Calculus

Problem 10201

Invest \$30339.86 at 9.6\% for 9 years with continuous compounding. Find the future value, rounded to the nearest cent.

See Solution

Problem 10202

Gegeben ist die Funktion f(t)=0.01t3+0.24t2+6.84f(t)=-0.01 t^{3}+0.24 t^{2}+6.84 für 0t240 \leq t \leq 24 in Grad Celsius.
a) Was bedeutet f(3)f(3)? b) Finde die höchste und niedrigste Temperatur in 22 Stunden. c) Wird die Temperatur über 30 Grad Celsius steigen?

See Solution

Problem 10203

Find the derivative of y=2sin(4x3+e5x)y=2^{\sin(4x^{3}+e^{5x})}.

See Solution

Problem 10204

Find the derivative of y=2sin(4x3+e5x)y=2^{\sin(4x^{3}+e^{5x})}.

See Solution

Problem 10205

Find the limit: limh0x32x2(1+h)x32x2(1)h\lim _{h \rightarrow 0} \frac{x^{3}-2 x^{2}(1+h)-x^{3}-2 x^{2}(1)}{h}.

See Solution

Problem 10206

Find the limit as xx approaches x0x_0: limxx0x32x213212x1\lim _{x \rightarrow x_{0}} \frac{x^{3}-2 x^{2}-1^{3}-2 \cdot 1^{2}}{x-1}.

See Solution

Problem 10207

Find (f1)(0)\left(f^{-1}\right)^{\prime}(0) for f(x)=x22x3f(x)=x^{2}-2x-3 on [1,)[1, \infty). Is f1f^{-1} differentiable at x=4x=-4?

See Solution

Problem 10208

Leiten Sie die Funktion ff einmal ab für: a) f(x)=xsin(x)f(x)=x \cdot \sin (x), b) f(x)=3xcos(x)f(x)=3 x \cdot \cos (x), d) f(x)=x(2x3)f(x)=\sqrt{x} \cdot(2 x-3), e) f(x)=xcos(x)f(x)=\sqrt{x} \cdot \cos (x), g) f(x)=2xcos(x)f(x)=\frac{2}{x} \cdot \cos (x), h) f(x)=sin(x)cos(x)f(x)=\sin (x) \cdot \cos (x), k) f(x)=(x2+3x)sin(x)f(x)=(x^{2}+3 x) \cdot \sin (x), c) f(x)=(3x+2)xf(x)=(3 x+2) \cdot \sqrt{x}, f) f(x)=(53x)sin(x)f(x)=(5-3 x) \cdot \sin (x), i) f(x)=x2sin(x)f(x)=x^{2} \cdot \sin (x), 1) f(x)=x(x52x3)f(x)=\sqrt{x} \cdot\left(x^{5}-2 x^{3}\right).

See Solution

Problem 10209

Find the derivative of y=exy=e^{\sqrt{x}}.

See Solution

Problem 10210

Determine the y-intercept and horizontal asymptote of f(x)=61+2exf(x) = \frac{6}{1+2 e^{-x}}.

See Solution

Problem 10211

Find the future value of \$ 1691 invested at 6.1% for 22 years with continuous compounding. Round to the nearest cents.

See Solution

Problem 10212

What is true about the function ff on the interval 1<x<31<x<3 if its rate of change is negative and decreasing?

See Solution

Problem 10213

Gegeben ist die Funktion g(x)g(x), bestimme limx2g(x)\lim_{x \to 2} g(x) und prüfe die Differenzierbarkeit bei x0=2x_0=2.

See Solution

Problem 10214

Invest \$4000 at 8\% interest compounded continuously. (a) Find the account value after 7 years. (b) When will it reach \$50000?

See Solution

Problem 10215

For the polynomial gg, if the rate of change decreases for x<5x<-5 and increases for x>5x>-5, what must be true?

See Solution

Problem 10216

Find the limit: lim(431)2+4(3)2+4x3\lim \frac{-\left(4^{3}-1\right)^{2}+4-(-3)^{2}+4}{x-3} as xx approaches 3.

See Solution

Problem 10217

Berechnen Sie den Grenzwert limx2(31)2+4(3)2+4x3\lim _{x \rightarrow 2} \frac{-(3-1)^{2}+4-(-3)^{2}+4}{x-3} für x > 2.

See Solution

Problem 10218

Find the limit: limx3(31)2+4(3)2+4x3\lim_{x \to 3} \frac{-(3-1)^{2}+4-(-3)^{2}+4}{x-3}.

See Solution

Problem 10219

Find the limit: limx2(21)2+4(2)2+4x2\lim _{x \rightarrow 2} \frac{-(2-1)^{2}+4-(-2)^{2}+4}{x-2}.

See Solution

Problem 10220

Gegeben sind f(x)=0,5x2+2f(x)=0,5 x^{2}+2 und g(x)=x22x+2g(x)=x^{2}-2 x+2. Finde Max/Min der Summe und Differenz der Werte in [0;4][0; 4].

See Solution

Problem 10221

Leiten Sie die Funktion ff mit der Produktregel und der Kettenregel ab: a) f(x)=xsin(3x)f(x)=x \cdot \sin (3 x) b) f(x)=(2x1)2xf(x)=(2 x-1)^{2} \cdot \sqrt{x} c) f(x)=3x5cos(2x)f(x)=3 x^{5} \cdot \cos (2 x) d) f(x)=3xsin(4x1)f(x)=3 x \cdot \sin (4 x-1) e) f(x)=(43x)2sin(x)f(x)=(4-3 x)^{2} \cdot \sin (x) f) f(x)=0,5x24xf(x)=0,5 x^{2} \cdot \sqrt{4-x} g) f(x)=x2cos(1x)f(x)=x^{2} \cdot \cos (1-x) h) f(x)=2x+3x2f(x)=\sqrt{2 x+3} \cdot x^{2} i) f(x)=(5x+2)7cos(x)f(x)=(5 x+2)^{7} \cdot \cos (x)

See Solution

Problem 10222

Find the derivative f(x)f^{\prime}(x) for the function f(x)=10x453a9+2f(x)=10 \sqrt[5]{x^{4}}-\frac{3}{a^{9}}+2.

See Solution

Problem 10223

Find ff^{\prime} and ff^{\prime \prime} for f(x)=g(x3)+eg(3x)f(x)=g\left(x^{3}\right)+e^{g(3 x)}. Also, find ff^{\prime \prime} for f(x)=ex2+5xf(x)=e^{x^{2}}+5^{x}.

See Solution

Problem 10224

Find the derivative of f(x)=(5x)(3+x)f(x) = (5-x)(3+x).

See Solution

Problem 10225

Differentiate 2x23y=x3y2+4\sqrt{2 x^{2}-3 y}=x^{3} y^{2}+4 with respect to xx using implicit differentiation.

See Solution

Problem 10226

Untersuchen Sie das Verhalten von ff für xx \rightarrow \infty und xx \rightarrow -\infty für die Funktionen: a) f(x)=4x1xf(x)=\frac{4x-1}{x}, f(x)=x2x3x2f(x)=\frac{x^{2}-x}{3x^{2}} b) f(x)=3x24x2f(x)=\frac{3x^{2}-4}{x^{2}} c) f(x)=2x+x2x2f(x)=\frac{2x+x^{2}}{x^{2}} e) f(x)=3x3x3f(x)=\frac{3-x^{3}}{x^{3}} f) f(x)=x21x(x1)f(x)=\frac{x^{2}-1}{x(x-1)} Testen Sie Ihre Ergebnisse.

See Solution

Problem 10227

Find a formula for the sequence St=23+(23)2++(23)tS_{t}=\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\cdots+\left(\frac{2}{3}\right)^{t} and its limit as tt approaches infinity.

See Solution

Problem 10228

Estimate the population of country XX in 25 years, given N(t)=500e0.02tN(t)=500 e^{0.02 t}.

See Solution

Problem 10229

Differentiate x2cos(3y)y2sin(x2)=5x^{2} \cos (3 y) - y^{2} \sin (x^{2}) = 5 with respect to xx and yy using implicit differentiation.

See Solution

Problem 10230

Differentiate y=(2x23)35(4x23x+1)47(6x+2)12y=\frac{\left(2 x^{2}-3\right)^{\frac{3}{5}}}{\left(4 x^{2}-3 x+1\right)^{\frac{4}{7}}(6 x+2)^{\frac{1}{2}}} using logarithmic differentiation.

See Solution

Problem 10231

A tennis ball is thrown up at 22.5 m/s22.5 \mathrm{~m} / \mathrm{s}. What is its maximum height? T=42.6T=42.6

See Solution

Problem 10232

A softball is hit upwards with a velocity of 26 m/s26 \mathrm{~m/s}. Find its velocity, position, max height time, and ground strike time.

See Solution

Problem 10233

Klimaanlage Problem: Gegeben ist T(t)=2004+60,1t+1T(t)=\frac{200}{4+\frac{6}{0,1 t+1}}. Finde: a) Anfangstemperatur, b) Temperatur nach 60 Minuten, c) Grenztemperatur.

See Solution

Problem 10234

Finde den Durchmesser dd und die Höhe hh einer Regentonne, um das Volumen bei 2m22 m^{2} Material zu maximieren.

See Solution

Problem 10235

An arctic goose dives from a 245 m245 \mathrm{~m} cliff. How long to reach the ground and what speed does it land?

See Solution

Problem 10236

A tourist drops a rock from rest. Find its velocity and displacement at 4.0 s4.0 \mathrm{~s}.

See Solution

Problem 10237

Find the second derivative of f(x)=e2xf(x)=e^{2x}.

See Solution

Problem 10238

Cost function is C(x)=920+3x0.03x2+0.0006x3C(x)=920+3x-0.03x^2+0.0006x^3. Find marginal cost, C(100)C'(100), and compare with cost of 101st item.

See Solution

Problem 10239

Find the limit: limk(k+1)1k\lim _{k \rightarrow \infty}(k+1)^{\frac{1}{k}}.

See Solution

Problem 10240

A turkey cools from 85C85^{\circ} \mathrm{C} to 33C33^{\circ} \mathrm{C} over 150 mins. Find average rates for intervals and estimate the instantaneous rate after 1 hour.

See Solution

Problem 10241

Solve the initial value problem: dydt=12tsec2(π2t)\frac{d y}{d t}=\frac{1}{2^{t}} \sec ^{2}\left(\frac{\pi}{2^{t}}\right), with y(log24)=2/πy\left(\log _{2} 4\right)=2 / \pi.

See Solution

Problem 10242

Find the stationary points of f(x)=x39x2+16x+8f(x)=x^{3}-9x^{2}+16x+8 and determine their nature.

See Solution

Problem 10243

Create a value table for f(x)=x4x2f(x)=\frac{x-4}{\sqrt{x}-2} near x=4x=4 and find limx4f(x)\lim _{x \rightarrow 4} f(x).

See Solution

Problem 10244

Find the derivative of f(x)=(12x2)13x+3f(x)=(12-x^{2}) \cdot \frac{1}{3x+3}.

See Solution

Problem 10245

Solve Legendre's equation for 1<t<1-1<t<1: (1t2)y2ty+2y=0(1-t^{2}) y'' - 2t y' + 2y = 0. Hint: y=ty=t is a solution.

See Solution

Problem 10246

Untersuchen Sie die Grenzwerte: a) limx4x216x4\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4} b) limx1x3xx+1\lim _{x \rightarrow -1} \frac{x^{3}-x}{x+1} c) limx33x2x26x\lim _{x \rightarrow 3} \frac{3-x}{2 x^{2}-6 x} d) limx2x416x2\lim _{x \rightarrow 2} \frac{x^{4}-16}{x-2}

See Solution

Problem 10247

A projectile is launched horizontally at 15 m/s15 \mathrm{~m/s} from a 30 m cliff. Find its range.

See Solution

Problem 10248

Find the derivative dy/dx for the function y=(6x+2)cosxy=(6 x+2) \cos x.

See Solution

Problem 10249

Un peintre doit peindre la surface entre les courbes x=9y2x=9-y^{2}, x=y3x=y-3 et x=y232x=-\frac{y}{2}-\frac{3}{2}. A-t-il assez de peinture pour 40m240 \, m^{2} ? Trouvez les intersections et calculez l'aire.

See Solution

Problem 10250

Find the instantaneous rate of change of f(x)=x+2f(x)=\sqrt{x+2} at the left endpoint of the interval [1,2][-1,2].

See Solution

Problem 10251

Find the derivative of f(x)=(42x)26x3f(x)=(4-2x)^{2} \cdot \frac{6}{x^{3}}.

See Solution

Problem 10252

Determine the highest point of a projectile launched at 128 ft/s at an unknown angle.

See Solution

Problem 10253

Find dydt\frac{d y}{d t} when y=x2+4y=x^{2}+4, dxdt=2\frac{d x}{d t}=2, and x=5x=5. dydt=\frac{d y}{d t}=\square.

See Solution

Problem 10254

Find the derivative of y=ln(4+x2x)y=\ln \left(\frac{\sqrt{4+x^{2}}}{x}\right).

See Solution

Problem 10255

Identify which sequences diverge: i. tn=0.8nt_{n}=0.8^{n} ii. tn=(52)nt_{n}=\left(\frac{5}{2}\right)^{n} iii. tn=3n7t_{n}=3 n-7 iv. tn=1nt_{n}=\frac{1}{n}.

See Solution

Problem 10256

Find the derivatives of these functions: (a) f(x)=sinxcosxf(x)=\sin x \cos x, (b) g(x)=1+tanxsinxg(x)=\frac{1+\tan x}{\sin x}.

See Solution

Problem 10257

Bestimmen Sie die Tangentengleichung im Wendepunkt der Funktionen: a) f(x)=16x334x2+2f(x)=\frac{1}{6} x^{3}-\frac{3}{4} x^{2}+2, b) g(x)=9x(16x1)2g(x)=9 x \cdot\left(\frac{1}{6} x-1\right)^{2}, c) h(t)=(t2t)(2t1)h(t)=\left(t^{2}-t\right) \cdot(2 t-1).

See Solution

Problem 10258

Determine which statements are true for limxaf(x)=L\lim _{x \rightarrow a} f(x)=L: I, II, III, IV.

See Solution

Problem 10259

Differentiate the function f(x)=x6exx6+exf(x)=\frac{x^{6} e^{x}}{x^{6}+e^{x}}.

See Solution

Problem 10260

Quel est le profit total pour 10 unités, sachant que Pm=804q+1P_{m}=\frac{80}{\sqrt{4 q+1}} et que le profit total pour 6 unités est 230 \$?

See Solution

Problem 10261

Find the derivative of f(x)=3x34x24x+1f(x)=3 x^{3} \cdot \sqrt{4 x^{2}-4 x+1} and simplify it.

See Solution

Problem 10262

Finde die drei Ableitungen von h(t)=(t2t)(2t1)h(t) = (t^{2}-t)(2t-1).

See Solution

Problem 10263

Differentiate the function F(x)=13x38x2+7F(x)=\frac{1}{3 x^{3}-8 x^{2}+7}.

See Solution

Problem 10264

Calculate the arc length of x=6y3/2x=6 y^{3/2} from y=1y=1 to y=4y=4. Provide the exact answer or round to 3 decimal places.

See Solution

Problem 10265

Invest \$250000 at 5% interest compounded continuously. (a) Find account value after 5 years. (b) When will it reach \$50000?

See Solution

Problem 10266

Bearbeite die Funktion f(t)=e3tf(t)=e^{3 t}: Finde die Ableitung, das Integral oder die allgemeine Lösung.

See Solution

Problem 10267

Invest \$25000 at 3\% interest compounded continuously. (a) Find the value after 10 years. (b) When will it reach \$50000?

See Solution

Problem 10268

Compute F(0)F^{\prime}(0) for F(x)=(fg)(x)F(x)=(f \circ g)(x) given f(x)=3f^{\prime}(x)=-3 and g(x)=7g^{\prime}(x)=7.

See Solution

Problem 10269

Differentiate the function: J(u)=(3u+3u2)(2u+2u)J(u)=\left(\frac{3}{u}+\frac{3}{u^{2}}\right)\left(2 u+\frac{2}{u}\right).

See Solution

Problem 10270

Find the derivative of y=x1/xy=x^{-1/x} using logarithmic differentiation.

See Solution

Problem 10271

Estimate Δy\Delta y for y=sin(3x)y=\sin(3x) at x=0x=0 with Δx=0.2\Delta x=0.2, then find the percentage error rounded to 1 decimal place.

See Solution

Problem 10272

Raylin invests \15,000at3.515,000 at 3.5% interest compounded continuously. Find the balance after 30 years using A = Pe^{rt}$.

See Solution

Problem 10273

Find g(1)g^{\prime}(1) where f(x)=sinx+2x+1f(x)=\sin x+2x+1 and gg is the inverse of ff. Choices: (A) 13\frac{1}{3} (B) 1 (C) 3 (D) 12+cos1\frac{1}{2+\cos 1} (E) 2+cos12+\cos 1.

See Solution

Problem 10274

Verify the first and second derivatives of f(x)=x2exf(x) = x^{2}e^{-x} and find its critical points.

See Solution

Problem 10275

Calculez la durée de vie moyenne d'un tube au néon avec f(t)=0,0002e0,0002tf(t)=0,0002 e^{-0,0002 t} pour t0t \geq 0. Utilisez μ=0tf(t)dt\mu=\int_{0}^{\infty} t f(t) d t.

See Solution

Problem 10276

Find tangent line equations to y=x1x+1y=\frac{x-1}{x+1} parallel to x2y=4x-2y=4. List answers as comma-separated equations.

See Solution

Problem 10277

Bestimmen Sie die Ableitung von f(x)=4ex+x23f(x)=4 e^{x}+\frac{x}{2}^{3}.

See Solution

Problem 10278

Calculate the surface area from revolving y=x39y=\frac{x^{3}}{9} around the xx-axis for 0x20 \leq x \leq 2.

See Solution

Problem 10279

Calculate the integrals x(x+1)5/2 dx\int x(x+1)^{5/2} \mathrm{~d} x and 11+ex dx\int \frac{1}{1+e^{x}} \mathrm{~d} x. Find critical points.

See Solution

Problem 10280

Find the limit using L'Hôpital's rule: limx8x2x56x8\lim _{x \rightarrow 8} \frac{x^{2}-x-56}{x-8} and verify with simplification.

See Solution

Problem 10281

Switch the order of integration and compute the integral: 11(22(4x+5y+8)dx)dy\int_{-1}^{1}\left(\int_{-2}^{2}(4 x+5 y+8) d x\right) d y

See Solution

Problem 10282

Find dydx\frac{d y}{d x} using implicit differentiation for the equation x4+y5=7x^{4}+y^{5}=-7.

See Solution

Problem 10283

Find the slope mm of the tangent line to the curve x23xy+3y3=103x^{2}-3xy+3y^{3}=103 at the point (2,3)(-2,3).

See Solution

Problem 10284

Find the limit using L'Hôpital's rule: limxx857x4\lim _{x \rightarrow-\infty} \frac{x^{8}-57}{x-4}

See Solution

Problem 10285

Calculate the integral: 11+exdx\int \frac{1}{1+e^{x}} d x

See Solution

Problem 10286

Find critical points of f(x,y)=2x2x+y3+3xy21f(x, y)=2 x^{2}-x+y^{3}+3 x y^{2}-1 and classify each as min, max, or saddle point.

See Solution

Problem 10287

Find the limit using I'Hôpital's rule: limx0e4x13x\lim _{x \rightarrow 0} \frac{e^{4 x}-1}{3 x}.

See Solution

Problem 10288

Find dgdt\frac{d g}{d t} for g(t)=(t35)etg(t)=(t^{3}-5)e^{t}.

See Solution

Problem 10289

Find dydx\frac{d y}{d x} for the equation 10x8+7x20y+y3=2-10 x^{8}+7 x^{20} y+y^{3}=-2. Then, find the tangent line at (1,1)(1,1) in y=mx+by=m x+b format.

See Solution

Problem 10290

Evaluate the integral 02(x34x)dx\int_{0}^{2}\left(x^{3}-4 x\right) dx.

See Solution

Problem 10291

Find dydx\frac{d y}{d x} using implicit differentiation for the equation x6+y2=eyx^{6}+y^{2}=e^{y}.

See Solution

Problem 10292

Find dydxx=4,y=14\left.\frac{d y}{d x}\right|_{x=4, y=-14} for 3x2+3x+xy=43 x^{2}+3 x+x y=4 using implicit differentiation. dydxx=4,y=14=\left.\frac{d y}{d x}\right|_{x=4, y=-14}=

See Solution

Problem 10293

Find dydx\frac{d y}{d x} using implicit differentiation for the equation exy5+cos(x)=eye^{x} y^{5}+\cos (x)=e^{y}.

See Solution

Problem 10294

Find dydxx=4\left.\frac{d y}{d x}\right|_{x=4} for x+y=7\sqrt{x}+\sqrt{y}=7 given the point (4,25)(4,25).

See Solution

Problem 10295

Find the slope of the tangent line to the curve x2+4xy+4y3=119x^{2}+4xy+4y^{3}=-119 at the point (1,3)(1,-3).

See Solution

Problem 10296

Calculate the integral from 1 to 2 of (x23)2(x^{2}-3)^{2}.

See Solution

Problem 10297

Use substitution to find αR\alpha \in \mathbb{R} for F(x)=α(4x+5)6+cF(x)=\alpha(4x+5)^{-6}+c where f(x)=1(4x+5)7f(x)=\frac{1}{(4x+5)^{7}}. Answer: α=\alpha=

See Solution

Problem 10298

Find the tangent line to the curve xy3+xy=14x y^{3}+x y=14 at (7,1)(7,1) in the form y=mx+by=m x+b.

See Solution

Problem 10299

Approximate 01et2dt\int_{0}^{1} e^{t^{2}} dt using the degree 3 Taylor polynomial of f(x)=0xet2dtf(x)=\int_{0}^{x} e^{t^{2}} dt.

See Solution

Problem 10300

Bestimmen Sie die Ableitung der Funktion f(x)=3x+3f(x)=3^{x}+3.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord