Calculus

Problem 25101

Calculate the satellite's velocity for a 150 km150 \mathrm{~km} orbit and the time to return to the cannon in seconds and minutes.

See Solution

Problem 25102

Find the critical numbers of the function f(x)=(x24)23f(x)=(x^{2}-4)^{\frac{2}{3}}.

See Solution

Problem 25103

Woosterium-21 has a half-life of 3 hours. If you start with 100 mg, how much remains after 10 hours? Also, find the time to decay to 1/3 of its original amount. Round both answers to three decimal places.

See Solution

Problem 25104

Find the average velocity of a train with location s(t)=50ts(t)=\frac{50}{t} from t=3t=3 to t=8t=8 (in km/h).

See Solution

Problem 25105

Find the derivative of the Phillips curve equation y=9.638x1.3940.900y=9.638 x^{-1.394}-0.900 at x=2%x=2\% and x=7%x=7\%. Round to two decimal places. Interpret the results.

See Solution

Problem 25106

Find the critical numbers of the function h(x)=x3x+7h(x) = \frac{x-3}{x+7}.

See Solution

Problem 25107

Linearize the function f(x)=xf(x) = \sqrt{x} at the point a=9a = 9.

See Solution

Problem 25108

Find the absolute max and min of f(x)=x3+3x29xf(x)=x^{3}+3x^{2}-9x on the interval [4,4][-4,4].

See Solution

Problem 25109

Define f(x)f(x) piecewise and find f(3)f(3) so that f(3)=limx3f(x)f(3)=\lim_{x \rightarrow 3} f(x). Compute limits as x3+x \to 3^{+} and x3x \to 3^{-}. Also, find f(1)f(1) for limx1f(x)\lim_{x \rightarrow 1} f(x).

See Solution

Problem 25110

Given the function f(x)=0.831x218.1x+137.3f(x)=0.831 x^{2}-18.1 x+137.3 for 10x1610 \leq x \leq 16, find f(12)f(12) and f(16)f(16), and their derivatives. Interpret results.

See Solution

Problem 25111

A 941-g mass on a spring (k=23.6 N/mk = 23.6 \mathrm{~N/m}) is stretched 2.1 cm2.1 \mathrm{~cm}. Find its position at t=13.8 st=13.8 \mathrm{~s}.

See Solution

Problem 25112

A train's position is s(t)=50ts(t)=\frac{50}{t} for 3t83 \leq t \leq 8. Find its velocity at t=4t=4.

See Solution

Problem 25113

A bank offers 9%9\% continuous compounding. Find time for a deposit to: (a) quadruple, (b) increase by 55%55\%.

See Solution

Problem 25114

Gegeben ist die Funktion f(x)=(x6)xf(x)=(x-6) \cdot \sqrt{x}. Finde Nullstellen, Ableitung, Extremum, Steigungswinkel bei x=6x=6 und skizziere den Graphen.

See Solution

Problem 25115

Approximate the area under f(x)=xf(x)=\sqrt{x} from a=5a=5 to b=8b=8 using 6 rectangles. Then find the exact area.

See Solution

Problem 25116

Estimate the integral 36xex2dx\int_{3}^{6} x e^{-\frac{x}{2}} d x using three methods: trapezoidal, midpoint, and Simpson's rule. Find the exact value using the antiderivative.

See Solution

Problem 25117

Find the limit as xx approaches 0 for Rx\mathcal{R} x and analyze f(x)f(x) for v1nv \rightarrow 1^{n} in the intervals (3,1](-3,1] and [1,)[1,\infty) with mx+bmx + b.

See Solution

Problem 25118

A craftsman makes a cylindrical jewelry box with volume V=50V=50 in³.
a. Objective function: C=250(pir2)+10(2pihr)+10(pir2)C=250\left(pi r^2\right)+10(2 pi h r)+10\left(pi r^2\right)
b. Constraint: 50=pir2h50=pi r^2 h Rewrite hh in terms of rr: h=50/(pir2)h=50/(pi r^2)
c. Rewrite CC in terms of rr. d. Differentiate CC with respect to rr: dCdr=\frac{dC}{dr}=
e. Find rr for potential extreme point of CC: r=r=
f. Find height hh: h=h=$$

See Solution

Problem 25119

Find the increase rates for mp3 player sales and profit based on the functions f(t)=0.4t2+2t+3f(t)=0.4 t^{2}+2 t+3 and g(x)=0.02x2+5x+40g(x)=0.02 x^{2}+5 x+40.

See Solution

Problem 25120

Find the derivative of y=(f(x)+15g(x))g(x)y=(f(x)+15 g(x)) g(x) where f(x)f(x) and g(x)g(x) are differentiable at xx.

See Solution

Problem 25121

Find the midpoint Riemann sum for 23.53xdx\int_{2}^{3.5} 3^{x} dx using 6 equal subintervals. Round to the nearest thousandth.

See Solution

Problem 25122

Integrate using substitution: (x3+4)83x2dx\int (x^{3}+4)^{8} 3 x^{2} dx. Find u=x3+4u=x^{3}+4 and transform the integral.

See Solution

Problem 25123

Find the arc length of the curve y=18lnxx2y=\frac{1}{8} \ln x-x^{2} from x=1x=1 to x=3x=3.

See Solution

Problem 25124

Zbadać zbieżność szeregów: (a) n=11nnn\sum_{n=1}^{\infty} \frac{1}{n \sqrt[n]{n}}, (b) n=1n(n2+1n21)\sum_{n=1}^{\infty} n(\sqrt{n^{2}+1}-\sqrt{n^{2}-1}), (c) n=11n(n+1n)\sum_{n=1}^{\infty} \frac{1}{n}(\sqrt{n+1}-\sqrt{n}), (d) n=1(nn+1)n(n+1)\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n(n+1)}, (e) n=1(n+1n)n23n\sum_{n=1}^{\infty} \frac{\left(\frac{n+1}{n}\right)^{n^{2}}}{3^{n}}.

See Solution

Problem 25125

Zbadać zbieżność szeregu: n=11nnn\sum_{n=1}^{\infty} \frac{1}{n \sqrt[n]{n}}.

See Solution

Problem 25126

Find how fast the volume, surface area, and diagonal length s=x2+y2+z2s=\sqrt{x^{2}+y^{2}+z^{2}} change when x=4,y=3,z=2x=4, y=3, z=2. Rates: dxdt=1\frac{d x}{d t}=1, dydt=2\frac{d y}{d t}=-2, dzdt=1\frac{d z}{d t}=1.

See Solution

Problem 25127

Find the derivative of the function f(x)=2x2+5x+3f(x) = 2x^{2} + 5x + 3.

See Solution

Problem 25128

Find the antiderivative F(x) F(x) if f(x)=2 f(x) = 2 .

See Solution

Problem 25129

Find the limit: limx1ln(54x)+e2x214πarctan(3x2)x\lim _{x \rightarrow 1} \frac{\ln (5-4 x)+e^{2 x-2}-1}{\frac{4}{\pi} \arctan (3 x-2)-x}.

See Solution

Problem 25130

Find the constant c c such that F(x)=x5+2x2+c F(x) = x^{5} + \frac{2}{x^{2}} + c matches F(x)=5e3xdx F(x) = \int 5e^{-3x} \, dx .

See Solution

Problem 25131

Berechne die Fahrstrecke xx (in 1000 km1000 \mathrm{~km}), um die jährlichen Kosten minimal zu halten: C(x)=1450+150x+22xln(x)+12x2C(x) = 1450 + 150x + 22x \ln(x) + 12x^2.

See Solution

Problem 25132

Find the limits: limt12eln(12t)\lim_{t \to 12e} \ln\left(\frac{12}{t}\right) and limx5+2x5\lim_{x \to 5^+} \frac{2}{x-5}.

See Solution

Problem 25133

Solve the limits: 1) limt12eln(12t)\lim _{t \rightarrow 12 e} \ln \left(\frac{12}{t}\right) and 2) limx5+2x5\lim _{x \rightarrow 5^{+}} \frac{2}{x-5}.

See Solution

Problem 25134

Find the concavity regions for the function y=2x+72xy=\frac{2 x+7}{2 x}, where x0x \neq 0.

See Solution

Problem 25135

Find values of a,ma, m, and bb so that the function f(x)f(x) meets the Mean Value Theorem on [0,2][0,2].

See Solution

Problem 25136

Find the partial derivatives fx\frac{\partial f}{\partial x} and fy\frac{\partial f}{\partial y} for these functions: 1- f(x,y)=exy3+xf(x, y)=\mathrm{e}^{x y^{3}+x} 2- f(x,y)=Ln(x+y)f(x, y)=\operatorname{Ln}(x+y) 3- f(x,y)=(3y+xy)4f(x, y)=(3 y+x y)^{4} 4- f(x,y)=yln(xy)f(x, y)=y \ln (x y) 5- f(x,y)=ycos(xy)f(x, y)=y \cos (x y).

See Solution

Problem 25137

Find h(2)h(2) and h(2)h'(2) for h(x)=f(g(x))h(x)=f(g(x)) given tangents at (2,7)(2,7) and (7,1)(7,1). Also, find the tangent line at x=2x=2.

See Solution

Problem 25138

Find the volume of the solid formed by revolving region RR around the line x=2x=2 using the shell method, where RR is defined by y=11+x2y=\frac{1}{1+x^{2}}, y=0y=0, and 0x20 \leq x \leq 2.

See Solution

Problem 25139

Zeigen Sie, dass der Differenzenquotient von f(x)=2xf(x)=2^{x} im Intervall [a;a+2][a; a+2] gleich 32f(a)\frac{3}{2} \cdot f(a) ist.

See Solution

Problem 25140

Evaluate the integral: ln(x2+1)x2dx2\int \frac{\ln \left(x^{2}+1\right)}{x^{2}} d x^{2}

See Solution

Problem 25141

Which is an antiderivative of f(x)=6x2sin(x)1x+1f(x)=6 x^{2}-\sin (x)-\frac{1}{x+1}? (a) (b) (c) (d) (e) None.

See Solution

Problem 25142

Find the limits: limx7(x27+7x2)\lim _{x \rightarrow 7}\left(\frac{x^{2}}{7}+\frac{7}{x^{2}}\right) and limx1936138x+x219x\lim _{x \rightarrow 19} \frac{361-38 x+x^{2}}{19-x}.

See Solution

Problem 25143

Evaluate the integral: ln(x2+1)x2dx\int \frac{\ln \left(x^{2}+1\right)}{x^{2}} d x

See Solution

Problem 25144

Approximate the volume change of a sphere as radius goes from 70ft70 \mathrm{ft} to 70.05ft70.05 \mathrm{ft}. Find ΔVft3\Delta V \approx \square \mathrm{ft}^{3}.

See Solution

Problem 25145

Express the change in yy for f(x)=2x+4f(x)=2x+4 as dy=f(x)dxd y=f^{\prime}(x) d x: dy=()dxd y=(\square) d x.

See Solution

Problem 25146

Find the limit: limx1936138x+x219x\lim _{x \rightarrow 19} \frac{361 - 38x + x^{2}}{19 - x}.

See Solution

Problem 25147

Determine the convergence or divergence of these integrals: (1) 12x3/2dx\int_{1}^{\infty} \frac{2}{x^{3/2}} dx, (2) 11x1/2dx\int_{1}^{\infty} \frac{1}{x^{1/2}} dx, (3) 12x5dx\int_{1}^{\infty} \frac{-2}{x^{5}} dx, (4) 12x4/5dx\int_{1}^{\infty} \frac{2}{x^{4/5}} dx.

See Solution

Problem 25148

Find the relationship between a small change in xx and the change in yy for f(x)=cot6xf(x)=\cot 6x: dy=dxd y=\square d x.

See Solution

Problem 25149

Find the absolute maximum and minimum of f(x)=x27+x2f(x)=\frac{\sqrt{x}}{27+x^{2}} for 0x50 \leq x \leq 5.

See Solution

Problem 25150

Find the relationship between a small change in xx and the change in yy for the function f(x)=1x8f(x)=\frac{1}{x^{8}}: dy=dxd y=\square d x.

See Solution

Problem 25151

Find the approximate and exact average speed using s(x)=360060+xs(x)=\frac{3600}{60+x} for x=6x=6 seconds.

See Solution

Problem 25152

Find the value of rr that minimizes the Morse potential V(r)=erAearV(r) = e^{-r} - A e^{-a r} for r>0r > 0.

See Solution

Problem 25153

Check if the Mean Value Theorem applies to f(x)=4xf(x)=4 \sqrt{x} on [1,81][1,81]. If yes, find the point(s) guaranteed by it.

See Solution

Problem 25154

Find the derivatives of these functions: a) y=4x3+4π32x2+xy=4 x^{3}+4 \pi^{3}-2 x^{2}+x, b) g(t)=t23+1t2g(t)=\sqrt[3]{t^{2}}+\frac{1}{t^{2}}, c) h(x)=x2(x+1x)h(x)=x^{2}\left(\sqrt{x}+\frac{1}{x}\right).

See Solution

Problem 25155

Finde die Punkte, an denen der Graph von ff mit f(x)=x5f(x)=x^{5} eine Steigung von 80 hat.

See Solution

Problem 25156

Find the limits: limx0416+x22x2\lim _{x \rightarrow 0} \frac{4-\sqrt{16+x^{2}}}{2 x^{2}} and limx2ex7+8ex\lim _{x \rightarrow \infty} \frac{2 e^{-x}}{7+8 e^{-x}}.

See Solution

Problem 25157

Find the population size at t=4.1t=4.1 given a growth rate of 3%3\% and N(4)=100N(4)=100. Use linear approximation.

See Solution

Problem 25158

Find the volume of the solid with square cross sections, bounded by y=x2+9y=\sqrt{x^{2}+9}, y=0y=0, x=0x=0, and x=4x=4.

See Solution

Problem 25159

Find cc where f(c)=0f'(c)=0 for f(x)=e1x2f(x)=e^{1-x^{2}} and check if there's a local extremum at x=cx=c.

See Solution

Problem 25160

Find the limit as xx approaches -2 for 2cos(42x)+x3ln(2x+5)\frac{2 \cos (-4-2 x)+x}{3 \ln (2 x+5)}. Simplify your answer.

See Solution

Problem 25161

Déterminez le domaine de ff, les asymptotes verticales et horizontales, et les points critiques de f(x)=3x2x24f(x)=\frac{-3 x^{2}}{x^{2}-4}.

See Solution

Problem 25162

Find limx1ln(x+2)44x2\lim _{x \rightarrow-1} \frac{\ln (x+2)}{4-4 x^{2}} and express the answer in simplest form.

See Solution

Problem 25163

Déterminez le domaine de ff, les asymptotes verticales et horizontales de f(x)=3x2x24f(x)=\frac{-3 x^{2}}{x^{2}-4}.

See Solution

Problem 25164

Find limx3ln(x2)sin(62x)\lim _{x \rightarrow 3} \frac{\ln (x-2)}{\sin (6-2 x)} and simplify your answer.

See Solution

Problem 25165

Evaluate the limit: limx03ex33ln(1x)+3x\lim _{x \rightarrow 0} \frac{3 e^{-x}-3}{3 \ln (1-x)+3 x}. Simplify your answer.

See Solution

Problem 25166

Find limx6x2+49x+15x2\lim _{x \rightarrow \infty} \frac{6 x^{2}+4}{9 x+1-5 x^{2}} and limx4x2+xx+1\lim _{x \rightarrow-\infty} \frac{4 x^{2}+x}{x+1}.

See Solution

Problem 25167

Find values of aa for convexity of f(x,y,z)=x2+y2+z2xz+ayzf(x, y, z)=x^{2}+y^{2}+z^{2}-x z+a y z. Then, for a=1a=1, find global minimum.

See Solution

Problem 25168

Take-home exam for MAT25: Create or solve problems using real data.
1. Drug decay: (a) Find half-life (min). (b) Model: amount after t hours. (c) Amount after 24 hours (g).
2. Roast cooling: (a) Model using Newton's Law. (b) Time to reach 125°F.
3. Rumor spread: (a) Initial people. (b) Carrying capacity. (c) Days to half capacity.

See Solution

Problem 25169

a) Trouvez le domaine de ff. b) Identifiez les asymptotes verticales. c) Identifiez les asymptotes horizontales. d) Trouvez les points critiques. e) Déterminez où ff est croissante. f) Déterminez où ff est décroissante. g) Trouvez les maximums locaux. h) Trouvez les minimums locaux.

See Solution

Problem 25170

Überprüfen Sie, ob FF eine Stammfunktion von ff ist für die folgenden Funktionen: a) f(x)=x2;F(x)=13x3+0,3f(x)=x^{2} ; F(x)=\frac{1}{3} x^{3}+0,3 b) f(x)=3x2+x;F(x)=x2(x+0,5)f(x)=3 x^{2}+x ; F(x)=x^{2} \cdot(x+0,5) c) f(x)=0,1x3;F(x)=0,25x4f(x)=0,1 x^{3} ; F(x)=0,25 x^{4} d) f(x)=2x5;F(x)=13x6+5f(x)=2 x^{5} ; F(x)=\frac{1}{3} x^{6}+\sqrt{5} e) f(x)=5x2;F(x)=1,3x3f(x)=5 x^{2} ; F(x)=1,\overline{3} x^{3} f) f(x)=3x+0,3;F(x)=1,5x(0,2+x)f(x)=3 x+0,3 ; F(x)=1,5 x \cdot(0,2+x)

See Solution

Problem 25171

Trouvez f(x)f'(x) pour f(x)=ex22f(x)=e^{-\frac{x^{2}}{2}}, les nombres critiques de ff, f(x)f''(x) et les nombres critiques de ff'.

See Solution

Problem 25172

1) Trouver le domaine de ff. 2) Identifier les asymptotes verticales. 3) Identifier les asymptotes horizontales. 4) Trouver les points critiques. 5) Déterminer les intervalles où ff est croissante. 6) Déterminer les intervalles où ff est décroissante. 7) Trouver les maximums locaux de ff. 8) Trouver les minimums locaux de ff. 9) Identifier les intervalles de convexité de ff. 10) Identifier les intervalles de concavité de ff. 11) Trouver les points d'inflexion de ff. 12) Tracer la courbe de ff.

See Solution

Problem 25173

Déterminez le domaine de ff, les asymptotes, points critiques, intervalles croissants/décroissants, max/min locaux, convexité/concavité, points d'inflexion et tracez la courbe de ff.

See Solution

Problem 25174

The function f(x)=x23f(x)=x^{\frac{2}{3}} on [8,8][-8,8] fails the Mean Value Theorem due to which reason? A. f(0)f(0) undefined B. not continuous C. f(1)f^{\prime}(-1) nonexistent D. not defined for x<0x<0 E. f(0)f^{\prime}(0) nonexistent

See Solution

Problem 25175

Find the volume of the solid with a base bounded by y=x2+9y = \sqrt{x^{2}+9}, y=0y = 0, x=0x = 0, x=4x = 4, with semicircular cross sections.

See Solution

Problem 25176

Calculate the area under the standard normal curve from z=0z=0 to z=2.16z=2.16.

See Solution

Problem 25177

Déterminez le domaine de définition de la fonction f(x)=3x2x24f(x)=\frac{-3 x^{2}}{x^{2}-4}.

See Solution

Problem 25178

Find the xx-coordinates of the inflection points of f(x)=x418x2f(x)=x^{4}-18x^{2}. Critical points are 0,3,30, 3, -3. Options: A. 0,3,30,3,-3 B. 3,33,-3 C. 3,3\sqrt{3},-\sqrt{3} D. 3\sqrt{3} E. 0,3,0, \sqrt{3},-

See Solution

Problem 25179

Find the volume of the solid formed by revolving the area under y=6xx2y=6x-x^{2} in the first quadrant around the x-axis.

See Solution

Problem 25180

Déterminez les équations des asymptotes horizontales de la fonction f(x)=3x2x24f(x)=\frac{-3 x^{2}}{x^{2}-4}.

See Solution

Problem 25181

Trouver les coordonnées des points critiques de la fonction f(x)=3x2x24f(x)=\frac{-3 x^{2}}{x^{2}-4}.

See Solution

Problem 25182

Exercice 5 : Soit f(x)=3x2x24f(x)=\frac{-3 x^{2}}{x^{2}-4}. a) Trouver le domaine de ff. b) Trouver les asymptotes verticales.

See Solution

Problem 25183

Find the inflection points of f(x)=x418x2f(x)=x^{4}-18x^{2}. Options: A. 0,3,30,3,-3 B. 3,33,-3 C. 3,3\sqrt{3},-\sqrt{3} D. 3\sqrt{3} E. 0,3,30, \sqrt{3},-\sqrt{3}.

See Solution

Problem 25184

Déterminez les équations des asymptotes horizontales de f(x)=3x2x24f(x)=\frac{-3 x^{2}}{x^{2}-4}.

See Solution

Problem 25185

Trouver la valeur de f(1)f(-1) pour la fonction f(x)=ex22f(x)=e^{-\frac{x^{2}}{2}}.

See Solution

Problem 25186

Find the volume of the solid formed by revolving the area below y=6xx2y=6x-x^{2} in the first quadrant around the yy-axis.

See Solution

Problem 25187

Déterminez les intervalles ouverts où la fonction f(x)=3x2x24f(x)=\frac{-3 x^{2}}{x^{2}-4} est croissante.

See Solution

Problem 25188

Find the limit: limx1(x121lnx)\lim _{x \rightarrow 1}\left(\frac{x-1}{2}-\frac{1}{\ln x}\right).

See Solution

Problem 25189

Find the limit: limx1+(x121lnx)\lim _{x \rightarrow 1^{+}}\left(\frac{x-1}{2}-\frac{1}{\ln x}\right).

See Solution

Problem 25190

Déterminez les intervalles ouverts où la fonction f(x)=3x2x24f(x)=\frac{-3 x^{2}}{x^{2}-4} est décroissante.

See Solution

Problem 25191

Set up an integral for the volume of the solid formed by revolving the area below y=6xx2y=6x-x^{2} in the first quadrant around y=2y=-2.

See Solution

Problem 25192

Find the limit as xx approaches 1 from the left: limx1(x121lnx)\lim _{x \rightarrow 1^{-}}\left(\frac{x-1}{2}-\frac{1}{\ln x}\right).

See Solution

Problem 25193

Find the average rate of change of f(x)=x2+3x1f(x)=x^{2}+3x-1 over the interval 3x4-3 \leq x \leq 4.

See Solution

Problem 25194

Set up an integral for the arc length of the curve y=6xx2y=6x-x^{2} from (0,0)(0,0) to (6,0)(6,0).

See Solution

Problem 25195

Déterminez les minimums locaux de la fonction f(x)=3x2x24f(x)=\frac{-3 x^{2}}{x^{2}-4} en utilisant f(x)f'(x) et f(x)f''(x).

See Solution

Problem 25196

Given the function f(x)=2x4x2+2f(x)=2 x \sqrt{4 x^{2}+2}, find critical values and intervals where ff is increasing or decreasing.

See Solution

Problem 25197

Approximate displacement using v=5t+6v=5t+6 for 0t80 \leq t \leq 8 with n=2n=2. Find the answer in m\mathrm{m}.

See Solution

Problem 25198

Find the volume of the solid formed by revolving region RR (bounded by x=y2/3x=y^{2/3} and y=x1/3y=x^{1/3}) around y=0y=0 using the shell method.

See Solution

Problem 25199

Déterminez les maximums locaux de la fonction f(x)=3x2x24f(x)=\frac{-3 x^{2}}{x^{2}-4} en utilisant f(x)f^{\prime}(x) et f(x)f^{\prime \prime}(x).

See Solution

Problem 25200

16. (Avec calculatrice) Trouvez :
a) dQdKt=π2\left.\frac{d Q}{d K}\right|_{t=\frac{\pi}{2}} et son interprétation. b) Moments où dKdt=0\frac{d K}{d t} = 0. c) Taux de variation de QQ à t=3π2t=\frac{3 \pi}{2}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord