Calculus

Problem 7101

Find the growth rate of infections after 10 days using I(t)=1100e0.038tI(t)=1100 e^{0.038 t}. Round to the nearest tenth.

See Solution

Problem 7102

Find the derivative f(x)f^{\prime}(x) of the function f(x)=(4x+3)1f(x)=(4 x+3)^{-1} and calculate f(4)f^{\prime}(4).

See Solution

Problem 7103

Find the rate of change of distance from the origin to the point on the curve y=x2+2y=x^{2}+2 if dxdt=2\frac{dx}{dt}=2 cm/s.

See Solution

Problem 7104

Find F(2)F^{\prime}(2) for F(x)=f(g(x))F(x)=f(g(x)) given f(3)=7f(-3)=7, f(3)=3f^{\prime}(-3)=3, g(2)=3g(2)=-3, and g(2)=2g^{\prime}(2)=2.

See Solution

Problem 7105

Find the derivative f(x)f'(x) for f(x)=(x2+3x+6)4f(x)=(x^{2}+3x+6)^{4} and compute f(2)f'(2).

See Solution

Problem 7106

Find r(1)r'(1) for r(x)=f(g(h(x)))r(x)=f(g(h(x))) given h(1)=4h(1)=4, g(4)=3g(4)=3, h(1)=5h'(1)=5, g(4)=4g'(4)=4, f(3)=8f'(3)=8.

See Solution

Problem 7107

Given functions ff and gg, find h(3)h^{\prime}(3) for h(x)=f(g(x))h(x)=f(g(x)) and H(1)H^{\prime}(1) for H(x)=g(f(x))H(x)=g(f(x)).

See Solution

Problem 7108

A star's brightness is modeled by B(t)=4.0+0.45sin(2πt4.5)B(t)=4.0+0.45 \sin \left(\frac{2 \pi t}{4.5}\right). Find dBdt\frac{d B}{d t} and at t=1t=1.

See Solution

Problem 7109

Find the velocity and acceleration of a mass on a spring with s(t)=5sin(4t)s(t)=5 \sin (4 t) at t=4t=4 seconds. Round to nearest hundredth.

See Solution

Problem 7110

Given f(0)=1,f(1)=34,f(2)=1,f(4)=3f^{\prime}(0)=-1, f^{\prime}(1)=\frac{3}{4}, f^{\prime}(2)=1, f^{\prime}(4)=-3, find h(0)h^{\prime}(0), h(2)h^{\prime}(-2), and h(2)h^{\prime}(2) for h(x)=f(x2)h(x)=f\left(x^{2}\right).

See Solution

Problem 7111

Analyze the beer market with demand Q=1404pQ=140-4p and supply Q=20+2p42hQ=20+2p-42h. Find dp/dh\mathrm{dp}/\mathrm{dh}, dQ/dh\mathrm{dQ}/\mathrm{dh}, and changes in pp, QQ when hh increases by \$2.

See Solution

Problem 7112

Find critical points of f(x)=x3+6x2180x49f(x)=x^{3}+6 x^{2}-180 x-49. Options: x=10,x=6x=-10, x=6; x=49x=-49; x=0,10,6x=0, -10, 6; x=0x=0; x=3,10,6x=3, 10, -6; None.

See Solution

Problem 7113

Find the snail's acceleration given its position over days: 0 ft at day 0, 11 ft at day 1, 22 ft at day 2, etc.

See Solution

Problem 7114

Find the difference quotient, f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}, for the function f(x)=4x2+7x3f(x)=4 x^{2}+7 x-3.

See Solution

Problem 7115

Find the satellite's period if its orbit radius is 5.08 times Earth's radius (6.38×106 m6.38 \times 10^{6} \mathrm{~m}). Earth's mass is 5.98×1024 kg5.98 \times 10^{24} \mathrm{~kg}.

See Solution

Problem 7116

Find the critical numbers of the function f(x)f(x) given its derivative f(x)=x23x(x5)3(x6)3f^{\prime}(x)=\frac{x^{2}-3 x}{(x-5)^{3}(x-6)^{3}}.

See Solution

Problem 7117

Find the tangent line equation for f(x)=3cos(x)f(x)=3 \cos (x) at x=4π3x=\frac{4 \pi}{3}. Express it as y=y=.

See Solution

Problem 7118

Find the local extreme points of the rational function f(x)f(x) with vertical asymptotes at x=6x=-6 and x=4x=4.

See Solution

Problem 7119

Evaluate the Riemann sum RS(n)R S(n) for I=02xdxI=\int_{0}^{2} x \, dx and find the optimal statement about the error E(n)E(n).

See Solution

Problem 7120

Find the tangent line equation for y=6x2ln(x)y=6 x^{2}-\ln (x) at (1,6) and graph it with the function.

See Solution

Problem 7121

Find all critical points of the function f(x)=(2x23x)13f(x)=(2x^2-3x)^{\frac{1}{3}}.

See Solution

Problem 7122

Evaluate the Riemann sum for I=02xdx=2I=\int_{0}^{2} x \, dx=2 using right endpoints. Determine the optimal error E(n)E(n).

See Solution

Problem 7123

Find the derivative of y=32(12lnx+1x1+arctanx)y=\frac{3}{2}\left(\frac{1}{2} \ln \frac{x+1}{x-1}+\arctan x\right). What is dydx\frac{d y}{d x}?

See Solution

Problem 7124

Find the tangent line equation using implicit differentiation for x2+xarctany=y1x^{2}+x \arctan y=y-1 at the point (π4,1)\left(-\frac{\pi}{4}, 1\right).

See Solution

Problem 7125

Find the tangent line equation for f(x)=12xlnx4f(x)=\frac{1}{2} x \ln x^{4} at the point in the interval (-1,0).

See Solution

Problem 7126

Approximate 64.2\sqrt{64.2} using the tangent line of f(x)=xf(x)=\sqrt{x} at x=64x=64. Find the equation L(x)=L(x)=. Give answer to 9 significant figures.

See Solution

Problem 7127

Find the average rate of change of f(x)=2x2+7f(x)=2 x^{2}+7 between x=2x=2 and x=4x=4. Simplify your answer.

See Solution

Problem 7128

Find the tangent line equation using implicit differentiation for x2+xarctany=y1x^{2}+x \arctan y=y-1 at (π4,1)\left(-\frac{\pi}{4}, 1\right).

See Solution

Problem 7129

Approximate 36.2\sqrt{36.2} using the tangent line of f(x)=xf(x)=\sqrt{x} at x=36x=36. Find L(x)=L(x)=.

See Solution

Problem 7130

Find the derivative of f(x)=3x4x2f(x)=3x-4x^{2} using the definition of derivative only.

See Solution

Problem 7131

Find the tangent line equation for f(x)=5sec(x)f(x)=5 \sec (x) at x=5π6x=\frac{5 \pi}{6}. Use yy and xx.

See Solution

Problem 7132

Approximate 10.104\frac{1}{0.104} using linear approximation with f(x)=1xf(x)=\frac{1}{x} at a nearby "nice" point.

See Solution

Problem 7133

Approximate 27.23\sqrt[3]{27.2} using the tangent line of f(x)=x3f(x)=\sqrt[3]{x} at x=27x=27. Find mm and bb for y=mx+by=mx+b.

See Solution

Problem 7134

Given values for f,g,f,gf, g, f', g' at x=1,2,3x=1,2,3, find: a) h(3)h'(3) for h(x)=7xf(x)h(x)=7x \cdot f(x); b) h(2)h'(2) for h(x)=f(x)g(x)h(x)=f(x)g(x); c) h(1)h'(1) for h(x)=g(f(x))h(x)=g(f(x)).

See Solution

Problem 7135

Two dinosaurs walk from the same point: one north at 4mi/hr4 \mathrm{mi/hr} and the other east at 3mi/hr3 \mathrm{mi/hr}. Find the distance increase rate after 3 hours.

See Solution

Problem 7136

Find the derivative of the function h(x)=cot(x)164xh(x)=\frac{\cot (x)}{16-4 x} for 0xπ0 \leq x \leq \pi. What is h(x)h^{\prime}(x)?

See Solution

Problem 7137

Solve dxdt=2x\frac{d x}{d t}=2 x with x(0)=1x(0)=1. Find t1t_{1} when x(t1)=2x(t_{1})=2.

See Solution

Problem 7138

Find the derivative of h(t)=18csc(t)+icot(t)h(t) = 18 \csc(t) + i \cot(t). What is h(t)h'(t)?

See Solution

Problem 7139

Determine which function pairs (x1(t),y1(t))(x_1(t), y_1(t)) and (x2(t),y2(t))(x_2(t), y_2(t)) solve the ODE: x˙=2x+y\dot{x}=2x+y, y˙=3y\dot{y}=3y. Functions: (e2t,0)(e^{2t}, 0) and (e3t,e3t)(e^{3t}, e^{3t}).

See Solution

Problem 7140

Find the derivative of h(t)=18csc(t)+tcot(t)h(t)=18 \csc (t)+t \cot (t). What is h(t)=?h^{\prime}(t)=?

See Solution

Problem 7141

Evaluate the integral from π4-\frac{\pi}{4} to π4\frac{\pi}{4} of (x2+lncosx)sinx2dx\left(x^{2}+\ln |\cos x|\right) \sin \frac{x}{2} \, dx. Provide a numeric answer.

See Solution

Problem 7142

Find the derivative of the function f(x)=5xtan(x)f(x)=5 x \tan(x).

See Solution

Problem 7143

Find the derivative of f(θ)=2θtan(θ)sec(θ)f(\theta)=2 \theta \tan (\theta) \sec (\theta). What is f(θ)f^{\prime}(\theta)?

See Solution

Problem 7144

Check if x1(t)=t+1x_{1}(t)=t+1 and x2(t)=1+4t2+12x_{2}(t)=\frac{1+\sqrt{4 t^{2}+1}}{2} solve the ODE dxdt=tx1\frac{d x}{d t}=\frac{t}{x-1}.

See Solution

Problem 7145

Find the temperature change rate:
a. From 6 A.M. to 7 A.M. (temp at 6 A.M. unknown).
b. From 1 P.M. to 2 P.M.

See Solution

Problem 7146

Determine if x1(t)=t+1x_{1}(t)=t+1 and x2(t)=1+4t2+12x_{2}(t)=\frac{1+\sqrt{4 t^{2}+1}}{2} solve the ODE: dxdt=tx1\frac{d x}{d t}=\frac{t}{x-1}.

See Solution

Problem 7147

Find the derivative of f(x)=x5excos(x)f(x)=x^{5} e^{x} \cos (x). What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 7148

Find the tangent line equation for f(t)=sin(t)11+11cos(t)f(t)=\frac{\sin (t)}{11+11 \cos (t)} at t=π3t=\frac{\pi}{3}.

See Solution

Problem 7149

Analyze the system of differential equations to classify the origin as a saddle, source, or sink for a=0.01a=-0.01 and d=2.4d=-2.4.

See Solution

Problem 7150

Calculate the difference quotient for the function f(x)=72x+5x2f(x)=7-2x+5x^{2}.

See Solution

Problem 7151

Jan pedals on a bike, with foot height h(t)=0.18sin(t)+0.30h(t)=-0.18 \sin (t)+0.30. Find vertical velocity vv at t=3πt=3\pi.

See Solution

Problem 7152

Find the velocity and acceleration of the spring mass at t=π3t=\frac{\pi}{3} s, given s(t)=300+76sin(t)s(t)=300+76 \sin(t).

See Solution

Problem 7153

Find the tangent line equation for y=9csc(x)9cot(x)y=9 \csc (x)-9 \cot (x) at x=π6x=\frac{\pi}{6}. Use y=f(x)y=f(x).

See Solution

Problem 7154

Find the tangent line equation for y=5csc(x)5cot(x)y=5 \csc (x)-5 \cot (x) at x=3π4x=\frac{3 \pi}{4}.

See Solution

Problem 7155

Find the tangent line equation for f(x)=26excos2(x)f(x)=26 e^{x} \cos ^{2}(x) at x=π4x=\frac{\pi}{4}.

See Solution

Problem 7156

Calculate the integral of f(x)=6x423x3+5x2f(x)=6 x^{4}-\frac{2}{3} x^{3}+5 x-2.

See Solution

Problem 7157

Find dyd y for y=tan(2x+2)y=\tan(2x+2) at x=4x=4 with dx=0.3d x=0.3 and dx=0.6d x=0.6.

See Solution

Problem 7158

A squirrel drops from 100 ft to 45 ft in 5.25 seconds. Find the rate of change in height, rounded to the nearest hundredth.

See Solution

Problem 7159

Find the limit: limxf(x)=4x93x3+2x11\lim _{x \rightarrow \infty} f(x)=-4 x^{9}-3 x^{3}+2 x-11. True/False for limxf(x)=\lim _{x \rightarrow-\infty} f(x)=\infty and limxf(x)=\lim _{x \rightarrow \infty} f(x)=-\infty.

See Solution

Problem 7160

A dolphin jumped to 3.5 m above water and dove 10 m below in 12.5 seconds. Find the average rate of change.

See Solution

Problem 7161

Uprość sumę szeregu k=1n1k2\sum_{k=1}^{n} \frac{1}{k^{2}}.

See Solution

Problem 7162

Bestimmen Sie die Monotonieintervalle der Funktionen: a) f(x)=x(x9),x>0f(x)=\sqrt{x} \cdot(x-9), x>0 b) f(x)=(x+1)2(x2)f(x)=(x+1)^{2} \cdot(x-2) c) f(x)=4x2(1x)2f(x)=4 x^{2} \cdot(1-x)^{2}

See Solution

Problem 7163

Fill in the table for limh0bh1h\lim _{h \rightarrow 0} \frac{b^{h}-1}{h} using values of bb: 0, 0.5, 1.

See Solution

Problem 7164

Find the limit: limh0bh1h\lim _{h \rightarrow 0} \frac{b^{h}-1}{h}.

See Solution

Problem 7165

Find the arc length integral for the curve x=2y+8x=\sqrt{2y+8} from y=1y=1 to y=3y=3. Select A or B and fill in the boxes.

See Solution

Problem 7166

Find and simplify the integral for the arc length of the curve x=2y+8x=\sqrt{2y+8} from y=1y=1 to y=3y=3.

See Solution

Problem 7167

Ubung 55^{* * *}:
a) Zeigen Sie, dass der Grenzwert der Folge an=(1+1n)na_{n}=\left(1+\frac{1}{n}\right)^{n} die Zahl ee ist.
b) Beweisen Sie, dass 2e2 e nicht der Grenzwert von ana_{n} ist.

See Solution

Problem 7168

Calculate the value of the function f(x)=exf(x)=e^{x} at x=9.2x=9.2.

See Solution

Problem 7169

Find f(1)f^{\prime}(-1) for the function f(x)=2x23xf(x)=2^{x^{2}-3 x}.

See Solution

Problem 7170

Gegeben ist die Funktion f(x)=x3+3x2f(x) = -x^{3} + 3x^{2}. Bestimmen Sie Hoch- und Wendepunkt, Tangentengleichung, Flächeninhalt des Dreiecks und Winkel α\alpha.

See Solution

Problem 7171

Kayla's utility is U=q10.6q20.4U=q_{1}^{0.6} q_{2}^{0.4}. If p1p_{1} rises from \$15 to \$60, find her compensating variation (CV) and equivalent variation (EV).

See Solution

Problem 7172

Find the derivative of the inverse function at 11 for f(x)=x3+x+1f(x)=x^{3}+x+1: (f1)(11)\left(f^{-1}\right)^{\prime}(11).

See Solution

Problem 7173

An arrow shot upward on the moon at 58 m/s58 \mathrm{~m/s} has height h(t)=58t0.83t2h(t)=58t-0.83t^{2}. Find: a. Velocity at t=at=a? b. Velocity after 1s? c. When does it hit the moon? d. Impact velocity?

See Solution

Problem 7174

Find the average rate of change of f(x)=2x25x+7f(x)=-2 x^{2}-5 x+7 on [5,5][-5,5]. Average rate of change ==

See Solution

Problem 7175

Find the one-sided limit: limx(π/2)+2cosx\lim _{x \rightarrow(\pi / 2)^{+}} \frac{-2}{\cos x}. Justify your answer.

See Solution

Problem 7176

Find the limit as nn \to \infty for the product 1234562n12n\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \frac{2n-1}{2n}.

See Solution

Problem 7177

Determine the horizontal asymptote of the function f(x)=10x7x2+8f(x)=\frac{10 x}{7 x^{2}+8}.

See Solution

Problem 7178

Find the sum of the series: n=1n1n(n+1)\sum_{n=1}^{n} \frac{1}{n(n+1)}.

See Solution

Problem 7179

Find the tangent line equation for y=(x42)3y=(x^{4}-2)^{3} at (1,1)(1,-1). Answer in slope-intercept form: y=y=.

See Solution

Problem 7180

Untersuchen Sie die Funktion f(x)=120x523x3+3xf(x)=\frac{1}{20} x^{5}-\frac{2}{3} x^{3}+3 x auf Extremstellen, Wendepunkte und Verhalten.

See Solution

Problem 7181

Find the derivative dxdp\frac{d x}{d p} for the equation x=81p+9350x=81 \sqrt{p+9}-350.

See Solution

Problem 7182

Calculate the integral of f(x)=7x67x58x44x3+5x10f(x) = -7x^6 - 7x^5 - 8x^4 - 4x^3 + 5x - 10 and call it F(x)F(x).

See Solution

Problem 7183

Bestimme die Ordinatenschnittpunkte der Senkrechten zur Geraden mit mittlerer Steigung zwischen den Extrema von f(x)=x34x2+4xf(x)=x^{3}-4 x^{2}+4 x.

See Solution

Problem 7184

Given that limx9m(x)=2\lim _{x \rightarrow-9^{-}} m(x)=2 and limx9+m(x)=2\lim _{x \rightarrow-9^{+}} m(x)=2, but m(9)m(-9) is undefined, does mm have a hole or vertical asymptote at x=9x=-9? Explain.

See Solution

Problem 7185

Verständnischeck:
1. Beschreiben Sie, wie man den Flächeninhalt von f(x)=x21f(x)=x^{2}-1 ohne Hauptsatz bestimmen kann.
2. Berechnen Sie 11(x21)dx\int_{-1}^{1}\left(x^{2}-1\right) dx.
3. Erklären Sie den Zusammenhang zwischen 1. und 2.

See Solution

Problem 7186

A street light is on a 15 ft pole. Joe, 6 ft tall, walks away from it at 6 ft/s. Find the shadow's tip speed when he's 13 ft away.

See Solution

Problem 7187

Find the tangent line equation for p(z)=ztan(z)z2sec(z)+1+3ez+1p(z)=\frac{z \tan (z)}{z^{2} \sec (z)+1}+3 e^{z}+1 at z=0z=0. Is pp increasing, decreasing, or neither at z=0z=0? Why?

See Solution

Problem 7188

Bei einer Bergtour ist die Leistung P(t)=13240t3+136t2P(t)=-\frac{1}{3240} t^{3}+\frac{1}{36} t^{2}.
a) Finde W(t)W(t).
b) Berechne die Arbeit für 90 Minuten.
c) Bestimme den Zeitpunkt der maximalen Leistung.

See Solution

Problem 7189

Berechnen Sie das Integral 11(x21)dx\int_{-1}^{1}(x^{2}-1) \, dx.

See Solution

Problem 7190

Differentiate m(x)=ex(x2+7x)6secxm(x)=\frac{e^{x}(x^{2}+7 x)}{6 \sec x}.

See Solution

Problem 7191

Bestimme die Halbwertszeit eines radioaktiven Stoffes, wenn nach 7 Stunden etwa 15\% zerfallen sind.

See Solution

Problem 7192

Ordnen Sie die Kärtchen A bis F den passenden Funktionen und deren Ableitungen zu.

See Solution

Problem 7193

Finde Werte für a, damit der Graph GfaG_{f_{a}} rechtsgekrümmt ist für: a) fa(x)=a(2x3)4f_{a}(x)=a \cdot(2 x-3)^{4} b) fa(x)=a2x(x0)f_{a}(x)=\sqrt{a^{2} x}(x \geq 0) c) fa(x)=ax2(x0)f_{a}(x)=\frac{a}{x^{2}}(x \neq 0) Gib ein Gegenbeispiel für die falsche Aussage an: Wenn ff^{\prime} streng monoton wachsend ist, dann ist auch ff streng monoton wachsend.

See Solution

Problem 7194

Find the derivative of h(x)=7ax+b10ch(x)=\frac{7 a x+b}{10 c}, where a,b,ca, b, c are constants. h(x)=h^{\prime}(x)=

See Solution

Problem 7195

Bestimmen Sie die Extrem- und Wendepunkte der Funktionen: a) f(x)=x44x3f(x)=x^{4}-4 x^{3}, b) g(x)=14x432x3+3x2g(x)=\frac{1}{4} x^{4}-\frac{3}{2} x^{3}+3 x^{2}, c) h(x)=x61,5x4h(x)=x^{6}-1,5 x^{4}.

See Solution

Problem 7196

Find the derivative of f(x)=(x2+3)2/3(3x4)4xf(x)=\frac{(x^{2}+3)^{2/3}(3x-4)^{4}}{\sqrt{x}} and compute f(x)f(x)f^{\prime}(x) \cdot f^{\prime}(x).

See Solution

Problem 7197

Bestimme die Ableitungen der Funktionen f(x)=x2+4f(x)=-x^{2}+4 und g(x)=x25x+6g(x)=x^{2}-5x+6.

See Solution

Problem 7198

Gegeben sind die Funktionen f(x)=(x+3)2f(x)=(x+3)^{2}, f(x)=2sin(x)x12f(x)=2 \cdot \sin (x)-x^{-\frac{1}{2}}, f(x)=x1x4f(x)=\sqrt{x}-\frac{1}{\sqrt[4]{x}}. Korrigieren Sie die fehlerhaften Ableitungen A, B und C.

See Solution

Problem 7199

Find the tangent line equation to y=2x36x2+2x8y=2 x^{3}-6 x^{2}+2 x-8 at x=2x=2. Complete the line equation.

See Solution

Problem 7200

Bestimmen Sie die Ableitung von f(x)=(x+1)2(x2)f(x)=(x+1)^{2} \cdot (x-2).

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord