Calculus

Problem 28201

Find two positive numbers that add up to 20 and have the maximum product.

See Solution

Problem 28202

Find the derivative f(x)f^{\prime}(x) of f(x)=25x+5f(x)=\frac{2}{5 x+5} using the limit definition.

See Solution

Problem 28203

Find when the instantaneous rate of change (IRoc) of N=200(2)0.2tN=200(2)^{0.2 t} is least, and estimate the IRoc at that time.

See Solution

Problem 28204

Prove if the soccer ball reaches its highest point at t=1.5t=1.5 s using the height function h(t)=4.9t2+14.7t+0.5h(t)=-4.9 t^{2}+14.7 t+0.5.

See Solution

Problem 28205

Find S(16)S(16) and S(16)S^{\prime}(16) for S(t)=t+7S(t)=\sqrt{t}+7. Estimate S(17)S(17) and S(18)S(18), rounding to 1 decimal place.

See Solution

Problem 28206

Test if the function f(x)={6x5 when x15x6 when x<1f(x)=\left\{\begin{array}{c}6 x-5 \text { when } x \geq 1 \\ 5 x-6 \text { when } x<1\end{array}\right. is differentiable at x=1x=1.

See Solution

Problem 28207

Is the function f(x)={3x2 if x12x3 if x<1f(x)=\left\{\begin{array}{l}3 x-2 \text { if } x \geq 1 \\ 2 x-3 \text { if } x<1\end{array}\right. differentiable at x=1x=1?

See Solution

Problem 28208

Find the time tt (from 8 to 12) when the processing rate P(t)=t330t2+298t976P(t)=t^{3}-30 t^{2}+298 t-976 is highest. Justify your answer.

See Solution

Problem 28209

Find the absolute maximum of f(x)=x33x2+13f(x)=x^{3}-3 x^{2}+13 on the interval [2,4][-2,4] using calculus.

See Solution

Problem 28210

Is the function f(x)={(x1)sin(1x1)x11x=1f(x)=\left\{\begin{array}{cc}(x-1) \sin \left(\frac{1}{x-1}\right) & x \neq 1 \\ -1 & x=1\end{array}\right. continuous on R\mathrm{R}?

See Solution

Problem 28211

Is the function f(x)={(x1)sin(1x1)x11x=1f(x)=\begin{cases} (x-1) \sin \left(\frac{1}{x-1}\right) & x \neq 1 \\ -1 & x=1 \end{cases} continuous on R?

See Solution

Problem 28212

Find the derivatives of these functions: 1) y=2x4+6x+ln(x2+5x)y=2 x^{4}+6 x+\ln(x^{2}+5 x) 2) y=(x5+x)cosxy=(x^{5}+x) \cos x 3) y=tan2(x+1)y=\tan^{2}(x+1) 4) y=x22xx2+1y=\frac{x^{2}-2 x}{x^{2}+1} 5) y=7+lnxy=\sqrt{7+\ln x}.

See Solution

Problem 28213

Find where the tangent line to y=f(x)=x3ln(x)y=f(x)=x^{3} \ln (x) is horizontal and if it intersects the graph at (1,0)(1,0).

See Solution

Problem 28214

Find dydx\frac{d y}{d x} using implicit differentiation for the curve x33x2y+2xy2=12x^{3}-3 x^{2} y+2 x y^{2}=12.

See Solution

Problem 28215

A soccer ball's height is given by h(t)=4.9t2+14.7t+0.5h(t)=-4.9 t^{2}+14.7 t+0.5. Verify if it peaks at t=1.5t=1.5 s using rates of change. i) Estimate IRoC at t=1.5t=1.5 s. ii) Find RoC before t=1.5t=1.5 s. iii) Find RoC after t=1.5t=1.5 s.

See Solution

Problem 28216

Find the derivatives of these functions: 1) y=2x4+6x+ln(x2+5x)y=2 x^{4}+6 x+\ln(x^{2}+5 x) 2) y=(x5+x)cosxy=(x^{5}+x) \cos x 3) y=tan2(x+1)y=\tan^{2}(x+1) 4) y=x22xx2+1y=\frac{x^{2}-2 x}{x^{2}+1} 5) y=7+lnxy=\sqrt{7+\ln x}.

See Solution

Problem 28217

Is the function f(x)=x2f(x)=|x-2| differentiable at the point x=2x=2?

See Solution

Problem 28218

Find the difference quotient for f(x)=xf(x)=x at the point (3,3)(3,3). Choose from: a) 3hh\frac{3-h}{h}, b) 1, c) 3, d) h\mathrm{h}.

See Solution

Problem 28219

Find the difference quotient for f(x)=x2f(x)=x^{2} at the point (5,25)(5,25). Choose from the options provided.

See Solution

Problem 28220

Estimate the derivative of f(x)=3xf(x)=\sqrt{3x} at the point x=7x=7.

See Solution

Problem 28221

Evaluate these integrals: 1) (x5+4x3x3+2)dx\int(x^{5}+4 x^{3}-\frac{x}{3}+2) dx 2) (sin(x)sec(x)tan(x))dx\int(\sin(x)-\sec(x)\tan(x)) dx 3) (8x12)(4x212x)4dx\int(8x-12)(4x^{2}-12x)^{4} dx 4) sin(x)1cos(x)dx\int \frac{\sin(x)}{\sqrt{1-\cos(x)}} dx 5) 2xsec2(x2+1)dx\int 2x \sec^{2}(x^{2}+1) dx 6) exex+1dx\int \frac{e^{x}}{e^{x}+1} dx

See Solution

Problem 28222

Find the difference quotient for f(x)=xf(x)=\sqrt{x} at (16,4)(16,4). Choose from: a) 016+h16h0 \frac{16+h-16}{h}, b) 4+h16h\bigcirc \frac{\sqrt{4+h}-\sqrt{16}}{h}, c) 04+h16h0 \frac{\sqrt{4+h}-16}{h}, d) 016+h4h0 \frac{\sqrt{16+h}-4}{h}.

See Solution

Problem 28223

Is the function f(x)=x2f(x)=|x-2| differentiable at the point x=2x=2?

See Solution

Problem 28224

Find the derivative f(x)f^{\prime}(x) of f(x)=4x2+6x+3f(x)=4x^{2}+6x+3 using the limit definition.

See Solution

Problem 28225

Find the average rate of change of y=2cos(xπ3)+1y=2 \cos \left(x-\frac{\pi}{3}\right)+1 for these intervals: a) π6xπ2\frac{\pi}{6} \leq x \leq \frac{\pi}{2}, b) π2x5π4\frac{\pi}{2} \leq x \leq \frac{5 \pi}{4}.

See Solution

Problem 28226

Which statement is true? P:f(x)=4x2P: \mathbf{f}(\mathbf{x})=\sqrt{4-x^{2}} is continuous on [2,2][-2,2]. Q:g(x)=9x2Q: \mathbf{g}(\mathbf{x})=\sqrt{9-x^{2}} is continuous on [2,2][-2,2]. Options: a) Only P b) Only Q c) Both P and Q d) Neither P nor Q

See Solution

Problem 28227

Evaluate the integral from 2 to 7 of the function 8xex2+4y8 x e^{x^{2}+4 y} with respect to xx.

See Solution

Problem 28228

Evaluate the double integral: 23xxyxdydx\int_{2}^{3} \int_{\sqrt{x}}^{x} \frac{y}{x} \, dy \, dx

See Solution

Problem 28229

Which expression represents the derivative at x=cx=c if it exists? a) limh0f(ch)f(c)h\lim _{h \rightarrow 0} \frac{f(c-h)-f(c)}{h} b) limh0f(c+h)f(ch)2h\lim _{h \rightarrow 0} \frac{f(c+h)-f(c-h)}{2 h} c) limh0f(c+h)+f(c)h\lim _{h \rightarrow 0} \frac{f(c+h)+f(c)}{h} d) limh0f(c)f(ch)c\lim _{h \rightarrow 0} \frac{f(c)-f(c-h)}{-c}

See Solution

Problem 28230

Evaluate the integral: 13(x4+xyy2)dx\int_{1}^{3}\left(x^{4}+x y-y^{2}\right) d x

See Solution

Problem 28231

Find the length of the curve f(x)=x312+1xf(x)=\frac{x^{3}}{12}+\frac{1}{x} for 1xy1 \leq x \leq y.

See Solution

Problem 28232

1. Find the slope of the tangent line for f(x)=5x2x+3f(x)=\frac{-5 x}{2 x+3} at x=2x=2 and f(x)=2x26x3x+5f(x)=\frac{2 x^{2}-6 x}{3 x+5} at x=2x=-2. Identify where no tangent exists.
2. For the cost function C(x)=x24x+20xC(x)=\frac{x^{2}-4 x+20}{x}, calculate the average cost for 3000 shirts and estimate the rate of change at that level.
3. Calculate the average rate of change for y=2cos(xπ3)+1y=2 \cos \left(x-\frac{\pi}{3}\right)+1 in the intervals: a) π6xπ2\frac{\pi}{6} \leq x \leq \frac{\pi}{2} b) π2x5π4\frac{\pi}{2} \leq x \leq \frac{5 \pi}{4}

See Solution

Problem 28233

Find dydx\frac{d y}{d x} for x=2sin(y3)x=2 \sin \left(\frac{y}{3}\right), and express your answer in terms of xx.

See Solution

Problem 28234

Evaluate the integral R6ydA\iint_{R} 6 y d A for the region RR between y=6x2y=6-x^{2} and the lines y=xy=x, y=xy=-x.

See Solution

Problem 28235

Find the slope of the secant line between points (c,f(c))(c, f(c)) and (c+2h,f(c+2h))(c+2 h, f(c+2 h)):
a) 0f(c+2h)+f(c)2h0 \frac{f(c+2 h)+f(c)}{2 h} b) 0f(c+h)+f(c)ch0 \frac{f(c+h)+f(c)}{c-h} c) 0f(c)f(h)ch0 \frac{f(c)-f(h)}{c-h} d) 0f(c+2h)f(c)2h0 \frac{f(c+2 h)-f(c)}{2 h}

See Solution

Problem 28236

Evaluate the double integral R3x+6y3dA\iint_{\mathbb{R}} \sqrt[3]{3 x+6 y} d \mathbf{A} over the region 1x61 \leq x \leq 6, 0y20 \leq y \leq 2.

See Solution

Problem 28237

Assignment: Teach the Teacher
Explain how to find the maximum instantaneous rate of change for P(t)=0.5sin(π6t)+4P(t)=0.5 \sin \left(\frac{\pi}{6} t\right)+4 using centered intervals. Compare accuracy of estimates for intervals: i) 1 h, ii) 0.5 h, iii) 0.25 h.

See Solution

Problem 28238

Identify two points on the graph of f(x)=4cos(xπ4)+2f(x)=4\cos(x-\frac{\pi}{4})+2 where the instantaneous rate of change is: a) zero, b) negative, c) positive.

See Solution

Problem 28239

Evaluate the integral: 23(3x4y3+5xy6)dx\int_{-2}^{3}(3 x^{4} y^{3}+5 x y-6) \, dx

See Solution

Problem 28240

Evaluate the integral: 23(3x4y3+5xy6)dx\int_{-2}^{3}(3 x^{4} y^{3}+5 x y-6) dx

See Solution

Problem 28241

Find the derivative f(x)f^{\prime}(x) of the function f(x)=(x2+3x+1)ex2f(x)=(x^{2}+3x+1)e^{x^{2}}.

See Solution

Problem 28242

Evaluate the double integral: 341212x3y2dxdy\int_{3}^{4} \int_{1}^{2} 12 x^{3} y^{2} \, dx \, dy

See Solution

Problem 28243

3. Given P(t)=1.5t2+36t+6P(t)=-1.5 t^{2}+36 t+6, find the average population change from 2000 to 2024 and analyze its meaning. Also, find when the instantaneous rate is 0.
4. For the graph of y=f(x)y=f(x), identify intervals where the average rate of change is positive, negative, or zero.

See Solution

Problem 28244

Berechnen Sie die Untersumme U10U_{10} für das Integral 020,5xdx\int_{0}^{2} 0,5 x \, dx mit 10 gleichen Intervallen.

See Solution

Problem 28245

Ein Gartenpool wird mit v(t)=0,1t21t3+1+40v(t)=0,1 t^{2}-\frac{1}{t^{3}+1}+40 gefüllt. Bestimmen Sie die Füllhöhe und das Volumen nach 10 Minuten.

See Solution

Problem 28246

Determine where the average rate of change of y=f(x)y=f(x) is positive, negative, or zero based on its graph.

See Solution

Problem 28247

1. Find the average rate of change of h(t)=18t0.8t2h(t)=18t-0.8t^{2} from t=10t=10 to t=15t=15 for the golf ball's height.
2. A car worth \$23500 depreciates to \$8750 in 8 years. Calculate the average annual percent decrease in value.

See Solution

Problem 28248

Evaluate the double integral R4x3y2dA\iint_{R} 4 x^{3} y^{2} \, dA where R={(x,y)0x3,0y2}R=\{(x, y) | 0 \leq x \leq 3, 0 \leq y \leq 2\}.

See Solution

Problem 28249

Population function: P(t)=1.5t2+36t+6P(t)=-1.5 t^{2}+36 t+6. Find average change from 2000 to 2024, and check changes for 2000-2012 & 2012-2024. When is the rate 0?

See Solution

Problem 28250

A rock sample of 256 g256 \mathrm{~g} tungsten-187 decays to 0.25 g0.25 \mathrm{~g}. With a half-life of 1 day, how long does this take?

See Solution

Problem 28251

Find the average rate of change of area with respect to radius for a circle from 0 cm0 \mathrm{~cm} to 100 cm100 \mathrm{~cm} and at 120 cm120 \mathrm{~cm}.

See Solution

Problem 28252

Find where the slope of the tangent line equals the slope of the secant line through A(2,4)A(2,-4) and B(3,0)B(3,0) for f(x)=x33x2f(x)=x^{3}-3x^{2}.
Also, for a diver on a 10 m10 \mathrm{~m} platform, use h(t)=10+2t4.9t2h(t)=10+2t-4.9t^{2} to find when they hit the water and their height change rate.

See Solution

Problem 28253

A diver on a 10 m10 \mathrm{~m} platform dives with height h(t)=10+2t4.9t2h(t)=10+2t-4.9t^{2}. Find when they enter the water and the height change rate.

See Solution

Problem 28254

Find the limit: limx11x1x1\lim _{x \rightarrow 1} \frac{\frac{1}{\sqrt{x}}-1}{x-1}.

See Solution

Problem 28255

Find the limit: limx05x+5x\lim _{x \rightarrow 0} \frac{\sqrt{5}-\sqrt{x+5}}{x}.

See Solution

Problem 28256

Find the derivative of the function y=3x225xy=\frac{3x-2}{2-5x}.

See Solution

Problem 28257

A ship's height is modeled by h(t)=sinπ5th(t)=\sin \frac{\pi}{5} t. Find the average rate of change over 5s and the instantaneous rate at t=6st=6s.

See Solution

Problem 28258

A pilot ejects from 10,000 ft, with altitude h(t)=16t2+90t+10000h(t)=-16 t^{2}+90 t+10000. Find time tt for max altitude and relate it to slope.

See Solution

Problem 28259

A ship's height is modeled by h(t)=sinπ5th(t) = \sin \frac{\pi}{5} t. Find the average rate of change over 5s and the instantaneous rate at t=6st=6s.

See Solution

Problem 28260

Solve the differential equation (4x+y+3)dy=(4x+y+1)2dx(4 x+y+3) dy=(4 x+y+1)^{2} dx. What is the solution? (a), (b), (c), or (d)?

See Solution

Problem 28261

A ship's height h(t)=sinπ5th(t) = \sin \frac{\pi}{5} t in meters varies with time tt in seconds. Find the average rate of change over 5s and the instantaneous rate at t=6st=6s. Mark Value: 4

See Solution

Problem 28262

A radioactive substance decays exponentially. Given P(t)=100(1.2)tP(t)=100(1.2)^{-t}, find the half-life and rate of decay after the first half-life.

See Solution

Problem 28263

Find values of aa and bb if (1,2)(1,2) is a relative extremum of P(x)=2ax23bx+3P(x)=2ax^2-3bx+3.

See Solution

Problem 28264

The town's population is 12000 and decreases at 1.8%1.8\% per year. Find the population model and rates of change in 10 years and at half population.

See Solution

Problem 28265

Untersuchen Sie die Flächeninhalte der Funktionen: I. f(x)=1x3f(x)=\frac{1}{x^{3}}, II. f(x)=1x2f(x)=\frac{1}{x^{2}}, III. f(x)=1xf(x)=\frac{1}{\sqrt{x}} für x1x \geq 1.

See Solution

Problem 28266

The town's population is 12000 and decreases at 1.8%1.8\% per year. Find the population model and rates of change in 10 years and at half population.

See Solution

Problem 28267

Find the average wind speed change from mile 10 to mile 100 using S(d)=93logd+65S(d)=93 \log d+65. Also, estimate speed changes at miles 10 and 100.

See Solution

Problem 28268

The town's population is 12,000 and decreases by 1.8%1.8\% per year.
a) Model the population with an equation. b) Find the rate of change in 10 years. c) Find the rate when the population is 6,000.
Mark Value: 3

See Solution

Problem 28269

The town's population is 12000 and decreases at 1.8%1.8\% per year.
a) Model the population with an equation. b) Find the rate of change in 10 years. c) Find the rate when the population is 6000.

See Solution

Problem 28270

Find the average wind speed change from mile 10 to 100 using S(d)=93logd+65S(d)=93 \log d+65. Also, estimate speed change at miles 10 and 100.

See Solution

Problem 28271

Demand for snack cakes is p(x)=152x2+11x+5p(x)=\frac{15}{2 x^{2}+11 x+5}. Find revenue function and marginal revenue at x=0.75x=0.75 and x=2x=2.

See Solution

Problem 28272

Calculate the average wind speed change from mile 10 to mile 100 using S(d)=93logd+65S(d)=93 \log d+65. Also, find the speed change at miles 10 and 100.

See Solution

Problem 28273

Bestimme die Ableitungen der Funktionen: a) f(x)=5e7x2+4xf(x)=5 e^{7 x^{2}+4 x} b) g(x)=(2x47x)(x3+x)g(x)=(2 x^{4}-7 x)(x^{3}+x) c) h(x)=3(2x4+7)13h(x)=3(2 x^{4}+7)^{13}

See Solution

Problem 28274

Find the limit: limx04x+22x\lim _{x \rightarrow 0} \frac{\frac{4}{x+2}-2}{x}

See Solution

Problem 28275

Bestimme die Terme der 1. Ableitung von f(x)=8xf(x)=\sqrt{8 x}.

See Solution

Problem 28276

Untersuchen Sie die Funktion f(x)=3e0.3x31.2x3f(x) = 3 \cdot e^{0.3 x^{3} - 1.2 x} - 3 auf Nullstellen, Extrempunkte, Wendestellen und die Tangente im Ursprung.

See Solution

Problem 28277

Untersuchen Sie die Funktion f(x)=3e0.3x31.2x3f(x)=3 \cdot e^{0.3 x^{3}-1.2 x}-3 auf Nullstellen, Extrempunkte, Wendepunkte und Tangente im Ursprung.

See Solution

Problem 28278

Bestimme die Stammfunktion von g(x)=12x3+12x2xg(x) = \frac{1}{2} x^{3} + \frac{1}{2} x^{2} - x.

See Solution

Problem 28279

Berechnen Sie den Flächeninhalt der Funktion f(x)=12x2+2f(x)=-\frac{1}{2} x^{2}+2 zwischen den Nullstellen und x=2x=-2, x=2x=2.

See Solution

Problem 28280

Calculate the area between y=4sin(x)y=4 \sin (x) and y=3cos(x)y=3 \cos (x) from x=0x=0 to x=3π4x=\frac{3 \pi}{4}.

See Solution

Problem 28281

Find the tangent slope of f(x)=3x+12x+7f(x)=\frac{3x+1}{2x+7} at x=2x=-2, rounded to one decimal place.

See Solution

Problem 28282

Find the limit: limx23x25x24x25x6\lim _{x \rightarrow 2} \frac{3 x^{2}-5 x-2}{4 x^{2}-5 x-6}.

See Solution

Problem 28283

Find the average rate of change of f(x)=4(x+2)2+1f(x)=4(x+2)^{2}+1 on the interval 1<x<3-1<x<3.

See Solution

Problem 28284

Find the marginal cost function MC(x)M C(x) for C(x)=200+7x+x27C(x)=200+\frac{7}{x}+\frac{x^{2}}{7}. Then, calculate MC(12)M C(12) and the cost of the 13th processor.

See Solution

Problem 28285

Find the slope of the tangent to f(x)=3x+12x+7f(x)=\frac{3 x+1}{2 x+7} at x=2x=-2, rounded to one decimal place.

See Solution

Problem 28286

Find the velocity v(t)v(t) and acceleration a(t)a(t) of the particle with position s(t)=t1+t2s(t)=\frac{t}{1+t^{2}} for t0t \geq 0. Also, determine when it is slowing down or speeding up.

See Solution

Problem 28287

Given an initial deposit of \100,thebalanceafter100, the balance after tyearsis years is f(t)=100(1.08)^{t}.Findtheunitsofrateofchangeof. Find the units of rate of change of f(t)andaverageratesover and average rates over [0,0.5]and and [0,1]$. Round answers to two decimals.

See Solution

Problem 28288

Find the limit: limx735x5(x5)3\lim _{x \rightarrow 7} \frac{\sqrt[5]{3-5 x}}{(x-5)^{3}}

See Solution

Problem 28289

Find the value of cc in [1,4][1,4] satisfying the Mean Value Theorem for f(x)=5cos2(x2)+ln(x+1)3f(x)=5 \cos ^{2}\left(\frac{x}{2}\right)+\ln (x+1)-3.

See Solution

Problem 28290

Calculate the limit: limx3x+33x+12\lim _{x \rightarrow -3} \frac{x+3}{3-\sqrt{x+12}}

See Solution

Problem 28291

Given f(0)=4f(0)=-4 and f(10)=11f(10)=11, which must be true for some cc in (0,10)(0,10)? (A) f(c)=0f^{\prime}(c)=0 (B) f(c)=11+(4)100f^{\prime}(c)=\frac{11+(-4)}{10-0} (C) f(c)=11(4)100f^{\prime}(c)=\frac{11-(-4)}{10-0} (D) f(c)=1.5f^{\prime}(c)=1.5

See Solution

Problem 28292

On which closed interval does the function f(x)=x+4(x1)(x+3)f(x)=\frac{x+4}{(x-1)(x+3)} have an absolute max and min? Options: (A) [5,5][-5,5], (B) [3,1][-3,1], (C) [2,0][-2,0], (D) [0,5][0,5]

See Solution

Problem 28293

Two resistors aa and bb are in parallel with R=158R=\frac{15}{8} ohms and b=a+2b=a+2. Find aa and bb. Also, for M=3t42t3+5M=3t^4-2t^3+5, find the average change from day 1 to 3 and instantaneous change after 2 days.

See Solution

Problem 28294

Find the limits: w. limx3x+33x+12\lim _{x \rightarrow-3} \frac{x+3}{3-\sqrt{x+12}} x. limx4(8x2161x4)\lim _{x \rightarrow 4}\left(\frac{8}{x^{2}-16}-\frac{1}{x-4}\right) y. limxπ1+sinxcosx\lim _{x \rightarrow \pi} \frac{1+\sin x}{\cos x}
2. limx3π2sinxcosx\lim _{x \rightarrow \frac{3 \pi}{2}} \frac{\sin x}{\cos x}

See Solution

Problem 28295

Find the average rate of change of M=3t42t3+5M=3t^{4}-2t^{3}+5 from day 1 to day 3 and estimate the rate after 2 days.

See Solution

Problem 28296

Two resistors aa and bb are in parallel with R=15/8R=15/8 ohms. If b=a+2b=a+2, find aa and bb. Also, find the average and instantaneous rate of change of M=3t42t3+5M=3t^4-2t^3+5 from day 1 to 3 and at day 2.

See Solution

Problem 28297

Evaluate these limits: a. limx3x46x2+23\lim _{x \rightarrow 3} \sqrt[3]{\frac{x-4}{6 x^{2}+2}} b. limx31x219x3\lim _{x \rightarrow 3} \frac{\frac{1}{x^{2}}-\frac{1}{9}}{x-3} c. limh0(3+h)29h\lim _{h \rightarrow 0} \frac{(-3+h)^{2}-9}{h} d. limh0(2+h)38h\lim _{h \rightarrow 0} \frac{(2+h)^{3}-8}{h}

See Solution

Problem 28298

Find the derivative dydx\frac{d y}{d x} at the point (0,0)(0,0) for the curve defined by tan(xy)=x+y\tan (x y)=x+y.

See Solution

Problem 28299

Show that limx0x3(cos1x2)=0\lim _{x \rightarrow 0} x^{3}\left(\cos \frac{1}{x^{2}}\right)=0 using the Squeeze Theorem.

See Solution

Problem 28300

Find the limits: e. limx0x32x3+3x4\lim _{x \rightarrow 0} \frac{x^{3}}{2 x^{3}+3 x^{4}} f. limx12x+33x+2\lim _{x \rightarrow-1} \frac{2 x+3}{3 x+2} g. limx3x+33x+12\lim _{x \rightarrow 3} \frac{x+3}{3-\sqrt{x+12}} h. limx8x+8x3+2\lim _{x \rightarrow 8} \frac{x+8}{\sqrt[3]{x}+2} i. limx0(3+x)333(3+x)232\lim _{x \rightarrow 0} \frac{(3+x)^{3}-3^{3}}{(3+x)^{2}-3^{2}} j. limx9x93x\lim _{x \rightarrow 9} \frac{x-9}{3 \sqrt{x}} k. limx9x2813x\lim _{x \rightarrow 9} \frac{x^{2}-81}{3-\sqrt{x}} l. limx162x+x3/2x4+5\lim _{x \rightarrow 16} \frac{2 \sqrt{x}+x^{3 / 2}}{\sqrt[4]{x}+5}

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord