Calculus

Problem 19301

Find the area between y=3x2y=3-x^{2} and y=xy=\sqrt{x} from x=0x=0 to x=1x=1.

See Solution

Problem 19302

Évaluez les intégrales suivantes : a) x1+4xdx\int x \sqrt{1+4 x} d x, b) 1+2x1+16x2dx\int \frac{1+2 x}{1+16 x^{2}} d x, c) (4t+2)et2+tdx\int(4 t+2) e^{t^{2}+t} d x, d) exex+exdx\int \frac{e^{x}}{e^{x}+e^{-x}} d x, e) x22xdx\int x^{2} 2^{x} d x, f) x2e4xdx\int x^{2} e^{4 x} d x, g) 3t3sin(t2)dt\int 3 t^{3} \sin \left(t^{2}\right) d t, h) x2(lnx)2dx\int x^{2}(\ln x)^{2} d x. Trouvez le profit maximal d'un appareil acheté à \.2500avec.2500 avec Ret et Cdonneˊspar donnés par \frac{d R}{d t}=100(18-3 \sqrt{t})et et \frac{d C}{d t}=100(2+\sqrt{t})$.

See Solution

Problem 19303

Find the area between the curves y=2x33x29xy=2 x^{3}-3 x^{2}-9 x and y=x32x23xy=x^{3}-2 x^{2}-3 x. Provide the exact value.

See Solution

Problem 19304

Find the tangent line to f(x)=x25x+4f(x)=x^{2}-5x+4 at x=5x=5, the normal at x=3x=3, and their intersection point PP.

See Solution

Problem 19305

An object moves with velocity v(t)=t(8t)v(t)=t(8-t). Its initial position is -3. Find its position after 16 sec and total distance traveled.

See Solution

Problem 19306

Find the general antiderivative of f(x)=4ex+sec2x+x7/3+x3/7f(x)=4 e^{x}+\sec^{2} x+x^{7/3}+x^{3/7}.

See Solution

Problem 19307

Find the sky diver's velocity v(t)=59(1e0.23t)v(t)=59(1-e^{-0.23 t}) after 2 seconds and 5 seconds, rounding to the nearest whole number.

See Solution

Problem 19308

Choose the integral for the area bounded by y=x2y=x^{2}, x=2x=2, and the xx-axis: 02x2dx\int_{0}^{2} x^{2} d x.

See Solution

Problem 19309

Find the area above the xx-axis and below y=4x2+4x+3y=4x^2+4x+3 from x=0x=0 to x=2x=2. Enter an exact value.

See Solution

Problem 19310

Find the tangent and normal lines at point P(4,2.5)P(4,2.5) on the curve y=x+1xy=\sqrt{x}+\frac{1}{\sqrt{x}}, then calculate the area of triangle ABPABP.

See Solution

Problem 19311

Find the initial temperature and the temperature after 18 minutes for T(x)=5+27e0.041xT(x)=-5+27 e^{-0.041 x}. Round to the nearest degree.

See Solution

Problem 19312

Find the area above the xx-axis under the curve y=1x4y=1-x^{4}. Enter the exact value, e.g., "3+1/2".

See Solution

Problem 19313

Find the area between y=2x+1y=2x+1 and y=x2y=-x^{2} from x=0x=0 to x=1x=1.

See Solution

Problem 19314

Evaluate the integral from -3 to 0: 30(8xex)dx\int_{-3}^{0}\left(8 x-e^{x}\right) d x

See Solution

Problem 19315

Find the area between f(x)=1x2f(x)=1-x^{2} and g(x)=44x2g(x)=4-4x^{2} from x=0x=0 to x=1x=1.

See Solution

Problem 19316

An object moves with velocity v(t)=t(6t)v(t)=t(6-t), starting 5 units left of the origin. Find its position and distance after 18 seconds.

See Solution

Problem 19317

Find the total area between the curve y=f(x)=x2x2y=f(x)=x^{2}-x-2 and the xx-axis from x=7x=-7 to x=6x=6. Calculate:
76f(x)dx \int_{-7}^{6} f(x) \, dx
Interpret this integral in terms of areas.

See Solution

Problem 19318

Find the tangent line equation at point P(4,2.5)P(4,2.5) on the curve y=x+1xy=\sqrt{x}+\frac{1}{\sqrt{x}} in the form ax+by+c=0a x+b y+c=0.

See Solution

Problem 19319

Find the tangent and normal lines at point P(4,2.5)P(4,2.5) on the curve y=x+1xy=\sqrt{x}+\frac{1}{\sqrt{x}} in the form ax+by+c=0a x+b y+c=0.

See Solution

Problem 19320

Find the tangent line equation at point P(4,2.5)P(4,2.5) on the curve y=x+1xy=\sqrt{x}+\frac{1}{\sqrt{x}} in the form ax+by+c=0a x+b y+c=0.

See Solution

Problem 19321

Rewrite the integral x(x+1)11dx\int x(x+1)^{11} dx using u=x+1u = x + 1 and dudu.

See Solution

Problem 19322

Eine Rennrodlerin fährt im Eiskanal. Gegeben sind: Durchschnittsgeschwindigkeit 35ms35 \frac{\mathrm{m}}{\mathrm{s}} (20s-40s) und w(20)=600w(20)=600.
a) Bestimme w(30)w^{\prime}(30) in ms\frac{m}{s}. b) Finde w(40)w(40). c) Zeige, dass es ein tt mit w(t)>35w^{\prime}(t)>35 gibt. d) Was sagt w(30)w(30) aus, wenn w(20)=600w(20)=600?

See Solution

Problem 19323

Rewrite the integral using uu and dudu: 18sec2(x)tan2(x)dx,u=tan(x)\int 18 \sec^2(x) \tan^2(x) dx, \quad u=\tan(x).

See Solution

Problem 19324

Find the general function ff such that f(x)=8x+cosx+3f^{\prime \prime}(x)=8 x+\cos x+3.

See Solution

Problem 19325

Differentiate the equation V=3x1.1ln(x)+1.7y1.6ln(y)V=-3 x-1.1 \ln (x)+1.7 y-1.6 \ln (y) implicitly to find dydx\frac{d y}{d x}. Evaluate at x=5x=5, y=5y=5. Round to three decimal places.

See Solution

Problem 19326

Find the integral: 3x+1(3x2+2x)3dx\int \frac{3 x+1}{(3 x^{2}+2 x)^{3}} dx

See Solution

Problem 19327

What are the units of abf(t)dt\int_{a}^{b} f(t) dt if f(t)f(t) is in m/s² and tt is in seconds?

See Solution

Problem 19328

Estimate f(6.4)f(6.4) using linear approximation with f(6)=3.4f(6)=3.4 and f(6)=2.3f'(6)=2.3. Round to three decimal places.

See Solution

Problem 19329

Find the box dimensions with a length of 12 cm and volume of 1500 cm³ that minimize surface area.

See Solution

Problem 19330

Compute the flux SFdS\iint_{S} \mathbf{F} \cdot d \mathbf{S} for F(x,y,z)=(x2,y,z)\mathbf{F}(x,y,z)=(x^{2}, y, z) using the divergence theorem on the unit sphere SS.

See Solution

Problem 19331

A substance grows at 17%17\% per day. If it starts at 719 grams, find its mass after 6 days. Round to the nearest tenth.

See Solution

Problem 19332

Consider the system:
θ˙1=Esinθ1+Ksin(θ2θ1),θ˙2=E+sinθ2+Ksin(θ1θ2) \dot{\theta}_{1}=E-\sin \theta_{1}+K \sin \left(\theta_{2}-\theta_{1}\right), \quad \dot{\theta}_{2}=E+\sin \theta_{2}+K \sin \left(\theta_{1}-\theta_{2}\right)
where E,K0E, K \geq 0.
a) Find and classify fixed points. b) Show periodic solutions exist for large EE and identify the bifurcation type. c) Determine the bifurcation curve in (E,K)(E, K) space for these solutions.

See Solution

Problem 19333

Find the integral: 25z2(125z3+1)12dz\int 25 z^{2}\left(125 z^{3}+1\right)^{12} d z

See Solution

Problem 19334

A radioactive substance starts at 259 kg259 \mathrm{~kg} and decays at 6%6\% per day. Find its mass after 3 days.

See Solution

Problem 19335

A biologist has a 5483-gram sample of a radioactive substance. Find the mass after 5 hours with a decay rate of 12%12\% per hour.

See Solution

Problem 19336

Find the horizontal asymptotes for f(x)=x2+4x24f(x)=\frac{x^{2}+4}{x^{2}-4}. Options: y=1y=1, x=4x=4, x=2x=-2, y=1y=-1.

See Solution

Problem 19337

Find the stationary points of the curve defined by f(x)=2x312x2x+2f(x)=2 x^{3}-\frac{1}{2} x^{2}-x+2.

See Solution

Problem 19338

Bestimme die ersten beiden Ableitungen von f(x)=16x3+34x2f(x)=-\frac{1}{6} x^{3}+\frac{3}{4} x^{2} und zeichne den Graphen.

See Solution

Problem 19339

Find the derivative of f(x)=4x2xf(x)=-4 x^{2}-x. What is f(x)f^{\prime}(x)?

See Solution

Problem 19340

Find the derivative of g(x)=12x1+2xtsintdtg(x)=\int_{1-2 x}^{1+2 x} t \sin t \, dt.

See Solution

Problem 19341

Find all lines with slope -1 that are tangent to the curve y=1x1y=\frac{1}{x-1}.

See Solution

Problem 19342

An object dropped from a 100-m tower has height 1004.9t2100 - 4.9t^2 m. Find its falling speed at t=2t = 2 sec.

See Solution

Problem 19343

Compute the outward flux of F(x,y,z)=1xi+5yj+3zk\mathbf{F}(x, y, z)=1 x \mathbf{i}+5 y \mathbf{j}+3 z \mathbf{k} across the prism 1x6,1y7,1z7-1 \leq x \leq 6, -1 \leq y \leq 7, -1 \leq z \leq 7.

See Solution

Problem 19344

Find the derivative of f(x)=x25x4f(x)=x^{2}-5x-4. Which option is correct: (a) 4-4, (b) 77, (c) x25x4x^{2}-5x-4, or (d) 2x52x-5?

See Solution

Problem 19345

Find the derivatives of f(x)=4x2f(x)=4-x^{2} at x=3x=-3, 00, and 11: f(3)f^{\prime}(-3), f(0)f^{\prime}(0), f(1)f^{\prime}(1).

See Solution

Problem 19346

A substance grows at a rate of 16%16\% daily. If it starts at 48 grams, find its mass after 2 days. Round to the nearest tenth.

See Solution

Problem 19347

Compute the indefinite integral: sin2xsinxdx\int \frac{\sin 2 x}{\sin x} \, dx.

See Solution

Problem 19348

Find dwdq\frac{d w}{d q} if w=5qln5w=\frac{5^{q}}{\ln 5}.

See Solution

Problem 19349

Find the derivative of the function f(t)=e8tt3+10f(t)=\frac{e^{8 t}}{t^{3}+10}, denoted as f(t)=Ltf^{\prime}(t)=L_{t}.

See Solution

Problem 19350

Find the derivative dwdq\frac{d w}{d q} if w=5qln5w=\frac{5^{q}}{\ln 5}.

See Solution

Problem 19351

Find the derivative of the function f(t)=e8tt3+10f(t)=\frac{e^{8 t}}{t^{3}+10}. What is f(t)f^{\prime}(t)?

See Solution

Problem 19352

Evaluate the limit: limx3x2x124x2+11x3\lim _{x \rightarrow-3} \frac{x^{2}-x-12}{4 x^{2}+11 x-3}. If it doesn't exist, write DNE.

See Solution

Problem 19353

Find the derivative of the function j(x)=x5lnxj(x)=\sqrt[5]{x} \ln x. What is j(x)j^{\prime}(x)?

See Solution

Problem 19354

A soda can's temperature T(x)=3+21e0.025xT(x) = -3 + 21 e^{-0.025 x}; find T(0)T(0) and T(18)T(18). Round to the nearest degree.

See Solution

Problem 19355

Calculate the half-life of a radioactive element with decay function A(t)=A0e0.0355tA(t)=A_{0} e^{-0.0355 t}. Answer: \square years.

See Solution

Problem 19356

Find the half-life of a radioactive element with decay function A(t)=A0e0.021tA(t)=A_{0} e^{-0.021 t}. Round to the nearest tenth.

See Solution

Problem 19357

Find the total increase in a fruit fly population from day 1 to day 12 given g(t)=4e0.1tg(t)=4 e^{0.1 t} and initial population of 380.

See Solution

Problem 19358

Find g(1)g^{\prime}(-1), g(2)g^{\prime}(2), and g(3)g^{\prime}(\sqrt{3}) for g(t)=1t2g(t)=\frac{1}{t^{2}}.

See Solution

Problem 19359

Find the derivative of the function f(t)=e8tt3+10f(t)=\frac{e^{8 t}}{t^{3}+10}. What is f(t)f^{\prime}(t)?

See Solution

Problem 19360

Find the number of fruit flies added from day 4 to day 14, given g(t)=5e0.02tg(t)=5 e^{0.02 t} and initial population 340.

See Solution

Problem 19361

Evaluate the integral from -3 to 1 of the constant -7: 31(7)dp\int_{-3}^{1}(-7) d p.

See Solution

Problem 19362

How long to double \$3000 at a continuous interest rate of 1.75\%? Round to the nearest hundredth.

See Solution

Problem 19363

Evaluate the integral from -2 to 4 of the function 5t65t - 6.

See Solution

Problem 19364

Evaluate the integral from 0 to 1 of (5x24x+9)(5 x^{2}-4 x+9). What is the result? 01(5x24x+9)dx=\int_{0}^{1}(5 x^{2}-4 x+9) d x=\square

See Solution

Problem 19365

Find the indefinite integral using substitution: 6(6x5)3dx\int 6(6 x-5)^{3} d x

See Solution

Problem 19366

Evaluate the integral: 9e9t9+e9tdt\int \frac{9 e^{9 t}}{9+e^{9 t}} d t

See Solution

Problem 19367

Find the indefinite integral using substitution: x3+2xx4+4x2+2dx\int \frac{x^{3}+2 x}{x^{4}+4 x^{2}+2} d x

See Solution

Problem 19368

Find the derivative S(t)S^{\prime}(t), compute S(3)S(3) and S(3)S^{\prime}(3), and interpret S(11)S(11) and S(11)S^{\prime}(11).

See Solution

Problem 19369

Find the indefinite integral using substitution: 5x+9(5x2+18x)3dx\int \frac{5 x+9}{(5 x^{2}+18 x)^{3}} d x

See Solution

Problem 19370

Find the indefinite integral using substitution: x3+2xx4+4x2+3dx\int \frac{x^{3}+2 x}{x^{4}+4 x^{2}+3} d x

See Solution

Problem 19371

Find the indefinite integral using substitution: x32x4+1dx\int \frac{x^{3}}{2 x^{4}+1} d x

See Solution

Problem 19372

Find the indefinite integral using substitution: (t5+2t)(5t4+2)dt\int\left(\sqrt{t^{5}+2 t}\right)\left(5 t^{4}+2\right) d t.

See Solution

Problem 19373

Find the indefinite integral using substitution: z7z25dz\int z \sqrt{7 z^{2}-5} \, dz

See Solution

Problem 19374

Find the indefinite integral using substitution: 6x5e8x6dx\int 6 x^{5} e^{8 x^{6}} d x

See Solution

Problem 19375

Find the function ff given that f(x)=81+x2+2sinhx+9sech2x+9xln9f'(x)=\frac{8}{1+x^{2}}+2 \sinh x+9 \operatorname{sech}^{2} x+9^{x} \ln 9 and f(0)=14f(0)=14.

See Solution

Problem 19376

Find the function ff given f(x)=81+x2+2sinhx+9sech2x+9xln9f'(x)=\frac{8}{1+x^{2}}+2 \sinh x+9 \operatorname{sech}^{2} x+9^{x} \ln 9 and f(0)=14f(0)=14.

See Solution

Problem 19377

Calculate the integral: (15x+2)dx\int(15 \sqrt{x}+\sqrt{2}) d x.

See Solution

Problem 19378

Evaluate the integral: 3x(x2+2)dx\int 3 x\left(x^{2}+2\right) d x

See Solution

Problem 19379

Evaluate the integral: 4x7dx\int \frac{4}{x^{7}} d x

See Solution

Problem 19380

Evaluate the integral: (22.5t3.58t1)dt\int\left(-22.5 t^{-3.5}-8 t^{-1}\right) dt

See Solution

Problem 19381

Evaluate the integral 19x7dx\int \frac{1}{9 x^{7}} d x.

See Solution

Problem 19382

Find the integral of the function: 3e0.5xdx\int 3 e^{-0.5 x} \mathrm{dx}.

See Solution

Problem 19383

Approximate the integral 38xdx\int_{3}^{8} \sqrt{x} \, dx using Riemann sums with 5 subintervals: a) right endpoints, b) left endpoints, c) midpoints. Round answers to two decimal places.

See Solution

Problem 19384

Evaluate the integral: 1+7t62tdt\int \frac{1+7 t^{6}}{2 t} d t

See Solution

Problem 19385

Evaluate the integral: (e10u+4u)du\int\left(e^{10 u}+4 u\right) d u

See Solution

Problem 19386

Calculate the integral of (9x+5)2(9x + 5)^{2} with respect to xx.

See Solution

Problem 19387

Evaluate the integral of the function: 13xdx\int 13^{x} d x.

See Solution

Problem 19388

Find the function f(x)f(x) where f(x)=x2+sin(x)f^{\prime \prime}(x)=x^{2}+\sin (x), given f(0)=2f(0)=2 and f(0)=0f^{\prime}(0)=0.

See Solution

Problem 19389

Find the derivative of f(x)=3x5f(x)=3x-5. Is it (a) 3-3, (b) 33, (c) 3x53x-5, or (d) 33?

See Solution

Problem 19390

Find the equation of the curve where the slope is f(x)=4x2+3x6f^{\prime}(x)=4 x^{2}+3 x-6 and it passes through (0,4)(0,4).

See Solution

Problem 19391

Identify the divergent series from the following:
I: 24-12+6-3+...
II: -0.2+1-5+25-...
III: 64+32+16+8+...
IV: 1913+13+...\frac{1}{9}-\frac{1}{3}+1-3+...
Options: I only, I and III, III only, II and IV, I, III and IV.

See Solution

Problem 19392

Find p(1)p^{\prime}(1), p(3)p^{\prime}(3), and p(2/3)p^{\prime}(2/3) for p(θ)=3θp(\theta)=\sqrt{3\theta}.

See Solution

Problem 19393

Find the limit of the sum: limn1ni=1n[(in)2+2(in)+5]\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left[\left(\frac{i}{n}\right)^{2}+2\left(\frac{i}{n}\right)+5\right]

See Solution

Problem 19394

Compute the limit of the sum: limn1ni=1n[(in)2+2(in)+5]\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left[\left(\frac{i}{n}\right)^{2}+2\left(\frac{i}{n}\right)+5\right]

See Solution

Problem 19395

Evaluate the integral: sec2(1/x)x2dx\int \frac{\sec ^{2}(1 / x)}{x^{2}} d x

See Solution

Problem 19396

Differentiate the function g(t)=95t7t+6g(t)=\frac{9-5 t}{7 t+6}.

See Solution

Problem 19397

Determine if the series k=1(1)k57\sum_{k=1}^{\infty} \frac{(-1)^{k}}{\frac{5}{7}} converges absolutely, conditionally, or diverges.

See Solution

Problem 19398

Determine if the series k=15cosk6k4\sum_{k=1}^{\infty} \frac{5 \cos k}{6 k^{4}} converges absolutely, conditionally, or diverges.

See Solution

Problem 19399

Determine if the series k=1(1)kk57\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{\frac{5}{7}}} converges absolutely, conditionally, or diverges.

See Solution

Problem 19400

Determine if the series k=1(1)k+1k4k7+1\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k^{4}}{k^{7}+1} converges absolutely, conditionally, or diverges.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord