Calculus

Problem 24101

Calculate the limit: limx010x2+xtanx \lim _{x \rightarrow 0} \frac{10 x^{2}+x}{\tan x} and fill in the table values for f(x)f(x).

See Solution

Problem 24102

Find the volume of the solid formed by revolving the region defined by y=27sin(x)cos(x)y = 27\sin(x)\cos(x) from x=0x = 0 to x=π2x = \frac{\pi}{2} around the x-axis. Use π\pi as needed.

See Solution

Problem 24103

Find points on the curve y=x3+3x+6y=x^{3}+3x+6 where the tangent is parallel to 5xy=95x-y=9. Are there multiple points?

See Solution

Problem 24104

Find the horizontal asymptote of the function f(x)=x224xx4f(x)=\frac{x^{2}-2}{4x-x^{4}}.

See Solution

Problem 24105

Find the volume of the solid formed by revolving the shaded area defined by 3x+4y=123x + 4y = 12 around the x-axis.

See Solution

Problem 24106

Find the integral for the volume of a cylindrical tank (length 15 ft, radius 5 ft) filled to a depth of 9 ft.
v=5hA(y)dy v=\int_{-5}^{h} A(y) \, dy

See Solution

Problem 24107

Find the integral for the volume of a horizontal cylinder tank (length 13 ft, radius 4 ft) filled to 6 ft deep.
V=22A(x)dx V=\int_{-2}^{2} A(x) \, dx

See Solution

Problem 24108

Berechne die Anzahl der Lkw-Fahrten für Baumaterial eines Deichs mit f(x)=564x2+1f(x) = \frac{5}{64} x^2 + 1, ρ=1.8g/cm3\rho = 1.8 \, \text{g/cm}^3, Länge 12 m, und 20 t Kapazität.

See Solution

Problem 24109

Find the value of f(215)f^{\prime}\left(\frac{\sqrt{21}}{5}\right) if f(x)=arcsin(x)f(x)=\arcsin (x).

See Solution

Problem 24110

Find the value of f(15)f^{\prime}\left(\frac{1}{5}\right) if f(x)=sin1(x)f(x)=\sin^{-1}(x).

See Solution

Problem 24111

Find the derivative of the function f(x)=tan1(2x)f(x)=\tan^{-1}(2x) in its simplest form.

See Solution

Problem 24112

A ball is thrown down at 8 m/s8 \mathrm{~m/s} from 30 m30 \mathrm{~m}. How long until it hits the ground?

See Solution

Problem 24113

Show that the reproduction rate r(C)r(C) approaches zero as sugar level CC approaches zero: limC0r(C)=0\lim_{C \rightarrow 0} r(C)=0.

See Solution

Problem 24114

Find dydx\frac{d y}{d x} in terms of xx and yy for the equation 23x2+3y2=xy-2-3 x^{2}+3 y^{2}=-x y.

See Solution

Problem 24115

Find the volume using the shell method for the region bounded by y=6y = \sqrt{6}, x=122y2x = 12 - 2y^2, and x=12x = 12. Answer in terms of π\pi.

See Solution

Problem 24116

Find the integral for the volume of a cylindrical gas tank (length 11 ft, radius 3 ft) filled to a depth of 4 ft.
V=31A(x)dx V=\int_{-3}^{1} A(x) \, dx

See Solution

Problem 24117

Find when the speed of a particle, defined by x(t)=t327t2+51tx(t)=t^{3}-27 t^{2}+51 t, is decreasing for t0t \geq 0.

See Solution

Problem 24118

Show that the reproduction rate r(C)r(C) approaches 0 as sugar level CC approaches 0: limC0r(C)=0\lim_{C \rightarrow 0} r(C) = 0.

See Solution

Problem 24119

Calculate the limit: limx0416+x22x2\lim _{x \rightarrow 0} \frac{4-\sqrt{16+x^{2}}}{2 x^{2}}

See Solution

Problem 24120

Show that the function f(x)f(x) is continuous at x=2x=-2: f(x)=2x2+3x2x+2f(x)=\frac{2x^2+3x-2}{x+2} for x2x \neq -2, f(2)=5f(-2)=-5.

See Solution

Problem 24121

Show that limN0R(N)=0\lim_{N \rightarrow 0} R(N) = 0 using the formula R(N)=Nln(1N)R(N) = N \ln \left(\frac{1}{N}\right) for d=A=1d=A=1. Complete the table for NN: 0.1, 0.01, 0.001.

See Solution

Problem 24122

Find when the acceleration of a particle, with position x(t)=5t430t2x(t)=5 t^{4}-30 t^{2}, is positive for t0t \geq 0.

See Solution

Problem 24123

Find the intervals where the speed of a particle, with velocity v(t)=3t236t84v(t)=3 t^{2}-36 t-84, is decreasing for t0t \geq 0.

See Solution

Problem 24124

Find the volume using the shell method by revolving the shaded area defined by y=6y = \sqrt{6} and x=3y2x = 3y^2 around the xx-axis. Set up the integral for the volume.

See Solution

Problem 24125

Find the limit: limx0+1cosxx2sinx\lim _{x \rightarrow 0^{+}} \frac{1-\cos x}{x^{2} \sin x}

See Solution

Problem 24126

Find the position of a particle at time t=8t=8 given its velocity v(t)=π2sin(π6t)v(t)=\frac{\pi}{2} \sin \left(\frac{\pi}{6} t\right) and x=6x=-6 at t=12t=12.

See Solution

Problem 24127

Find the slope of the curve defined by x=6t3+4x=-6 t^{3}+4 and y=2t2y=2 t^{2} at t=5t=5. Slope ==\square.

See Solution

Problem 24128

Find d2ydx2\frac{d^{2} y}{d x^{2}} at the point (2,5)(2,-5) given 5x2=5y2-5 x^{2}=5-y^{2}.

See Solution

Problem 24129

Find the position of a particle at time t=0t=0 given v(t)=2πsin(πt)v(t)=2 \pi \sin (\pi t) and x=4x=4 at t=12t=\frac{1}{2}.

See Solution

Problem 24130

Find d2ydx2\frac{d^{2} y}{d x^{2}} at the point (1,2)(-1,2) given y=y22x3-y=-y^{2}-2 x^{3}.

See Solution

Problem 24131

Find the area of the shaded region using two integrals with respect to yy for y=3xy = 3 - x and y=x+1y = x + 1.

See Solution

Problem 24132

Find the limit: limx(1+2x)12lnx\lim _{x \rightarrow \infty}(1+2 x)^{\frac{1}{2 \ln x}}.

See Solution

Problem 24133

Identify a convergence test for the series k=1(1)k(5+1k2)k\sum_{k=1}^{\infty}(-1)^{k}\left(5+\frac{1}{k^{2}}\right)^{k}.

See Solution

Problem 24134

Find when the particle at x(t)=3t39t272tx(t)=3 t^{3}-9 t^{2}-72 t moves right for t0t \geq 0.

See Solution

Problem 24135

Find d2ydx2\frac{d^{2} y}{d x^{2}} for 2x3+y+y2=02 x^{3}+y+y^{2}=0 at the point (1,2)(-1,-2).

See Solution

Problem 24136

Find the volume when the region bounded by y=15x,y=15,x=225y=15-\sqrt{x}, y=15, x=225 is revolved around y=15y=15.

See Solution

Problem 24137

1. Bestimme die Fläche zwischen f(x)=0.5x2f(x)=0.5 x^{2} und der xx-Achse für x=0x=0 bis x=2x=2 mit n=4n=4 Säulen.
2. Finde Nullstellen und Extremstellen von f(x)=x3x2x+2f(x)=x^{3}-x^{2}-x+2 und berechne die Fläche zwischen dem Graphen und den Achsen.
3. Bestimme aa so, dass 1a13x2+xdx=89\int_{1}^{a} \frac{1}{3} x^{2}+x \, dx=\frac{8}{9} gilt.
4. Skizziere einen möglichen Graphen von g(x)g(x), wenn 02g(x)dx=0\int_{0}^{2} g(x) \, dx=0 ist, und erläutere die Bedeutung.

See Solution

Problem 24138

Skizzieren Sie einen Graphen der stetigen Funktion gg auf [0;2][0 ; 2], wenn 02g(x)dx=0\int_{0}^{2} g(x) d x=0. Erklären Sie das Integral.

See Solution

Problem 24139

Find the derivative dydx\frac{dy}{dx} of the function 42y+1-\frac{4}{2y+1}.

See Solution

Problem 24140

Find the average rate of change of y=(5x+15)1y = (-5x + 15)^{1} on the interval [1,3][1,3] using the Mean Value Theorem.

See Solution

Problem 24141

Zeigen Sie, dass die Tangente von ff an x0x_{0} parallel zur xx-Achse ist. a) f(x)=x34x2+5x;x0=1f(x)=x^{3}-4x^{2}+5x; x_{0}=1 b) f(x)=x36x2+12x;x0=2f(x)=x^{3}-6x^{2}+12x; x_{0}=2

See Solution

Problem 24142

Find pp such that 15pf(x)dx=83\int_{1}^{5} p f(x) dx = 83, where f(x)=3x2f(x)=3x-2 for x2x \leq 2 and f(x)=x2f(x)=x^2 for x>2x > 2.

See Solution

Problem 24143

Find values of tt in [0,2][0, 2] where instantaneous velocity x(t)x'(t) equals average velocity x(2)x(0)20\frac{x(2)-x(0)}{2-0}.

See Solution

Problem 24144

Given f(x)>0f^{\prime \prime}(x)>0, which could be f(5)f^{\prime}(5): (A) 0.5, (B) 0.7, (C) 0.9, (D) 1.1, (E) 1.3?

See Solution

Problem 24145

Berechne aa so, dass 1a(13x2+x)dx=89\int_{1}^{a} \left( \frac{1}{3} x^{2}+x \right) dx=\frac{8}{9}. Skizziere einen Graphen für g(x)g(x) mit 02g(x)dx=0\int_{0}^{2} g(x) dx=0.

See Solution

Problem 24146

Gegeben ist die Funktion f(x)=x3x2x+2f(x)=x^{3}-x^{2}-x+2.
(a) Bestimme Nullstellen und Extremstellen mit dem Taschenrechner.
(b) Berechne das Flächenstück zwischen ff, x- und y-Achse.
(c) Im Tiefpunkt von ff eine Parallele gg zur x-Achse zeichnen.
Berechne das Flächenstück zwischen gg und ff und zeichne es ein.

See Solution

Problem 24147

Bestimme den Grenzwert von P(x)=x32x+1x1P(x)=\frac{x^{3}-2x+1}{x-1} mit der H\mathrm{H}-Methode.

See Solution

Problem 24148

Find the Riemann sum formula for f(x)=4x3f(x)=4x^{3} on [0,4][0,4] using right endpoints, then take the limit as nn \to \infty.

See Solution

Problem 24149

Bestimme den Grenzwert von f(x)=x32x+1x1f(x)=\frac{x^{3}-2 x+1}{x-1} mit der H-Methode.

See Solution

Problem 24150

Find the limit of the sequence an=nn2na_{n}=\frac{\sqrt{n}-n}{2 n} as nn approaches infinity. Answer: limnan=\lim _{n \rightarrow \infty} a_{n}=\square.

See Solution

Problem 24151

Wie viel Schwefel-37 bleibt nach 40 Minuten von 120 mg übrig, wenn die Halbwertszeit 5 Minuten beträgt?

See Solution

Problem 24152

Untersuchen Sie die Funktionen a(x)=ex+exa(x)=e^{x}+e^{-x}, b(x)=exexb(x)=e^{x} \cdot e^{-x} und c(x)=exexc(x)=\frac{e^{x}}{e^{-x}} auf Asymptoten und Symmetrien.

See Solution

Problem 24153

Find the limit of the sequence an=cos(13n+14)a_{n}=\cos \left(\frac{13}{n+14}\right) as nn approaches infinity. What is the value?

See Solution

Problem 24154

Find the limit of the sequence an=5(12)na_{n}=5\left(-\frac{1}{2}\right)^{n}. Answer: limn5(12)n=\lim _{n \rightarrow \infty} 5\left(-\frac{1}{2}\right)^{n}=\square

See Solution

Problem 24155

Find the limit of the sequence an=2sin(n)na_{n}=\frac{2 \sin (n)}{n} as nn approaches infinity. What is limn2sin(n)n=\lim _{n \rightarrow \infty} \frac{2 \sin (n)}{n}=\square?

See Solution

Problem 24156

Does the sequence an=4e(1n7)a_{n}=4 e^{\left(\frac{1}{n-7}\right)} converge? If yes, find the limit; if no, enter \varnothing.

See Solution

Problem 24157

Does the series n=1(8n+18n)\sum_{n=1}^{\infty}(8 \sqrt{n+1}-8 \sqrt{n}) converge or diverge?

See Solution

Problem 24158

Check if the sequence an=(47)na_{n}=\left(\frac{4}{7}\right)^{n} converges using the Monotone Convergence Theorem.

See Solution

Problem 24159

Një trup bie nga një lartësi dhe arrin tokën pas 4 sekondash. a) Cila është lëvizja e trupit? b) Sa është lartësia fillestare? c) Cila është shpejtësia në rënie?

See Solution

Problem 24160

Find the first five partial sums S1,S2,S3,S4,S5S_{1}, S_{2}, S_{3}, S_{4}, S_{5} of the series n=1103n18\sum_{n=1}^{\infty} \frac{10}{3^{n}-18}. Round to the nearest thousandth.

See Solution

Problem 24161

Determine if the series n=1(8)4n(9)1n\sum_{n=1}^{\infty}(-8)^{4 n}(-9)^{1-n} converges or diverges. Choose: converges or diverges.

See Solution

Problem 24162

Find the sum of the series: n=1e2n(10)1n\sum_{n=1}^{\infty} e^{2 n}(-10)^{1-n} as a fraction in terms of ee.

See Solution

Problem 24163

Find the sum of the series: n=1(5n+75n+8)\sum_{n=1}^{\infty}\left(\frac{5}{\sqrt{n+7}}-\frac{5}{\sqrt{n+8}}\right). If it diverges, answer with \varnothing.

See Solution

Problem 24164

Überprüfen Sie die Aussagen zur Extremstellen und geben Sie Gegenbeispiele an, falls sie falsch sind: a) f(x0)=0f^{\prime}(x_{0})=0 \Rightarrow Extremstelle, b) ganzrationale Funktion 2. Grades hat immer Extremstelle, c) globales Maximum ist lokal, d) g(x)=5(x2)3+4g(x)=5(x-2)^{3}+4.

See Solution

Problem 24165

Find the sum of the series: n=124n201n\sum_{n=1}^{\infty} 2^{4 n} 20^{1-n}.
Answer: n=124n201n=\sum_{n=1}^{\infty} 2^{4 n} 20^{1-n}=\square

See Solution

Problem 24166

Apply the divergence test to the series n=1[(n+7)!(n+9)!]\sum_{n=1}^{\infty}\left[\frac{(n+7) !}{(n+9) !}\right]. What is the result?

See Solution

Problem 24167

Check if the sequence an=17n23n42a_{n}=\frac{1-7 n^{2}}{3 n^{4}-2} converges and find its limit or state \varnothing if it diverges.

See Solution

Problem 24168

Use the divergence test on the series n=1(4sin2(n3))\sum_{n=1}^{\infty}(4 \sin^{2}(n-3)) and choose the correct conclusion.

See Solution

Problem 24169

Calculate the limit: limn(3n46n4+3n34)\lim _{n \rightarrow \infty}\left(\frac{-3 n^{4}-6}{\sqrt{n^{4}+3 n^{3}-4}}\right). If it doesn't exist, enter \varnothing.

See Solution

Problem 24170

Find the sum of the series n=1(178n153n)\sum_{n=1}^{\infty}\left(\frac{17}{8^{n}}-\frac{15}{3^{n}}\right) using given sums.

See Solution

Problem 24171

Determine if the series n=15en/2\sum_{n=1}^{\infty} \frac{5}{e^{n / 2}} converges or diverges using the integral test.

See Solution

Problem 24172

Find the value of pp for the series n=1n43n\sum_{n=1}^{\infty} \frac{\sqrt[4]{n}}{3 \sqrt{n}}. Provide your answer: p=p=

See Solution

Problem 24173

Does the series 3+6(2)5/4+9(3)5/4+3+\frac{6}{(2)^{5 / 4}}+\frac{9}{(3)^{5 / 4}}+\cdots converge or diverge?

See Solution

Problem 24174

Use the integral test to check if the series n=1n+5n+4\sum_{n=1}^{\infty} \frac{n+5}{n+4} converges or diverges.

See Solution

Problem 24175

Can the integral test be applied to the series n=1(17)n\sum_{n=1}^{\infty}\left(-\frac{1}{7}\right)^{n}?

See Solution

Problem 24176

Determine the convergence of the series n=14n+13\sum_{n=1}^{\infty} \frac{4}{\sqrt[3]{n+1}} using the integral test: 4x+13dx\int \frac{4}{\sqrt[3]{x+1}} dx

See Solution

Problem 24177

Find the sum of the series: n=1(3n+53n+6)\sum_{n=1}^{\infty}\left(\frac{3}{\sqrt{n+5}}-\frac{3}{\sqrt{n+6}}\right). If it diverges, answer with \varnothing.

See Solution

Problem 24178

Find the value of pp for the series: 12+22(2)3/2+32(3)3/2+\frac{1}{2}+\frac{2}{2(2)^{3 / 2}}+\frac{3}{2(3)^{3 / 2}}+\cdots
Answer: p=p=

See Solution

Problem 24179

Bestimme das charakteristische Polynom p(X)p(X) der Gleichung y(3)6y(2)+12y(1)8y(0)=0y^{(3)}-6 y^{(2)}+12 y^{(1)}-8 y^{(0)}=0, berechne p(2)p(2) und zerlege p(X)p(X) in Linearfaktoren. Finde ein Fundamentalsystem und löse das Anfangswertproblem mit y(1)=0,y(1)=0,y(1)=2y(1)=0, y^{\prime}(1)=0, y^{\prime \prime}(1)=2.

See Solution

Problem 24180

Find the limit: limn[(n+8)!(n+2)!]\lim _{n \rightarrow \infty}\left[\frac{(n+8) !}{(n+2) !}\right]. If none, enter \varnothing.

See Solution

Problem 24181

Find the sum of the series: n=1(88/n88/(n+1))\sum_{n=1}^{\infty}\left(8^{8 / n}-8^{8 /(n+1)}\right). If it diverges, enter \varnothing.

See Solution

Problem 24182

Determine if the series n=1n(33ln(n))\sum_{n=1}^{\infty} n\left(3^{-3 \ln (n)}\right) converges or diverges.

See Solution

Problem 24183

Which series helps determine the divergence of n=13n2+2n+3n\sum_{n=1}^{\infty} \frac{\sqrt{3 n^{2}+2 n+3}}{n}? Choose one: n=11n\sum_{n=1}^{\infty} \frac{1}{n}, n=11n5\sum_{n=1}^{\infty} \frac{1}{n^{5}}, n=11n4\sum_{n=1}^{\infty} \frac{1}{n^{4}}, n=11n3\sum_{n=1}^{\infty} \frac{1}{n^{3}}.

See Solution

Problem 24184

Determine if the series n=18n7+2n6+3n25n52n3n\sum_{n=1}^{\infty} \frac{8 n^{7}+2 n^{6}+3 n^{2}}{5 n^{5}-2 n^{3}-n} converges or diverges using the Comparison Test.

See Solution

Problem 24185

Which series helps check the convergence of n=1n3n4+5n3+5n\sum_{n=1}^{\infty} \frac{n}{3 n^{4}+5 n^{3}+5 n}? Choose one:
1. n=11n\sum_{n=1}^{\infty} \frac{1}{n}
2. n=11n4\sum_{n=1}^{\infty} \frac{1}{n^{4}}
3. n=11n3\sum_{n=1}^{\infty} \frac{1}{n^{3}}
4. n=11n5\sum_{n=1}^{\infty} \frac{1}{n^{5}}

See Solution

Problem 24186

Use the limit comparison test with n=18n6n\sum_{n=1}^{\infty} \frac{8^{n}}{6^{n}} to check if n=18n+86n\sum_{n=1}^{\infty} \frac{8^{n}+8}{6^{n}} converges or diverges.

See Solution

Problem 24187

Check if the series n=2ln(n)3n7\sum_{n=2}^{\infty} \frac{\ln (n)}{3 n^{7}} converges or diverges using the Comparison Test with a pp-series.

See Solution

Problem 24188

Use the divergence test on the series n=1[(n+2)!(n+9)!]\sum_{n=1}^{\infty}\left[\frac{(n+2) !}{(n+9) !}\right] and choose the correct conclusion.

See Solution

Problem 24189

Determine if the series n=1725n2\sum_{n=1}^{\infty} \frac{7}{\sqrt{25 n}-2} converges or diverges using the limit comparison test with n=11n\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}.

See Solution

Problem 24190

Use the limit comparison test with n=11n2\sum_{n=1}^{\infty} \frac{1}{n^{2}} to check if n=1ln(n)8n2\sum_{n=1}^{\infty} \frac{\ln (n)^{8}}{n^{2}} converges or diverges.

See Solution

Problem 24191

Determine if the series n=52+cos2(n)n4\sum_{n=5}^{\infty} \frac{2+\cos ^{2}(n)}{n-4} converges or diverges using the Comparison Test.

See Solution

Problem 24192

Use the limit comparison test with n=11n2\sum_{n=1}^{\infty} \frac{1}{n^{2}} to check if n=1ln(n)6n2\sum_{n=1}^{\infty} \frac{\ln (n)^{6}}{n^{2}} converges or diverges.

See Solution

Problem 24193

Evaluate the integral 8864x2dx\int_{-8}^{8} \sqrt{64-x^{2}} dx. What is its value? Choices: 12/3-12 / 3, 32π32 \pi, 64π64 \pi, 12π12 \pi.

See Solution

Problem 24194

Compute the limit:
limn3nn8+51n15/2 \lim _{n \rightarrow \infty} \frac{\frac{3 \sqrt{n}}{n^{8}+5}}{\frac{1}{n^{15 / 2}}}
Provide your answer below: limnanbn= \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\square

See Solution

Problem 24195

Determine if the series n=125n425n10+1\sum_{n=1}^{\infty} \frac{25 n^{4}}{25 n^{10}+1} converges or diverges using the integral test.

See Solution

Problem 24196

Determine if the series n=114e1/nn2\sum_{n=1}^{\infty} \frac{14 e^{1/n}}{n^{2}} converges or diverges using the limit comparison test with n=11n2\sum_{n=1}^{\infty} \frac{1}{n^{2}}.

See Solution

Problem 24197

Find the value of cc for f(x)=x3+1f(x)=x^{3}+1 on [1,2][-1,2] that satisfies the Intermediate Value Theorem. Options: c=3c=3, c=2c=2, c=1c=1, c=1c=-1.

See Solution

Problem 24198

Calculate the integral 04xx2+9dx\int_{0}^{4} \frac{x}{\sqrt{x^{2}+9}} d x. What is the result?

See Solution

Problem 24199

Find the value of cc that satisfies the Intermediate Value Theorem for f(x)=x3+1f(x)=x^{3}+1 on [1,2][-1,2] with w=2w=2.

See Solution

Problem 24200

Find the horizontal asymptote of the function f(x)=12x69x3+52x681x1f(x)=\frac{12 x^{6}-9 x^{3}+5}{2 x^{6}-81 x-1}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord