Calculus

Problem 16401

Beweisen Sie für x0x \neq 0, dass F(x)=ln(x)F(x) = \ln (|x|) eine Stammfunktion von f(x)=1xf(x) = \frac{1}{x} ist.

See Solution

Problem 16402

Berechne das Integral 151xdx\int_{1}^{5} \frac{1}{x} \, dx mit einer Stammfunktion.

See Solution

Problem 16403

Find the domain of the function f(x)=6xx2+1f(x)=\frac{6 x}{\sqrt{x^{2}+1}} and its transition points (max, min, inflection).

See Solution

Problem 16404

Beweisen Sie allgemein: Für x0x \neq 0 ist F(x)=ln(x)F(x)=\ln (|x|) die Stammfunktion von f(x)=1xf(x)=\frac{1}{x}.

See Solution

Problem 16405

Find the transition points and asymptotes of the function f(x)=xx216f(x)=\frac{x}{x^{2}-16}.

See Solution

Problem 16406

Find the derivatives of these functions:
1. f(x)=exπf(x)=e x-\pi
2. f(x)=34x4+6x2+3x5f(x)=-\frac{3}{4} x^{4}+6 x^{2}+3 x-5
3. g(x)=2(2x3)22x2g(x)=2(2 x-3)^{2}-\frac{2}{x^{2}}
4. f(x)=5x(4x21)f(x)=5 x (4 x^{2}-1)

See Solution

Problem 16407

Evaluate the integral Czezz21dz\oint_{C} \frac{z e^{z}}{z^{2}-1} d z where CC is the contour z=3|z|=3.

See Solution

Problem 16408

Find the limit as nn approaches infinity: limn12n3+m12m3+5m12n3+n+12m35n\lim _{n \rightarrow \infty} \frac{12 n^{3}+m-12 m^{3}+5 m}{\sqrt{12 n^{3}+n}+\sqrt{12 m^{3}-5 n}}

See Solution

Problem 16409

Find the limit: limx12n3+x12n3+5n12n3+x+12n35x\lim _{x \rightarrow \infty} \frac{12 n^{3}+x-12 n^{3}+5 n}{\sqrt{12 n^{3}+x}+\sqrt{12 n^{3}-5 x}}

See Solution

Problem 16410

Find the limit: limx12x3+x12x3+5x12x3+x+12x35x\lim _{x \rightarrow \infty} \frac{12 x^{3}+x-12 x^{3}+5 x}{\sqrt{12 x^{3}+x}+\sqrt{12 x^{3}-5 x}}.

See Solution

Problem 16411

Berechnen Sie die Geschwindigkeit v(t)v(t) eines Fallschirmspringers mit ve=0,048v_{e}=0,048, t=0,2t=0,2, g=9,81g=9,81 und mk=0,0261m_{k}=0,0261.

See Solution

Problem 16412

Evaluate the integral using integration by parts: (5x1)exdx\int(5 x-1) e^{-x} d x (Include constant CC)

See Solution

Problem 16413

Differentiate y=cos(x+5y)y=\cos (x+5 y) implicitly to find y=dydxy^{\prime}=\frac{d y}{d x}.

See Solution

Problem 16414

A pizza pan cools from 450F450^{\circ} \mathrm{F} to 74F74^{\circ} \mathrm{F}. After 5 min it's 300F300^{\circ} \mathrm{F}. Find when it's 130F130^{\circ} \mathrm{F} and 240F240^{\circ} \mathrm{F}. What happens to the temperature over time?

See Solution

Problem 16415

Evaluate the integral using integration by parts: (1x)exdx\int(1-x) e^{x} d x (use constant CC).

See Solution

Problem 16416

Find the derivative of f(x)=(2xx2)3f(x)=(2x-x^{2})^{3}.

See Solution

Problem 16417

Calculate the indefinite integral and include the constant of integration CC: (u+3)(8u+1)du\int(u+3)(8u+1) du

See Solution

Problem 16418

Find the indefinite integral: 9+x+xxdx\int \frac{9+\sqrt{x}+x}{x} d x (Use CC for the constant of integration.)

See Solution

Problem 16419

Find the integral: sec(5x)tan(5x)dx\int \sec (5 x) \tan (5 x) \, dx

See Solution

Problem 16420

Evaluate the integral from 0 to 1: 01(x14+14x)dx\int_{0}^{1}\left(x^{14}+14^{x}\right) d x

See Solution

Problem 16421

Berechne die Geschwindigkeit v(t)v(t) eines Körpers in der Luft mit g=9,81g=9,81, t=0,2t=0,2, ve=9,81v_{e}=9,81 und der Gleichung v(t)=ve(e2gtve11+e2gtve)v(t)=v_{e} \cdot\left(\frac{e^{\frac{2 \cdot g \cdot t}{v_{e}}}-1}{1+e^{\frac{2 \cdot g \cdot t}{v_{e}}}}\right).

See Solution

Problem 16422

Find the indefinite integral: sec(t)(9sec(t)+2tan(t))dt\int \sec(t)(9 \sec(t)+2 \tan(t)) dt. Use CC for the constant of integration.

See Solution

Problem 16423

Evaluate the integral from 0 to 13\frac{1}{\sqrt{3}}: 4t21t41dt\int 4 \frac{t^{2}-1}{t^{4}-1} dt

See Solution

Problem 16424

Given the velocity function v(t)=5t9v(t)=5 t-9 for 0t30 \leq t \leq 3, find: (a) displacement (m), (b) total distance (m).

See Solution

Problem 16425

Evaluate the integral: sin(t)1+cos(t)dt+C\int \sin (t) \sqrt{1+\cos (t)} \, dt + C.

See Solution

Problem 16426

Evaluate the integral using the substitution u=x3+7u=x^{3}+7. Find x2udx\int x^{2} \sqrt{u} \, dx and include constant CC.

See Solution

Problem 16427

Berechne die Geschwindigkeit v(0.2)v(0.2) mit ve=9,81v_{e}=9,81 und g=9,81g=9,81 in der Formel v(t)=ve(e2gtve11+e2gtve)v(t)=v_{e} \cdot\left(\frac{e^{\frac{2 \cdot g \cdot t}{v_{e}}}-1}{1+e^{\frac{2 \cdot g \cdot t}{v_{e}}}}\right).

See Solution

Problem 16428

Evaluate the integral using the substitution u=sin(θ)u=\sin(\theta): sin5(θ)cos(θ)dθ,C=constant.\int \sin^{5}(\theta) \cos(\theta) d\theta, \, C = \text{constant}.

See Solution

Problem 16429

Find the area above the xx-axis for the curve y=1x2y=1-x^{2} between x=1x=-1 and x=2x=2.

See Solution

Problem 16430

Evaluate the integral with substitution: x+1x2+2xdx=+C\int \frac{x+1}{\sqrt{x^{2}+2 x}} d x=\square+C

See Solution

Problem 16431

Find the velocity of a falling body at t=3t = 3 and t=6t = 6 with g=9.81m/s2g = 9.81 \, m/s^2 and ve=0.61m/sv_e = 0.61 \, m/s using v(t)=ve(e2gtve11+e2gtve)v(t)=v_{e} \cdot\left(\frac{e^{\frac{2 \cdot g \cdot t}{v_{e}}}-1}{1+e^{\frac{2 \cdot g \cdot t}{v_{e}}}}\right)

See Solution

Problem 16432

Find the increase in total cost when production changes from x=30x=30 to x=90x=90 boxes, given marginal cost 4+x21,0004+\frac{x^{2}}{1,000}.

See Solution

Problem 16433

Determine if the integral 66(x+7)3/2dx\int_{6}^{\infty} \frac{6}{(x+7)^{3 / 2}} d x is convergent or divergent and evaluate if convergent.

See Solution

Problem 16434

Evaluate the integral using the substitution u=7+x4u=7+x^{4}: x3(u4)dx,C is the constant of integration.\int x^{3}(u^{4}) d x, \quad C \text{ is the constant of integration.}

See Solution

Problem 16435

How much to invest now at 8\% interest to have \9000in13years?Usetheformulaforcontinuouscompounding:9000 in 13 years? Use the formula for continuous compounding: A = Pe^{rt}$.

See Solution

Problem 16436

Calculate the integral: 0131x2dx\int_{0}^{1} \frac{-3}{\sqrt{1-x^{2}}} d x

See Solution

Problem 16437

How long does it take for a bacteria population to double with a growth rate of 2.7%2.7\% per hour? Round to the nearest hundredth.

See Solution

Problem 16438

Evaluate the integral from ee to e36e^{36} of 1xln(x)dx\frac{1}{x \sqrt{\ln(x)}} \, dx.

See Solution

Problem 16439

Find the half-life of a substance with a decay rate of 7.2%7.2\% per day. Round to the nearest hundredth.

See Solution

Problem 16440

Is the integral x8ex8dx\int_{-\infty}^{\infty} x^{8} e^{-x^{8}} d x convergent or divergent? Evaluate if convergent.

See Solution

Problem 16441

Find the limit: limx1+5+lnx5e9x\lim _{x \rightarrow 1^{+}} \frac{5+\ln x}{5-e^{9 x}}.

See Solution

Problem 16442

Berechne die Geschwindigkeit eines Fallschirmspringers mit t=7t=7, ve=9,61v_e=9,61 und g=9,81g=9,81 in der Formel v(t)=ve(e2gtve11+e2gtve)v(t)=v_{e} \cdot\left(\frac{e^{\frac{2 \cdot g \cdot t}{v_{e}}}-1}{1+e^{\frac{2 \cdot g \cdot t}{v_{e}}}}\right).

See Solution

Problem 16443

Berechne die Geschwindigkeit v(3,8)v(3,8) mit g=9,81g=9,81 m/s² und ve=9,61v_{e}=9,61 m/s: v(t)=ve(e2gtve11+e2gtve)v(t)=v_{e} \cdot\left(\frac{e^{\frac{2 \cdot g \cdot t}{v_{e}}}-1}{1+e^{\frac{2 \cdot g \cdot t}{v_{e}}}}\right).

See Solution

Problem 16444

Find the limit as xx approaches π4\frac{\pi}{4} of (tanx1)secx(\tan x - 1) \sec x.

See Solution

Problem 16445

Evaluate the limit using L'Hôpital's Rule if needed: limx3+xe2/xxarctan(x)\lim _{x \rightarrow \infty} \frac{3+x e^{2 / x}}{x \arctan (x)}

See Solution

Problem 16446

Find the limit as xx approaches infinity for 5x413x+7\frac{5x - 4}{13x + 7}.

See Solution

Problem 16447

Find the velocity x(t)x'(t), speed, and acceleration of x(t)=t312t2+36t27x(t)=t^{3}-12t^{2}+36t-27. When is the particle moving forward?

See Solution

Problem 16448

Find the derivatives of the functions: g(w)=0wsin(2+t5)dtg(w)=\int_{0}^{w} \sin(2+t^{5}) dt and h(x)=xz2z4+4dzh(x)=\int^{\sqrt{x}} \frac{z^{2}}{z^{4}+4} dz.

See Solution

Problem 16449

Evaluate the integral: 12(3u5)(u+2)du\int_{-1}^{2}(3 u-5)(u+2) du

See Solution

Problem 16450

Find yy from x2/3+y2/3=1x^{2/3} + y^{2/3} = 1, then find its derivatives for x0,±1x \neq 0, \pm 1.

See Solution

Problem 16451

Find the time tt for maximum concentration of the drug C(t)=13.2te0.15tC(t)=13.2 t \cdot e^{-0.15 t} and its value at that time.

See Solution

Problem 16452

Find the interval where the function f(x)=0x(4t2)et2dtf(x)=\int_{0}^{x}(4-t^{2}) e^{t^{2}} dt is increasing.

See Solution

Problem 16453

Find the quantity qq that maximizes profit, given R(q)=550qR(q)=550q and C(q)=10,000+5q2C(q)=10,000+5q^{2}. What is the profit? q= q= Profit =$i=\$ \mathbf{i}

See Solution

Problem 16454

Find the quantity qq that maximizes profit, given revenue R(q)=450qR(q)=450q and cost C(q)=10,000+5q2C(q)=10,000+5q^2. What is the profit? q=q= Profit =$=\$

See Solution

Problem 16455

Find the limit limnFn+1Fn\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}} using the Fibonacci formula to 3 decimal places.

See Solution

Problem 16456

Find the maximum concentration of the drug modeled by C(t)=8te0.2tC(t)=8 t e^{-0.2 t}. Choices: 10.6, 5, 14.7, 32.2, 20.2.

See Solution

Problem 16457

Calculez f(3)f^{\prime}(3) en utilisant la dérivée implicite pour les équations suivantes : a) x2y+xy2=3xx^{2} y+x y^{2}=3 x, b) xy=1+x2y\sqrt{x y}=1+x^{2} y, c) xy4+x2y=x+3yx y^{4}+x^{2} y=x+3 y, d) yey=x2exy e^{y}=x^{2} e^{x}.

See Solution

Problem 16458

Find the profit from the 51st and 91st items using C(50)C'(50), R(50)R'(50), C(90)C'(90), R(90)R'(90); compare C(78)C'(78) and R(78)R'(78).

See Solution

Problem 16459

Find the local maximum of y=13x352x2+6x5y = \frac{1}{3}x^3 - \frac{5}{2}x^2 + 6x - 5 in the grid [10,10][-10,10]. Round to the nearest hundredth.

See Solution

Problem 16460

Find the marginal revenue MRM R when q=50q=50 for R=ln(5+1000q2)R=\ln(5+1000q^{2}). Round to two decimal places.

See Solution

Problem 16461

Bestimmen Sie die Grenzwerte für die folgenden Ausdrücke: a) limx3x225x5\lim _{x \rightarrow 3} \frac{x^{2}-25}{x-5} b) limx33x227x3\lim _{x \rightarrow 3} \frac{3 x^{2}-27}{x-3} c) limx1x2xx1\lim _{x \rightarrow 1} \frac{x^{2}-x}{x-1} d) limx2x416x+2\lim _{x \rightarrow-2} \frac{x^{4}-16}{x+2}

See Solution

Problem 16462

Nach einem Brand steigt die PFT-Konzentration im See. Berechne max. Konzentration, Zeitpunkt unter 50ngl50 \frac{\mathrm{ng}}{\mathrm{l}}, stärkster Abfall und langfristige Konzentration. Funktion: k(x)=250xe0,5x+20k(x)=250 x \cdot e^{-0,5 x}+20.

See Solution

Problem 16463

Find the price pp that maximizes revenue for the demand curve q=10007p2q=1000-7p^{2}. Round to two decimal places.

See Solution

Problem 16464

Berechne die Grenzwerte: a) limx4x216x4\lim _{x \rightarrow-4} \frac{x^{2}-16}{x-4}, b) limx1x3xx+1\lim _{x \rightarrow-1} \frac{x^{3}-x}{x+1}, c) limx33x2x26x\lim _{x \rightarrow 3} \frac{3-x}{2 x^{2}-6 x}, d) limx2x416x2\lim _{x \rightarrow 2} \frac{x^{4}-16}{x-2}.

See Solution

Problem 16465

Find the limit: limnFn+1Fn\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}} using the Fibonacci formula to 3 decimal places.

See Solution

Problem 16466

A ball is thrown horizontally at 5 m/s5 \mathrm{~m/s} from a 30 m30 \mathrm{~m} cliff. How long until it hits the ground?

See Solution

Problem 16467

Find the limit: limx1+4+lnx4e5x\lim _{x \rightarrow 1^{+}} \frac{4+\ln x}{4-e^{5 x}}.

See Solution

Problem 16468

Identify which statements about series are implied by the nn-th term test. Select all that apply.

See Solution

Problem 16469

Identify which statements about series are implied by the nn-th term test. Select all that apply.

See Solution

Problem 16470

Show that the polynomial f(x)=3x32x+6f(x)=3 x^{3}-2 x+6 has a real zero between -2 and -1 using the intermediate value theorem.

See Solution

Problem 16471

Find the sum S=n=1anS=\sum_{n=1}^{\infty} a_{n} given ST=2T3T+5S_{T}=\frac{2 T-3}{T+5}.

See Solution

Problem 16472

Find the sum S=n=1anS=\sum_{n=1}^{\infty} a_{n} if ST=2T3T+5S_{T}=\frac{2 T-3}{T+5}. Choices: 0, 1, 2, 3, 4, 5.

See Solution

Problem 16473

Find the infinite sum S=n=1anS=\sum_{n=1}^{\infty} a_{n} given ST=2T3T+5S_{T}=\frac{2 T-3}{T+5}. Options: 0, 1, 2, 3, 4, 5.

See Solution

Problem 16474

Evaluate the integral C2z1z2(z3+1)dz\oint_{C} \frac{2 z-1}{z^{2}(z^{3}+1)} d z using Cauchy's residue theorem over the rectangle CC.

See Solution

Problem 16475

Berechnen Sie das Volumen des Rotationskörpers von f(x)=32xf(x)=\frac{3}{2} \sqrt{x} über [0;9][0 ; 9] um die x-Achse.

See Solution

Problem 16476

Find the limit: limx2exx2+2x5\lim _{x \rightarrow-\infty} \frac{-2 e^{-x}}{x^{2}+2 x-5}.

See Solution

Problem 16477

Find the derivative of g(x)=x2+cos(x)sin(x)g(x)=x^{2}+\cos(x)\sin(x).

See Solution

Problem 16478

Find the derivative of h(x)=x25xh(x)=\sqrt{x^{2}-5x}.

See Solution

Problem 16479

Find the derivative of p(x)=xecos(x)p(x)=x e^{\cos (x)}.

See Solution

Problem 16480

Evaluate the limit: limx06x7xx=\lim _{x \rightarrow 0} \frac{6^{x}-7^{x}}{x}= using L'Hôpital's Rule.

See Solution

Problem 16481

Find the derivative of the function q(x)=ln(x2+13)q(x)=\ln \left(\sqrt[3]{x^{2}+1}\right).

See Solution

Problem 16482

Find the limit using l'Hôpital's rule: limx3(4x)1/(x3)x\lim _{x \rightarrow 3} \frac{(4-x)^{1/(x-3)}}{x}. State DNE if it doesn't exist.

See Solution

Problem 16483

Find the indeterminate form of r(x)=(4x)1x3r(x)=(4-x)^{\frac{1}{x-3}} as x3x \to 3 and evaluate the limit using l'Hôpital's rule.

See Solution

Problem 16484

Find the inflection point and asymptotes of f(x)=xx225f(x) = \frac{x}{x^2-25}. Use exact numbers and equations for asymptotes.

See Solution

Problem 16485

Find the domain and transition points of f(x)=xx225f(x) = \frac{x}{x^2-25}. Identify domain as an interval and transition points as a list.

See Solution

Problem 16486

Find the volume of the solid formed by rotating the area between y=9x2y=9x^{2}, x=2x=2, x=3x=3, and y=0y=0 around the xx-axis. V= V=

See Solution

Problem 16487

Find the average rate of change of f(x)=2x2+4x6f(x)=2 x^{2}+4 x-6 from x=3x=-3 to x=3x=3.

See Solution

Problem 16488

Find the average rate of change of f(x)f(x) from x=5x = -5 to x=5x = 5 given values of f(x)f(x).

See Solution

Problem 16489

Find the average rate of change of f(x)f(x) from x=4x = -4 to x=4x = 4 given f(4)=27f(-4) = -27 and f(4)=27f(4) = -27.

See Solution

Problem 16490

Find the derivative at x=0x=0: ddx(uv+u+v)\frac{d}{d x}(u v + u + v) given u(0)=1,v(0)=2,u(0)=5,v(0)=3u(0)=1, v(0)=2, u'(0)=5, v'(0)=-3.

See Solution

Problem 16491

Given functions uu and vv with u(0)=1u(0)=1, v(0)=2v(0)=2, u(0)=5u'(0)=5, v(0)=3v'(0)=-3, find derivatives at x=0x=0 for: (a) uv+u+vu v + u + v, (b) uv2\frac{u}{v^2}, (c) euve^{u v}, (d) cos(2πu)\cos(2 \pi u).

See Solution

Problem 16492

Given u(0)=1u(0)=1, v(0)=2v(0)=2, u(0)=5u'(0)=5, v(0)=3v'(0)=-3, find the derivatives at x=0x=0: (a) ddx(uv+u+v)\frac{d}{dx}(uv+u+v), (b) ddx(uv2)\frac{d}{dx}(\frac{u}{v^2}), (c) ddx(euv)\frac{d}{dx}(e^{uv}), (d) ddx(cos(2πu))\frac{d}{dx}(\cos(2\pi u)).

See Solution

Problem 16493

Set up a definite integral for the area under the curve from (0,2) to (4,0) without evaluating it.

See Solution

Problem 16494

Calculate the integral 6636x2dx\int_{-6}^{6} \sqrt{36-x^{2}} \, dx.

See Solution

Problem 16495

Find the integral of f(x)=4xf(x)=4-|x| from -2 to 2, where the graph forms an upside down "v".

See Solution

Problem 16496

In a series circuit, RR increases at 3 ohms/s and XX decreases at 2 ohms/s. Find dZdt\frac{dZ}{dt} at t=10t=10, given R=10R=10, X=20X=20.

See Solution

Problem 16497

Calculate the expression: π402dx2x+502dx1+x\frac{\pi}{4} \int_{0}^{2} \frac{dx}{2-x} + 5 \int_{0}^{2} \frac{dx}{1+x}.

See Solution

Problem 16498

Calculate the amount from an investment of \$10 at a continuous compound rate of 10% over 2 years.

See Solution

Problem 16499

Calculate the expression: 11402dx2x29402dx2+x+502dx1+x\frac{11}{4} \int_{0}^{2} \frac{dx}{2-x} - \frac{29}{4} \int_{0}^{2} \frac{dx}{2+x} + 5 \int_{0}^{2} \frac{dx}{1+x}.

See Solution

Problem 16500

Evaluate the integral: 0π/466(sin(θ))28(cos(θ))2dθ\int_{0}^{\pi / 4} \frac{6-6(\sin (\theta))^{2}}{8(\cos (\theta))^{2}} d \theta

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord