(-0.5), f(23)f^{\prime}\left(\frac{2}{3}\right), and f(2)f^{\prime}(2).

See Solution

Problem 13671

Find the integral that computes the moment of inertia for a unit-density spherical shell of radius RR about the zz-axis.

See Solution

Problem 13672

Find the correct integral for the surface area of z=e(x2+y2)z=e^{-(x^{2}+y^{2})} over the unit disc x2+y21x^{2}+y^{2} \leq 1.

See Solution

Problem 13673

Find the surface area of z=e(x2+y2)z=e^{-(x^{2}+y^{2})} over the unit disc using cylindrical coordinates.

See Solution

Problem 13674

Find the horizontal asymptote of the function h(x)=x287x4+3h(x)=\frac{x^{2}-8}{7 x^{4}+3}.

See Solution

Problem 13675

Find the curve passing through (1,2)(-1,2) with slope dydx=6x28x\frac{d y}{d x}=6 x^{2}-8 x. What is the equation for yy?

See Solution

Problem 13676

Find the surface area of z=e(x2+y2)z=e^{-(x^{2}+y^{2})} over the unit disc x2+y21x^{2}+y^{2} \leq 1 using cylindrical coordinates.

See Solution

Problem 13677

Find the largest rectangle's maximum area inscribed in y=9x5+xy=\frac{9-x}{5+x} and the axes. Round to three decimal places.

See Solution

Problem 13678

Find the derivative of the function f(x)=2x(sinx+cosx)f(x)=2 x(\sin x+\cos x), i.e., f(x)=f^{\prime}(x)=.

See Solution

Problem 13679

Use the intermediate value theorem to check if f(x)=x3+2x28x3f(x)=x^{3}+2 x^{2}-8 x-3 has a real zero between a=8a=-8 and b=3b=-3.

See Solution

Problem 13680

Find critical points of f(x)=x318x2+96xf(x)=x^{3}-18 x^{2}+96 x and use the Second Derivative Test to classify them.

See Solution

Problem 13681

Differentiate the function y=x5sinxtanxy=x^{5} \sin x \tan x. What is y=?y^{\prime}=?

See Solution

Problem 13682

Find the surface area of z=e(x2+y2)z=e^{-(x^{2}+y^{2})} over the unit disc using cylindrical coordinates.

See Solution

Problem 13683

Find the local maximum and minimum of the function f(x)=x348xf(x)=x^{3}-48x. What are the xx values?

See Solution

Problem 13684

Explain with examples what "The derivative does not exist" means in calculus.

See Solution

Problem 13685

Find the absolute max and min of f(x)=x64xx+4f(x)=x-\frac{64 x}{x+4} on [0,13][0,13]. What are the xx values?

See Solution

Problem 13686

Find critical points of f(x)=4x4+4x25f(x)=-4 x^{4}+4 x^{2}-5 and use the Second Derivative Test for local min/max.

See Solution

Problem 13687

Find the critical points for y(x)=39x27/1381xy(x)=39 x^{27/13}-81 \sqrt{x}. Provide your answer in the form of a comma-separated list.

See Solution

Problem 13688

Find the critical point of z=f(x,y)=x4+y4x2xyy2z = f(x, y) = x^{4} + y^{4} - x^{2} - xy - y^{2} where fx=4x32xyf_x = 4x^{3} - 2x - y.

See Solution

Problem 13689

Bestimme die Tangentensteigung von f(x)=12x3f(x)=\frac{1}{2}x^{3} bei x0=2x_{0}=2.

See Solution

Problem 13690

Evaluate f(a+h)f(a)h\frac{f(a+h)-f(a)}{h} for f(x)=2x25x+1f(x)=2x^{2}-5x+1 and h0h \neq 0.

See Solution

Problem 13691

How far did a canteen fall in 4 seconds? Use the formula d=12gt2d = \frac{1}{2}gt^2 where g9.8m/s2g \approx 9.8 \, m/s^2.

See Solution

Problem 13692

Find the limit: limx+4x24xx22x8\lim _{x \rightarrow+4} \frac{x^{2}-4 x}{x^{2}-2 x-8}.

See Solution

Problem 13693

Bestimmen Sie die Ableitungen der Funktionen: a) f(x)=x3+x2f(x)=x^{3}+x^{2} b) f(x)=x4x3+5f(x)=x^{4}-x^{3}+5 c) f(x)=x+xf(x)=x+\sqrt{x} d) f(x)=x21x5f(x)=x^{2}-\frac{1}{x}-5 e) f(x)=5+x4xf(x)=5+x^{4}-\sqrt{x} f) f(x)=x6+x2f(x)=x^{-6}+x^{-2}

See Solution

Problem 13694

Beweisen Sie die Intervalladditivität für Integrale: abf(x)dx+bcf(x)dx=acf(x)dx\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x

See Solution

Problem 13695

If y=(x+x2+a2)my=\left(x+\sqrt{x^{2}+a^{2}}\right)^{m}, prove that (x2+a2)yn+2+(2n+1)xyn+1+(n2m2)yn=0(x^{2}+a^{2}) y_{n+2}+(2n+1) x y_{n+1}+(n^{2}-m^{2}) y_{n}=0.

See Solution

Problem 13696

Find the derivative of f(x)=x25xf(x)=x^{2}-5x using first principles.

See Solution

Problem 13697

Gegeben ist V(r)=4π3r3V(r)=\frac{4 \pi}{3} \cdot r^{3} für rr in dm\mathrm{dm}.
Aufgabe: a) Berechne die Volumsänderung von 1dm1 \mathrm{dm} auf 3dm3 \mathrm{dm}. b) Bestimme die mittlere Volumsänderungsrate von 1dm1 \mathrm{dm} auf 3dm3 \mathrm{dm}. c) Finde die Volumsänderungsrate bei r=2dmr=2 \mathrm{dm}.

See Solution

Problem 13698

Bestimme die durchschnittliche Änderungsrate von V(r)=43πr3V(r)=\frac{4}{3} \pi r^3 im Intervall [r;z][r; z] und die Änderungsrate bei rr.

See Solution

Problem 13699

Find the derivative of f(x)=3x42x7f(x)=3 x^{-4}-2 x^{7}.

See Solution

Problem 13700

Gegeben ist V(t)=(10t)2V(t)=(10-t)^{2}. Berechne und interpretiere: a) V(6)V(0)V(6)-V(0), b) V(6)V(0)V(0)\frac{V(6)-V(0)}{V(0)}, c) V(6)V(0)6\frac{V(6)-V(0)}{6}, d) V(3,01)V(3)3,013\frac{V(3,01)-V(3)}{3,01-3}. Erkläre limz3V(z)V(3)z3\lim _{z \rightarrow 3} \frac{V(z)-V(3)}{z-3}. Gib Ausdrücke für mittlere und momentane Volumsänderungsgeschwindigkeit an.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord