Calculus

Problem 33201

Find the second derivative if dydx=ex3x2\frac{d y}{d x}=e^{x}-3 x^{2}. What is d2ydx2\frac{d^{2} y}{d x^{2}}?

See Solution

Problem 33202

Find the derivative of y=9x34 y=\frac{9}{\sqrt[4]{x^{3}}} .

See Solution

Problem 33203

Find the average slope of the function f(x)=2x35xf(x)=2 x^{3}-5 x on [4,4][-4,4] and the two values of cc where f(c)f^{\prime}(c) equals it.

See Solution

Problem 33204

Find yy' if y=23x+lnxy=2^{3x+\ln x}. Choose the correct derivative from the options provided.

See Solution

Problem 33205

Evaluate the integral 1e6lnx+4xdx\int_{1}^{e} \frac{6 \ln x+4}{x} d x. Choose from: 8, None, 10, 5, 7.

See Solution

Problem 33206

Find the average slope of f(x)=1xf(x)=\frac{1}{x} on [2,9][2,9] and the value of cc in (2,9)(2,9) where f(c)f^{\prime}(c) equals this slope.

See Solution

Problem 33207

Evaluate the integral from 1 to e of 2lnx+3xdx\frac{2 \ln x + 3}{x} \, dx: 33 \bigcirc, 44 \bigcirc, None \bigcirc, 55 \bigcirc.

See Solution

Problem 33208

Find dydx\frac{d y}{d x} for the equation ln(2x+4y)=siny\ln (2 x+4 y)=\sin y.

See Solution

Problem 33209

Find dydx\frac{d y}{d x} for the equation ln(3x+4y)=siny\ln (3 x+4 y)=\sin y. Choose the correct option.

See Solution

Problem 33210

Evaluate the integral sec(4x)tan(4x)2+sec(4x)dx\int \frac{\sec (4 x) \tan (4 x)}{2+\sec (4 x)} d x. What is the result?

See Solution

Problem 33211

Find the derivative of y=3x32xy=3 x^{3}-2 x and locate the stationary points.
(a) dydx=\frac{d y}{d x}=
(b) The stationary point(s) is/are at

See Solution

Problem 33212

Evaluate the integral sec(3x)tan(3x)2+sec(3x)dx\int \frac{\sec (3 x) \tan (3 x)}{2+\sec (3 x)} d x. What is the result?

See Solution

Problem 33213

Find the average slope of f(x)=13x2f(x)=1-3x^{2} on [1,6][-1,6] and the unique cc where f(c)f'(c) equals this slope.

See Solution

Problem 33214

Find the derivative yy^{\prime} if y=53x+lnxy=5^{3x+\ln x}.

See Solution

Problem 33215

Find the slope of the tangent line to the curve y=xe4xe7xy=x e^{4 x}-e^{7 x} at x=0x=0. Choices: 60, None, 7-7, 77.

See Solution

Problem 33216

Find the marginal revenue RR from renting xx apartments, given R=2x(900+34xx2)R=2 x(900+34 x-x^{2}), when x=14x=14.

See Solution

Problem 33217

Find the average slope of f(x)=6x+6f(x)=6 \sqrt{x}+6 on [2,9][2,9] and the value of cc in (2,9)(2,9) where f(c)f'(c) equals this slope.

See Solution

Problem 33218

Find the derivative of y=32x+lnxy=3^{2 x+\ln x}. What is yy^{\prime}?

See Solution

Problem 33219

Evaluate the integral sec(3x)tan(3x)2+sec(3x)dx\int \frac{\sec (3 x) \tan (3 x)}{2+\sec (3 x)} d x. What is the result?

See Solution

Problem 33220

Find the slope of the tangent line to the curve y=xe5xe3xy=x e^{5 x}-e^{3 x} at x=0x=0. Choose: 2-2, 3-3, None, 2, 3.

See Solution

Problem 33221

Find dydx\frac{d y}{d x} for ln(3x+4y)=siny\ln (3 x+4 y)=\sin y. Choose the correct expression for dydx\frac{d y}{d x}.

See Solution

Problem 33222

Find the nature of yy at x=0x=0 given dydx=sin(x)x\frac{d y}{d x}=\sin (x)-x and dydx=d2ydx2=0\frac{d y}{d x}=\frac{d^{2} y}{d x^{2}}=0.

See Solution

Problem 33223

Find dydx\frac{d y}{d x} for ln(3x+4y)=siny\ln (3 x+4 y)=\sin y. What is the derivative?

See Solution

Problem 33224

Find the slope of the tangent line to the curve y=xe4xe7xy=x e^{4 x}-e^{7 x} at x=0x=0. Options: -6, 60, 0, -7, 7.

See Solution

Problem 33225

Find the second derivative of y=f(x)y=f(x) where dydx=ex15x4\frac{d y}{d x}=e^{x}-15 x^{4}. Determine the nature of yy at x=0.45x=-0.45.

See Solution

Problem 33226

Find the derivative of the function f(x)=4x(x2+1)f(x) = 4x(x^2 + 1).

See Solution

Problem 33227

Find the average slope of f(x)=2x36x290x+6f(x)=2 x^{3}-6 x^{2}-90 x+6 on [5,8][-5,8] and the two values of cc where f(c)f'(c) equals this slope.

See Solution

Problem 33228

Find the slope of the tangent line to the curve y=xe5xe3xy=x e^{5 x}-e^{3 x} at x=0x=0.

See Solution

Problem 33229

Find dydx\frac{d y}{d x} given that ln(2x+5y)=siny\ln(2x + 5y) = \sin y.

See Solution

Problem 33230

Find the average rate of change of f(x)=x35x+7f(x)=x^{3}-5 x+7 from (a) -3 to -2 and (b) 2 to 4.

See Solution

Problem 33231

Find the derivative yy^{\prime} if y=23x+lnxy=2^{3 x+\ln x}. Choose from the options provided.

See Solution

Problem 33232

Evaluate the integral 1e6lnx+4xdx\int_{1}^{e} \frac{6 \ln x + 4}{x} \, dx. Choose: 10, 7, None, 5, 8.

See Solution

Problem 33233

Find the average rate of change of g(x)=4x22g(x)=4x^{2}-2 from -6 to 3, and the secant line through (6,g(6))(-6, g(-6)) and (3,g(3))(3, g(3)).

See Solution

Problem 33234

Find the derivative of the function e5xe^{5x}.

See Solution

Problem 33235

Evaluate the integral 1e2lnx+3xdx\int_{1}^{e} \frac{2 \ln x+3}{x} d x. Choose: 4, 5, 2, None, 3.

See Solution

Problem 33236

Evaluate the integral sec(3x)tan(3x)2+sec(3x)dx\int \frac{\sec (3 x) \tan (3 x)}{2+\sec (3 x)} d x.

See Solution

Problem 33237

Find the derivative of the function f(x)=x2(12x3)f(x) = x^{2}\left(1-\frac{2}{x^{3}}\right).

See Solution

Problem 33238

The average cost per hour for xx lawn mowers is Cˉ(x)=0.2x2+21x273+2800x\bar{C}(x)=0.2 x^{2}+21 x-273+\frac{2800}{x}. Find xx to minimize cost and the minimum cost.

See Solution

Problem 33239

Find where the function f f is increasing based on its behavior from (2,4) (-2,-4) to (2,4) (2,4) .

See Solution

Problem 33240

Find the limit and check if the function is continuous at y=1y=1:
limy1sec(ysec2ytan2y1)\lim _{y \rightarrow 1} \sec \left(y \sec ^{2} y-\tan ^{2} y-1\right)

See Solution

Problem 33241

Find the derivative of 12ln(x)\frac{1}{2} \ln (x) and match it with the correct option: 2x\frac{2}{x}, ln(x2)4\frac{\ln (x^{2})}{4}, ln(x)\ln (\sqrt{x}), 12x\frac{1}{2 x}.

See Solution

Problem 33242

Find the slope of the tangent line to the curve y=x2e5x3y=x^{2} e^{5 x-3} at x=1x=1.

See Solution

Problem 33243

Find the derivative f(0)f'(0) for the function f(x)=ln(sec(x)+tan(x))f(x)=\ln (\sec (x)+\tan (x)).

See Solution

Problem 33244

Find the derivative of y=17x2+17x y=\frac{1}{7 x^{2}}+\frac{1}{7 x} .

See Solution

Problem 33245

Find the derivative dydx\frac{d y}{d x} for the equation tan(2y)=ln(xy)+2x\tan (2 y)=\ln (x y)+2 x.

See Solution

Problem 33246

Evaluate these limits: (a) limx(22x230x3)=\lim _{x \rightarrow \infty}(-22 x^{2}-30 x^{3})=; (b) limx(22x230x3)=\lim _{x \rightarrow -\infty}(-22 x^{2}-30 x^{3})=.

See Solution

Problem 33247

Find the limit as xx approaches infinity: limx4x38x23x1110x11x3\lim _{x \rightarrow \infty} \frac{4 x^{3}-8 x^{2}-3 x}{11-10 x-11 x^{3}}.

See Solution

Problem 33248

Find the slope of the tangent line to the curve y=x2e2x3y=x^{2} e^{2 x-3} at x=1x=1.

See Solution

Problem 33249

Find the limit as xx approaches infinity: limx5x24x+107x+8\lim _{x \rightarrow \infty} \frac{5 x^{2}-4 x+10}{7 x+8}.

See Solution

Problem 33250

Evaluate the integral 9x(3+lnx)dx\int \frac{9}{x(3+\ln x)} d x.

See Solution

Problem 33251

Calculate the integral from 1 to 16 of 16xlnxdx\frac{16}{x \sqrt{\ln x}} \, dx.

See Solution

Problem 33252

Evaluate the limit as xx approaches infinity: limx4+10x311x\lim _{x \rightarrow \infty} \frac{4+10 x}{3-11 x}.

See Solution

Problem 33253

Evaluate the integral 2x(4+lnx)dx\int \frac{2}{x(4+\ln x)} d x. Choose the correct answer from the options given.

See Solution

Problem 33254

Evaluate the integral 01x2e4x3dx\int_{0}^{1} x^{2} e^{4 x^{3}} d x. Choose the correct answer from the options provided.

See Solution

Problem 33255

Find the absolute maximum and minimum of the function y=f(x)y=f(x) from the graph, and identify local maxima/minima.

See Solution

Problem 33256

Find the derivative yy', where y=ln(sec(e2x))y=\ln(\sec(e^{2x})). Options include e2xsec(e2x)tan(e2x)e^{2x} \sec(e^{2x}) \tan(e^{2x}), etc.

See Solution

Problem 33257

Find dydx\frac{d y}{d x} for tan(2y)=ln(xy)+2x\tan(2y) = \ln(xy) + 2x. Choose the correct derivative expression.

See Solution

Problem 33258

Find dydx\frac{d y}{d x} for the equation tan(3y)=ln(xy)+2x\tan(3y) = \ln(xy) + 2x. Choose the correct derivative expression.

See Solution

Problem 33259

Find the limit as xx approaches infinity: limx4x+42x23x+3\lim _{x \rightarrow \infty} \frac{4 x+4}{2 x^{2}-3 x+3}.

See Solution

Problem 33260

Evaluate these limits: (a) limx10+2x28+4x=\lim _{x \rightarrow \infty} \frac{\sqrt{10+2 x^{2}}}{8+4 x}=; (b) limx10+2x28+4x=\lim _{x \rightarrow-\infty} \frac{\sqrt{10+2 x^{2}}}{8+4 x}=

See Solution

Problem 33261

Find the limit and check continuity at the point:
limx0sec[cosx+5πtan(π4secx)1] \lim _{x \rightarrow 0} \sec \left[\cos x+5 \pi \tan \left(\frac{\pi}{4 \sec x}\right)-1\right]
Is it equal to \square or does it not exist?

See Solution

Problem 33262

Evaluate the integral 01x2e2x3dx\int_{0}^{1} x^{2} e^{2 x^{3}} d x. Choose the correct answer from the options provided.

See Solution

Problem 33263

Calculate the integral 216dxxlnx\int_{2}^{16} \frac{d x}{x \sqrt{\ln x}}.

See Solution

Problem 33264

Find the derivative of y=ln(sec(e2x))y=\ln \left(\sec \left(e^{2 x}\right)\right). What is yy^{\prime}?

See Solution

Problem 33265

Find the absolute maximum and minimum of the function y=f(x)y=f(x) from the graph. Identify local maxima and minima.

See Solution

Problem 33266

Find the limit and check if the function is continuous at that point:
limx09sec[9cosx+6πtan(π4secx)9]\lim _{x \rightarrow 0} 9 \sec \left[9 \cos x+6 \pi \tan \left(\frac{\pi}{4 \sec x}\right)-9\right]
A. limx09sec[9cosx+6πtan(π4secx)9]=\lim _{x \rightarrow 0} 9 \sec \left[9 \cos x+6 \pi \tan \left(\frac{\pi}{4 \sec x}\right)-9\right]=\square
B. The limit does not exist.

See Solution

Problem 33267

Graph f(x)=x32x+4f(x)=x^3-2x+4 on (2,2)(-2,2), find local maxima/minima, and determine where it is increasing/decreasing.

See Solution

Problem 33268

Find the derivative of the inverse function f1(x)f^{-1}(x) at x=6x=6 for f(x)=x32f(x)=x^{3}-2.

See Solution

Problem 33269

Evaluate the integral sec(3x)tan(3x)2+sec(3x)dx\int \frac{\sec (3 x) \tan (3 x)}{2+\sec (3 x)} d x. What is the result?

See Solution

Problem 33270

Find the derivative of y y and set it equal to the derivative of 4x(x2+1) 4x(x^2+1) .

See Solution

Problem 33271

Find the limit as xx approaches infinity: limx11x+1110x22x+10\lim _{x \rightarrow \infty} \frac{11 x+11}{10 x^{2}-2 x+10}.

See Solution

Problem 33272

Find the limit as x x approaches infinity: limx3+3x29+2x \lim_{x \rightarrow \infty} \frac{\sqrt{3+3x^{2}}}{9+2x}

See Solution

Problem 33273

Find the integral: 4siny1cosydy\int \frac{4 \sin y}{1 - \cos y} \, dy.

See Solution

Problem 33274

Evaluate these limits: (a) limx4ex+2=\lim _{x \rightarrow \infty} \frac{4}{e^{x}+2}= (b) limx4ex+2=\lim _{x \rightarrow-\infty} \frac{4}{e^{x}+2}=

See Solution

Problem 33275

Find the limit of f(x)=10x9f(x)=\frac{10}{x}-9 as xx \to \infty and xx \to -\infty. What is limxf(x)\lim _{x \rightarrow \infty} f(x)?

See Solution

Problem 33276

Evaluate the limit as x x approaches infinity: limx5+10x1111x \lim_{x \rightarrow \infty} \frac{5 + 10x}{11 - 11x}

See Solution

Problem 33277

Evaluate these limits: (a) limx(23x235x3)=\lim _{x \rightarrow \infty}(-23 x^{2}-35 x^{3})= (b) limx(23x235x3)=\lim _{x \rightarrow -\infty}(-23 x^{2}-35 x^{3})=

See Solution

Problem 33278

Find the limit: limx(1x3x2+9x)7\lim _{x \rightarrow-\infty}\left(\frac{1-x^{3}}{x^{2}+9 x}\right)^{7} and simplify your answer to \infty or -\infty.

See Solution

Problem 33279

Evaluate these limits: (a) limx2+9x107x=\lim _{x \rightarrow \infty} \frac{2+9 x}{10-7 x}=, (b) limx2+9x107x=\lim _{x \rightarrow-\infty} \frac{2+9 x}{10-7 x}=.

See Solution

Problem 33280

Find the limit as xx approaches infinity for sin3x8x\frac{\sin 3 x}{8 x}. Simplify your answer.

See Solution

Problem 33281

Find the limit as xx approaches infinity: limx2+5x25+2x\lim_{x \rightarrow \infty} \frac{\sqrt{2+5x^{2}}}{5+2x}.

See Solution

Problem 33282

Find the limit as xx approaches infinity for (10x)(2+5x)(310x)(11+11x)\frac{(10-x)(2+5 x)}{(3-10 x)(11+11 x)}.

See Solution

Problem 33283

Find the limit of f(x)=5+5x99x2f(x)=\frac{-5+\frac{5}{x}}{9-\frac{9}{x^{2}}} as xx \to \infty and xx \to -\infty.

See Solution

Problem 33284

Find the capacitor current at t=3t=3 seconds in a series RC-circuit with v=Vs(1etRC)v=V_{s}(1-e^{-\frac{t}{RC}}), where i=Cdvdti=C \frac{d v}{d t}.

See Solution

Problem 33285

Evaluate the limit as xx approaches infinity: limx4x32x29x99x10x3\lim _{x \rightarrow \infty} \frac{4 x^{3}-2 x^{2}-9 x}{9-9 x-10 x^{3}}.

See Solution

Problem 33286

Is the integral sinaxdx\int \sin a x d x equal to 1acosax+c\frac{-1}{a} \cos a x + c? True or False?

See Solution

Problem 33287

Find the derivative of the function: 3e2x2+7x3 e^{-2 x^{2}+7 x}.

See Solution

Problem 33288

Find df1dx\frac{d f^{-1}}{d x} at x=3x=3 for f(x)=x24x+3f(x)=x^{2}-4x+3 where x2x \geq 2. Choices: 1/41/4, 4, 1/21/2, 0.1/30.1/3.

See Solution

Problem 33289

Find the limit L=limx39xL=\lim _{x \rightarrow 3} \frac{9}{x} and the largest δ>0\delta>0 for f(x)L<0.7|f(x)-L|<0.7.

See Solution

Problem 33290

Given the cost function C(x)=62500+400x+x2C(x)=62500+400 x+x^{2}, find: a) Cost at x=1850x=1850 b) Average cost at x=1850x=1850 c) Marginal cost at x=1850x=1850 d) Production level that minimizes average cost e) Minimal average cost

See Solution

Problem 33291

Find the limit: limx0sin2x2x\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{2 x}. Choose one: a. 1 b. 0 c. 3

See Solution

Problem 33292

Evaluate these limits: (a) limx2x32x26x410x4x3\lim _{x \rightarrow \infty} \frac{2 x^{3}-2 x^{2}-6 x}{4-10 x-4 x^{3}}; (b) limx2x32x26x410x4x3\lim _{x \rightarrow-\infty} \frac{2 x^{3}-2 x^{2}-6 x}{4-10 x-4 x^{3}}.

See Solution

Problem 33293

Find the limit of f(x)=7x3+3x3x2+x+5f(x)=\frac{7x^{3}+3}{x^{3}-x^{2}+x+5} as xx \rightarrow \infty and xx \rightarrow -\infty.

See Solution

Problem 33294

Find df1dx\frac{d f^{-1}}{d x} at x=3x=3 for f(x)=x24x+3f(x)=x^{2}-4x+3, where x2x \geq 2. Choices: 4, 1/41/4, 1/21/2, 1/31/3.

See Solution

Problem 33295

Find the slope of the tangent line for y=3cosxy=3^{\cos x} at x=π2x=\frac{\pi}{2}.

See Solution

Problem 33296

Find dydx\frac{d y}{d x} for ln(2x+4y)=siny\ln (2 x + 4 y) = \sin y. Choose the correct expression for dydx\frac{d y}{d x}.

See Solution

Problem 33297

Find the limits: (a) limx(2x)(5+5x)(36x)(3+3x)\lim _{x \rightarrow \infty} \frac{(2-x)(5+5 x)}{(3-6 x)(3+3 x)} and (b) limx(2x)(5+5x)(36x)(3+3x)\lim _{x \rightarrow-\infty} \frac{(2-x)(5+5 x)}{(3-6 x)(3+3 x)}.

See Solution

Problem 33298

Find the limits of f(x)=4x7+2x6+58x8f(x)=\frac{4 x^{7}+2 x^{6}+5}{8 x^{8}} as xx \rightarrow \infty and xx \rightarrow -\infty.

See Solution

Problem 33299

Cut squares of side length xx from a 28 in cardboard to make an open-top box. Find V(x)V(x) and max volume.
x= x=
Maximum Volume ==

See Solution

Problem 33300

Transform the PDE k(uxx+uyy)=utk(u_{xx}+u_{yy})=u_{t} using u(x,t)=X(x)Y(y)T(t)u(x,t)=X(x)Y(y)T(t) into ODEs. True or False?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord