Calculus

Problem 32201

Differentiate the function f(x)=lnx2f(x) = \ln x^{2}.

See Solution

Problem 32202

Find the second derivative F(2)F''(2), where F(x)=1xf(t)dtF(x)=\int_{1}^{x} f(t) dt and f(t)=1t36+u6uduf(t)=\int_{1}^{t^{3}} \frac{\sqrt{6+u^{6}}}{u} du.

See Solution

Problem 32203

Does the series n=1(1n2+1)2\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}}+1\right)^{2} converge or diverge? a. converge b. diverge

See Solution

Problem 32204

Find δ>0\delta > 0 so that 0<x5<δ2x46<0.20 < |x - 5| < \delta \Rightarrow |2x - 4 - 6| < 0.2. Use the graph.

See Solution

Problem 32205

Determine the convergence of n=143n+n\sum_{n=1}^{\infty} \frac{4}{3^{n}+\sqrt{n}} using comparison tests.

See Solution

Problem 32206

Determine if the series n=1cos2(n)n3/2\sum_{n=1}^{\infty} \frac{\cos ^{2}(n)}{n^{3 / 2}} converges or diverges using comparison tests.

See Solution

Problem 32207

Determine the convergence of the series n=1n+1n2+1\sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{n^{2}+1} using comparison tests.

See Solution

Problem 32208

Determine the convergence of the series n=1n+1n2+1\sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{n^{2}+1} using comparison tests.

See Solution

Problem 32209

Differentiate the function f(x)=log2(3x)f(x) = \log_{2}(3x).

See Solution

Problem 32210

Calculate the sum: n=11+(2)n3n\sum_{n=1}^{\infty} \frac{1+(-2)^{n}}{3^{n}}.

See Solution

Problem 32211

Determine the convergence of the series n=14n3+n2+1n4+n+3\sum_{n=1}^{\infty} \frac{4 n^{3}+n^{2}+1}{n^{4}+n+3}.

See Solution

Problem 32212

Determine whether the series n=14n3+n2+1n4+n+3\sum_{n=1}^{\infty} \frac{4 n^{3}+n^{2}+1}{n^{4}+n+3} converges or diverges.

See Solution

Problem 32213

Determine if the series n=3enn2+2n\sum_{n=3}^{\infty} \frac{e^{-n}}{n^{2}+2 n} converges or diverges.

See Solution

Problem 32214

Check if the series n=3enn2+2n\sum_{n=3}^{\infty} \frac{e^{-n}}{n^{2}+2 n} converges or diverges. Options: a, b, c, d, e.

See Solution

Problem 32215

Determine the convergence of n=3enn2+2n\sum_{n=3}^{\infty} \frac{e^{-n}}{n^{2}+2n} using comparison tests.

See Solution

Problem 32216

Determine whether the series n=143n+n\sum_{n=1}^{\infty} \frac{4}{3^{n}+\sqrt{n}} converges or diverges using comparison tests.

See Solution

Problem 32217

Find the area function A(x)=0xf(t)dtA(x)=\int_{0}^{x} f(t) dt for the line with slope 1 and y-intercept 4 on [0,x][0, x].

See Solution

Problem 32218

Find all local maximum values of the sine integral function Si(x)\operatorname{Si}(x) for xx in [10,10][-10, 10]. List them in order.

See Solution

Problem 32219

Determine the convergence of the series n=1n+1n2+1\sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{n^{2}+1} using comparison tests.

See Solution

Problem 32220

Solve the equation dydx=4xy+6y22x2+4xy\frac{d y}{d x}=\frac{4 x y+6 y^{2}}{2 x^{2}+4 x y}.

See Solution

Problem 32221

Find the slope of the tangent line of f(x)=etanxf(x)=e^{\tan x} at x=0x=0. Choose from: 1e\frac{-1}{e}, 1, 1-1, ee.

See Solution

Problem 32222

Find the slope of the tangent line for f(x)=etanxf(x)=e^{\tan x} at x=0x=0. Options: 1, ee, 1-1, 1e\frac{-1}{e}.

See Solution

Problem 32223

Find the slope of the tangent line of f(x)=etanxf(x)=e^{\tan x} at x=0x=0. Options: e, -1, 1, 1e\frac{-1}{e}.

See Solution

Problem 32225

Find the derivative f(0)f^{\prime}(0) for the function f(x)=ln(x2+3x+cosx)f(x)=\ln(x^{2}+3x+\cos x).

See Solution

Problem 32226

Find f(2)f^{\prime}(2) if f(x)=ln(x23)f(x)=\ln(x^{2}-3). Choices: e, 4, 2, 1.

See Solution

Problem 32227

Calculate the integral from 0 to π6\frac{\pi}{6} of sec(2x)\sec(2x) dx and choose the correct answer.

See Solution

Problem 32228

Find y(e)y^{\prime}(e) if y=xlnxy=x^{\ln x}.

See Solution

Problem 32229

Find the slope of the tangent line of f(x)=etanxf(x)=e^{\tan x} at x=0x=0. Choices: 1-1, e, 1e\frac{-1}{e}, 1.

See Solution

Problem 32230

Find the integral sec2(2x)tan(2x)dx\int \frac{\sec ^{2}(2 x)}{\tan (2 x)} d x. What is the correct answer?

See Solution

Problem 32231

Find f(0)f^{\prime}(0) if f(x)=1e2x(t2+lnt)dtf(x)=\int_{1}^{e^{2 x}} (t^{2}+\ln t) dt.

See Solution

Problem 32232

Find f(2)f^{\prime}(2) for the function f(x)=ln(x23)f(x)=\ln \left(x^{2}-3\right).

See Solution

Problem 32233

Find the integral of sec(5x)\sec (5 x): sec(5x)dx\int \sec (5 x) d x. Choose the correct answer from the options given.

See Solution

Problem 32234

Find f(2)f^{\prime}(2) for f(x)=ln(x23)f(x)=\ln(x^{2}-3). Choices: 1, 2, ee, 4.

See Solution

Problem 32235

Find the first derivative dydx\frac{d y}{d x} at the point (1,1)(1,1) for the equation x23+y23=2yx^{\frac{2}{3}}+y^{\frac{2}{3}}=2 \sqrt{y}.

See Solution

Problem 32236

Find the derivative f(2)f^{\prime}(2) for the function f(x)=ln(x23)f(x)=\ln \left(x^{2}-3\right).

See Solution

Problem 32237

Find the tangent line to f(x)=e2xf(x)=e^{2 x} at the point (0,1)(0,1). Choose the correct equation from the options given.

See Solution

Problem 32238

Fjellområde fikk snø fra midnatt til 11:00. Funksjonen s(x)=0.017x3+2.0xs(x)=-0.017 x^{3}+2.0 x beskriver snødybden.
a) Tegn ss for 0x110 \leq x \leq 11 b) Snødybden etter 2 timer? c) Største snødybde? d) Når var snødybden 3 cm3 \mathrm{~cm}? e) Gjennomsnittlig minskning fra 06:00 til 10:00? f) Momentan vekstfart kl. 03:00 og 09:00?
Bruk GeoGebra og lever inn et Word-dokument med forklaring. Frist: 24.1 kl. 22:00.

See Solution

Problem 32239

Find (f1)(1)\left(f^{-1}\right)^{\prime}(1) given f(1)=1f(-1)=1, f(1)=0f(1)=0, f(1)=15f'(-1)=\frac{1}{5}, f(1)=15f'(1)=\frac{-1}{5}.

See Solution

Problem 32240

Find the integral: sec2(2x)tan(2x)dx\int \frac{\sec ^{2}(2 x)}{\tan (2 x)} d x. Choose the correct answer from the options.

See Solution

Problem 32241

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} given x2+y2=1x^{2}+y^{2}=1. Choose the correct option.

See Solution

Problem 32242

Find the integral sec2(2x)tan(2x)dx\int \frac{\sec ^{2}(2 x)}{\tan (2 x)} d x.

See Solution

Problem 32243

Find f(0)f^{\prime}(0) for the function f(x)=1e2xt2+lntdtf(x)=\int_{1}^{e^{2 x}} t^{2}+\ln t \, dt.

See Solution

Problem 32244

Find the derivative f(0)f^{\prime}(0) for the function f(x)=ln(x2+3x+cosx)f(x)=\ln \left(x^{2}+3 x+\cos x\right).

See Solution

Problem 32245

Find the first derivative dydx\frac{d y}{d x} at the point (1,1) for the equation x23+y23=2yx^{\frac{2}{3}}+y^{\frac{2}{3}}=2 \sqrt{y}.

See Solution

Problem 32246

Find the first derivative dydx\frac{d y}{d x} of x2y42y=3x^{2} y^{4}-2 y=3 at the point (2,1)(2,1). Options: 2, 20, 2-2, 12\frac{1}{2}.

See Solution

Problem 32247

Find the derivative of y=sin(ex2)y=\sin \left(e^{x^{2}}\right): dydx\frac{d y}{d x}.

See Solution

Problem 32248

Find the derivative of y=ex(sinx+cosx)y=e^{x}(\sin x+\cos x) with respect to xx.

See Solution

Problem 32249

Find the derivative dydx\frac{d y}{d x} if y=sin(ex2)y=\sin \left(e^{x^{2}}\right).

See Solution

Problem 32250

Find the derivative of y=ex(sinx+cosx)y=e^{x}(\sin x+\cos x) with respect to xx.

See Solution

Problem 32251

Find the first derivative dydx\frac{d y}{d x} for x=ycos(2x)x=y \cos (2 x) at the point (π2,π2)\left(\frac{\pi}{2}, \frac{-\pi}{2}\right).

See Solution

Problem 32252

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} given x2+y2=1x^{2}+y^{2}=1. Choices include: xy2\frac{-x}{y^{2}}, x2+y2y3\frac{x^{2}+y^{2}}{y^{3}}, x2y2y3\frac{x^{2}-y^{2}}{y^{3}}, 1y3\frac{-1}{y^{3}}.

See Solution

Problem 32253

Find the tangent line to the curve f(x)=e2xf(x)=e^{2x} at the point (0,1)(0,1). Choose the correct equation.

See Solution

Problem 32254

Find f(2)f^{\prime}(2) if f(x)=ln(x23)f(x)=\ln \left(x^{2}-3\right).

See Solution

Problem 32255

Evaluate the integral 01x22x3dx\int_{0}^{1} x^{2} 2^{x^{3}} d x and choose the correct answer: a) 1ln(4)\frac{1}{\ln (4)}, b) 1ln(8)\frac{1}{\ln (8)}, c) 1ln(9)\frac{1}{\ln (9)}, d) 1ln(2)\frac{1}{\ln (2)}, e) none.

See Solution

Problem 32256

Find dydx\frac{d y}{d x} if ey=6x+3ye^{y} = 6 x + 3 y. Choices: A) 6xey+3\frac{6 x}{e^{y}+3} B) 6ev+3\frac{6}{e^{v}+3} C) 6ey3\frac{6}{e^{y}-3} D) 6ey+3y\frac{6}{e^{y}+3 y}.

See Solution

Problem 32257

Evaluate the integral from ee to e2e^{2} of 1+lnxxlnxdx=?\frac{1+\ln x}{x \ln x} \, dx = ? Options: a. ln(ln2)\ln (\ln 2) b. 1ln21-\ln 2 c. 1+ln21+\ln 2 d. 3+ln23+\ln 2

See Solution

Problem 32258

Find the slope of the tangent line of f(x)=etanxf(x)=e^{\tan x} at x=0x=0. Options: 1e\frac{-1}{e}, 1-1, 1, e.

See Solution

Problem 32259

Find f(0)f^{\prime}(0) if f(x)=1e2xt2+lntdtf(x)=\int_{1}^{e^{2 x}} t^{2}+\ln t \, dt.

See Solution

Problem 32260

Find (f1)(4)\left(f^{-1}\right)^{\prime}(4) given f(2)=4f(2)=4, f(4)=2f(4)=2, f(2)=13f^{\prime}(2)=\frac{1}{3}, f(4)=15f^{\prime}(4)=\frac{1}{5}.

See Solution

Problem 32261

Find the derivative of y=ex(sinx+cosx)y=e^{x}(\sin x+\cos x) with respect to xx.

See Solution

Problem 32262

Find the derivative of the function f(x)=ln(ex+1)f(x)=\ln \left(e^{-x}+1\right). What is f(x)f^{\prime}(x)?

See Solution

Problem 32264

Find the tangent line to the curve f(x)=e2xf(x)=e^{2 x} at the point (0,1)(0,1). Which equation is correct?

See Solution

Problem 32265

Find the derivative of y=ex(sinx+cosx)y=e^{x}(\sin x+\cos x) with respect to xx.

See Solution

Problem 32266

Fjellområde snødybde: s(x)=0.017x3+2.0xs(x)=-0.017 x^{3}+2.0 x. a) Tegn graf for 0x110 \leq x \leq 11. b) Snødybde etter 2 timer? c) Maks snødybde? d) Når s(x)=3s(x)=3 cm? e) Gjennomsnittlig nedgang fra 06:00 til 10:00? f) Momentan vekstfart kl. 03:00 og 09:00? Bruk GeoGebra. Innlevering innen 24.1. kl. 22:00.

See Solution

Problem 32267

Find the tangent line to f(x)=e2xf(x)=e^{2 x} at the point (0,1)(0,1). Which equation is correct? y=2x1y=-2x-1, y=2x2y=2x-2, y=2x2y=-2x-2, y=2x+1y=2x+1.

See Solution

Problem 32268

Find dydx\frac{d y}{d x} for y=cos(2x)y = \cos(2x) at (π2,π2)\left(\frac{\pi}{2}, -\frac{\pi}{2}\right). Choices: 1, 12\frac{1}{2}, -1, 0.

See Solution

Problem 32269

Evaluate the integral 01x22x3dx\int_{0}^{1} x^{2} 2^{x^{3}} d x and choose the correct answer from the options given.

See Solution

Problem 32270

Find the derivative of f(x)=ln(2exsinx)f(x)=\ln(2 e^{-x} \sin x), i.e., f(x)f^{\prime}(x).

See Solution

Problem 32271

Find f(2)f^{\prime}(2) for the function f(x)=ln(x23)f(x)=\ln \left(x^{2}-3\right). Choices: ee, 1, 2, 4.

See Solution

Problem 32272

Evaluate the integral 01x22x3dx\int_{0}^{1} x^{2} 2^{x^{3}} d x.

See Solution

Problem 32273

Find f(e)f^{\prime}(e) if f(x)=xlnxf(x)=x^{\ln x}. Options: 1, 0, ee, 2.

See Solution

Problem 32275

Find f(2)f^{\prime}(2) if f(x)=ln(x23)f(x)=\ln \left(x^{2}-3\right). Choices: 2, 4, 1, ee.

See Solution

Problem 32276

Calculate the integral from ee to e2e^{2} of 4(lnx)3xdx\frac{4(\ln x)^{3}}{x} \, dx. Provide a number only.

See Solution

Problem 32277

Calculate the integral π4π3tanxdx\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \tan x \, dx. Choose from: a. ln(4)\ln (4), b. ln(2)\ln (\sqrt{2}), c. ln(4)\ln (4), d. ln(2)\ln (2), e. none.

See Solution

Problem 32278

Find the slope of the tangent line for f(x)=etanxf(x)=e^{\tan x} at x=0x=0. Choices: 1-1, 1, ee, 1e\frac{-1}{e}.

See Solution

Problem 32279

Find the derivative f(0)f'(0) for f(x)=ln(x2+3x+cosx)f(x)=\ln(x^2 + 3x + \cos x).

See Solution

Problem 32280

Find f(0)f^{\prime}(0) for f(x)=ln(sec(x)+tan(x))f(x)=\ln (\sec (x)+\tan (x)). Options: 1, π2\frac{\pi}{2}, 1-1, 0.

See Solution

Problem 32281

Find the value of (f1)(1)\left(f^{-1}\right)^{\prime}(1) given f(1)=1f(-1)=1, f(1)=0f(1)=0, f(1)=15f'(-1)=\frac{1}{5}, f(1)=15f'(1)=\frac{-1}{5}. Write a number only.

See Solution

Problem 32282

Find the tangent line equation to f(x)=e2xf(x)=e^{2 x} at the point (0,1)(0,1). Choose from the options provided.

See Solution

Problem 32284

Find the first derivative dydx\frac{d y}{d x} at the point (2,1)(2,1) for the equation x2y42y=3x^{2} y^{4}-2 y=3.

See Solution

Problem 32285

Find dydx\frac{d y}{d x} for x2y42y=3x^{2} y^{4}-2 y=3 at the point (2,1)(2,1). Choose from: 2, 20, 2-2, 12\frac{1}{2}.

See Solution

Problem 32286

Find the derivative f(0)f'(0) for the function f(x)=ln(x2+3x+cosx)f(x)=\ln(x^{2}+3x+\cos x). Output a number only.

See Solution

Problem 32287

Find the derivative of f(x)=ln(2exsinx)f(x)=\ln \left(2 e^{-x} \sin x\right), i.e., find f(x)f^{\prime}(x).

See Solution

Problem 32288

Find the derivative f(0)f'(0) if f(x)=ln(sec(x)+tan(x))f(x)=\ln (\sec (x)+\tan (x)). Choices: 0, 1, π2\frac{\pi}{2}, 1-1.

See Solution

Problem 32289

Find the derivative of the function f(x)=ln(ex+1)f(x)=\ln \left(e^{-x}+1\right). What is f(x)f^{\prime}(x)?

See Solution

Problem 32290

Find f(x)f'(x) if f(x)=ln(ex+1)f(x)=\ln(e^{-x}+1). Options: 1ex+1\frac{1}{e^{-x}+1}, 1ex+1\frac{-1}{e^{-x}+1}, 11+ex\frac{-1}{1+e^{x}}, exex+1\frac{e^{-x}}{e^{-x}+1}.

See Solution

Problem 32291

Find the tangent line to the curve f(x)=e2xf(x)=e^{2 x} at the point (0,1)(0,1). Choose the correct equation.

See Solution

Problem 32292

Find the tangent line to the curve f(x)=e2xf(x)=e^{2x} at the point (0,1)(0,1). Choose the correct equation.

See Solution

Problem 32293

Find (f1)(4)\left(f^{-1}\right)^{\prime}(4) given f(2)=4f(2)=4, f(4)=2f(4)=2, f(2)=13f^{\prime}(2)=\frac{1}{3}, f(4)=15f^{\prime}(4)=\frac{1}{5}.

See Solution

Problem 32294

Find the slope of the tangent line of f(x)=etanxf(x)=e^{\tan x} at x=0x=0. Choices: 1-1, 1, 1e\frac{-1}{e}, e.

See Solution

Problem 32295

Find the derivative of y=ex(sinx+cosx)y=e^{x}(\sin x+\cos x) with respect to xx.

See Solution

Problem 32296

Find the derivative f(0)f^{\prime}(0) for the function f(x)=ln(x2+3x+cosx)f(x)=\ln(x^{2}+3x+\cos x). Write a number only.

See Solution

Problem 32297

Evaluate the integral 0π6sec(2x)dx\int_{0}^{\frac{\pi}{6}} \sec (2 x) d x and choose the correct answer from the options.

See Solution

Problem 32298

Find the derivative of the function f(x)=ln(2exsinx)f(x)=\ln \left(2 e^{-x} \sin x\right).

See Solution

Problem 32299

Find (f1)(1)\left(f^{-1}\right)^{\prime}(1) given f(1)=1f(-1)=1, f(1)=0f(1)=0, f(1)=15f^{\prime}(-1)=\frac{1}{5}, f(1)=15f^{\prime}(1)=\frac{-1}{5}. Write number only.

See Solution

Problem 32300

Find the derivative f(0)f^{\prime}(0) for f(x)=ln(sec(x)+tan(x))f(x)=\ln (\sec (x)+\tan (x)). Choices: 1, π2\frac{\pi}{2}, 1-1, 0.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord