Calculus

Problem 8201

Find the derivative of G(t)=15t3+tG(t)=\frac{1-5 t}{3+t} and state the domains of GG and G(t)G'(t) in interval notation.

See Solution

Problem 8202

Find the limit as xx approaches 1 for the expression x21x1\frac{x^{2}-1}{x-1}.

See Solution

Problem 8203

Find the derivative of ss with respect to xx from the equation x+s=4x+4s\sqrt{x+s}=\frac{4}{x}+\frac{4}{s}.

See Solution

Problem 8204

Find the limit: limx2x3+5x2+5x2x+2\lim _{x \rightarrow-2} \frac{x^{3}+5 x^{2}+5 x-2}{x+2}.

See Solution

Problem 8205

Find G(π)G^{\prime}(\pi) if G(x)=cos(f(x))G(x)=\cos(f(x)) using f(π)=3π2f(\pi)=\frac{3\pi}{2} and f(π)=2f^{\prime}(\pi)=2.

See Solution

Problem 8206

Find the derivative yx=1\left.y^{\prime}\right|_{x=1} for y=f(x2+2)y=f\left(x^{2}+2\right) using the given values of f(x)f(x).

See Solution

Problem 8207

Find the derivative of f(x)=x+x+1f(x)=x+\sqrt{x}+1 using its definition. What are the domains of f(x)f(x) and f(x)f'(x)?

See Solution

Problem 8208

Find h(2)h^{\prime}(2) if h(x)=f(3x)h(x)=f(3x) using given values of f(x)f(x) and its derivatives.

See Solution

Problem 8209

Differentiate h=5t2t3h2+5th=\frac{5 t-2 t}{3 h^{2}+5 t} with respect to tt.

See Solution

Problem 8210

Find the average rate of change for f(x)=1xf(x)=\frac{1}{x} using the difference quotient on [0.5,0.51][0.5,0.51] and [3,3.01][3,3.01].

See Solution

Problem 8211

Derive the equation y2=x2x4y^{2}=\frac{x^{2}}{x-4} using implicit differentiation.

See Solution

Problem 8212

Find the derivative of y2=x2xy4y^{2}=\frac{x^{2}}{x y-4} using implicit differentiation.

See Solution

Problem 8213

Find the limits of the function as xx \rightarrow \infty and xx \rightarrow -\infty: (x1)(x2+x)(x+2)2(x3)\frac{(x-1)(x^{2}+x)}{(x+2)^{2}(x-3)}

See Solution

Problem 8214

Determine if the integral 01cos2xxdx\int_{0}^{1} \frac{\cos ^{2} x}{\sqrt{x}} d x converges or diverges by analyzing behavior near x=0x=0.

See Solution

Problem 8215

Prove the Quotient Rule for ddx(f(x)x)=xf(x)f(x)x2\frac{d}{d x}\left(\frac{f(x)}{x}\right)=\frac{x f^{\prime}(x)-f(x)}{x^{2}} using limits.

See Solution

Problem 8216

Analyze the integral 01cos2xxdx\int_{0}^{1} \frac{\cos ^{2} x}{\sqrt{x}} d x for convergence or divergence near x=0x=0.

See Solution

Problem 8217

Evaluate the integral 01exxdx\int_{0}^{1} \frac{e^{-x}}{x} dx for convergence by analyzing the behavior near x=0x=0 using Taylor series.

See Solution

Problem 8218

Find the leading term of the integrand as x+x \rightarrow+\infty to determine if 1+x+33x3dx\int_{1}^{+\infty} \frac{\sqrt[3]{x+3}}{x^{3}} dx converges or diverges.

See Solution

Problem 8219

Identify all improper integrals from the following list:
1. 11ln(1+x2)dx\int_{-1}^{1} \ln(1+x^{2}) \, dx
2. π/43π/4secθdθ\int_{\pi/4}^{3\pi/4} \sec \theta \, d\theta
3. 0tx1etdt\int_{0}^{\infty} t^{x-1} e^{-t} \, dt
4. 1,000,0001,000,000ex2/2dx\int_{-1,000,000}^{1,000,000} e^{-x^{2}/2} \, dx
5. 01dxx1\int_{0}^{1} \frac{dx}{x-1}
6. π/4π/4secθdθ\int_{-\pi/4}^{\pi/4} \sec \theta \, d\theta
7. 01dxx10\int_{0}^{1} \frac{dx}{\sqrt{x}-10}
8. 01dxx2\int_{0}^{1} \frac{dx}{x^{2}}
9. 122xdx\int_{1}^{2} \sqrt{2-x} \, dx
10. ex2/2dx\int_{-\infty}^{\infty} e^{-x^{2}/2} \, dx

See Solution

Problem 8220

Trouver la dérivée de f(x)=(4x8+6)4(12x6+5)3f(x)=\left(4 x^{8}+6\right)^{4}\left(12 x^{6}+5\right)^{3}. f(x)=f^{\prime}(x)=

See Solution

Problem 8221

Find dydx\frac{dy}{dx} for e2xy=sin(y7)e^{2xy} = \sin(y^7), expressing it in terms of xx and yy.

See Solution

Problem 8222

Find the marginal productivity of the function p(x,y)=2400x45y15p(x, y)=2400 x^{\frac{4}{5}} y^{\frac{1}{5}}. Calculate px\frac{\partial p}{\partial x}.

See Solution

Problem 8223

Find the leading term of x+33x3\frac{\sqrt[3]{x+3}}{x^{3}} as x+x \to +\infty to check if the integral converges or diverges:
1+x+33x3dx\int_{1}^{+\infty} \frac{\sqrt[3]{x+3}}{x^{3}} dx

See Solution

Problem 8224

Find the derivative of f(x)=csc(x)exf(x)=\csc (x) e^{x}. What is f(x)f^{\prime}(x)? Options: a) csc(x)tan(x)-\csc (x) \tan (x) b) csc(x)exexcsc(x)cot(x)\csc (x) e^{x}-e^{x} \csc (x) \cot (x) c) excsc(x)cot(x)-e^{x} \csc (x) \cot (x) d) sec(x)tan(x)+ex\sec (x) \tan (x)+e^{x} e) None of the above

See Solution

Problem 8225

Find the leading term of x+33x3\frac{\sqrt[3]{x+3}}{x^{3}} as x+x \rightarrow+\infty to check integral convergence: 1+x+33x3dx\int_{1}^{+\infty} \frac{\sqrt[3]{x+3}}{x^{3}} dx.

See Solution

Problem 8226

Find the derivative f(x)f^{\prime}(x) of the function f(x)=x5f(x)=x^{-5}. Choose the correct option from: a) 6x6-6 x^{-6}, b) x6x^{-6}, c) 5x6-5 x^{-6}, d) 5x65 x^{-6}, e) None.

See Solution

Problem 8227

Calculez la dérivée de f(x)=(10x8+7)4(7x86)4f(x)=\frac{(10 x^{8}+7)^{4}}{(7 x^{8}-6)^{4}}. f(x)=f^{\prime}(x)=

See Solution

Problem 8228

Evaluate the integral 01exxdx\int_{0}^{1} \frac{e^{-x}}{x} dx for convergence using Taylor series near x=0x=0.

See Solution

Problem 8229

Find the derivative f(x)f^{\prime}(x) of f(x)=tan(t)exf(x)=\tan(t) e^{x}. Options: a) sec2(t)ex\sec^{2}(t) e^{x} b) tan(t)ex+exsec2(t)\tan(t) e^{x}+e^{x} \sec^{2}(t) c) extan(t)e^{x} \tan(t) d) sec2(t)+ex\sec^{2}(t)+e^{x} e) None.

See Solution

Problem 8230

Find the derivative g(x)g^{\prime}(x) of g(x)=x46xg(x)=\frac{x^{4}}{6-x}. Choose from the options provided.

See Solution

Problem 8231

Find the leading term of the integrand as x+x \to +\infty to check if the integral 1+x+33x3dx\int_{1}^{+\infty} \frac{\sqrt[3]{x+3}}{x^{3}} dx converges or diverges.

See Solution

Problem 8232

Find g(x)g^{\prime}(x) if g(x)=(x3+1)(x31)g(x)=(x^{3}+1)(x^{3}-1). Options: a) 6x516 x^{5}-1 b) 6x56 x^{5} c) 6x36 x^{3} d) 6x5+6x6 x^{5}+6 x e) 6x5+6x16 x^{5}+6 x-1 f) None.

See Solution

Problem 8233

Calculer la dérivée de f(x)=59x6+5x5+12xf(x)=5^{9 x^{6}+5 x^{5}+12 x}. Quelle est f(x)f^{\prime}(x) ?

See Solution

Problem 8234

Show that E=VE=-\nabla V leads to LaPlace's equation, 2V=0\nabla^{2} V=0, when charge density is 00.

See Solution

Problem 8235

Find f(x)f^{\prime}(x) for f(x)=6xx6f(x)=\frac{6-x}{x-6}. Choose from: a) 6x6(x6)2\frac{6 x-6}{(x-6)^{2}}, b) -1, c) 0, d) 6x(x6)2\frac{6 x}{(x-6)^{2}}, e) 6x+1(x6)2\frac{6 x+1}{(x-6)^{2}}, f) None.

See Solution

Problem 8236

Calculer la dérivée de f(x)=4811x8+7x44x3+8xf(x)=48 \sqrt{11 x^{8}+7 x^{4}-4 x^{3}+8 x}. Trouvez f(x)f^{\prime}(x).

See Solution

Problem 8237

Find the rate of change of infected people at t=10t=10 weeks for N(t)=300t32e(t10)N(t)=300 t^{\frac{3}{2}} e^{-(t-10)}. Options: a) 142 b) -260 c) -283 d) -2000 e) -3307 f) -8064 g) None.

See Solution

Problem 8238

Evaluate the integral 01exxdx\int_{0}^{1} \frac{e^{-x}}{x} dx. Analyze the behavior near x=0x=0 to check for convergence or divergence.

See Solution

Problem 8239

Calculer la dérivée de f(x)=xe3x+20f(x)=x e^{3 x+20}. Quelle est f(x)f^{\prime}(x)?

See Solution

Problem 8240

A 12-lb weight is attached to a spring and dashpot. Find its position function x(t)x(t) after being pulled down 1 ft and released. Also, determine the frequency, amplitude, and phase angle.

See Solution

Problem 8241

A carbon-14 sample is now 52.0 grams after 17,190 years. Find the original sample size, knowing the half-life is 5,730 years. Use three significant figures.

See Solution

Problem 8242

Determine the true statement about f(x)=x4f(x)=|x-4| at x=4x=4 and x=4x=-4 from the options provided.

See Solution

Problem 8243

Determine the true statement about a function with corners at x=1x=-1 and x=1x=1 regarding differentiability and continuity.

See Solution

Problem 8244

Find the value of f(1)f(1) for f(x)=x21x1f(x)=\frac{x^{2}-1}{x-1} to make it continuous at x=1x=1.

See Solution

Problem 8245

For the function f(x)=x4f(x)=|x-4|, which statement is true about its continuity and differentiability at x=4x=4?

See Solution

Problem 8246

Find f(1)f^{\prime \prime}(1) for f(x)=x4+x2+1f(x)=x^{4}+x^{2}+1.

See Solution

Problem 8247

Find the gradient function dydx\frac{d y}{d x} for: a) y=(4x5)2y=(4 x-5)^{2}, b) y=152xy=\frac{1}{5-2 x}.

See Solution

Problem 8248

Find the derivative f(c)f^{\prime}(c) for f(x)=x1xf(x)=x-\frac{1}{x} at c=1c=1.

See Solution

Problem 8249

Find the arc length ss of the curve r(t)=3t,5cos(4t),5sin(4t)\vec{r}(t)=\langle 3 t, 5 \cos (4 t), 5 \sin (4 t)\rangle for 1t3-1 \leq t \leq 3.

See Solution

Problem 8250

Show that the derivative of f3f^3 is 3f2f3 f^2 f'.

See Solution

Problem 8251

Find the tangent line to the curve y=3x2y=3x^2 at x=3x=3. Choose the correct equation from the options given.

See Solution

Problem 8252

Find the vertical asymptotes of the function v(x)=1x2+1v(x)=\frac{1}{x^{2}+1}. What are the equations?

See Solution

Problem 8253

A 12-lb weight stretches a spring 6 in. and has 3 lb resistance. Find position x(t)x(t) and motion properties after 1 ft pull.

See Solution

Problem 8254

Find the derivative dzdxx=1n\left.\frac{d z}{d x}\right|_{x=1} ^{n} for z=1x3+1z=\frac{1}{x^{3}+1}.

See Solution

Problem 8255

Find the derivative of y=7sin1(x)y=7 \sin^{-1}(x) at x=34x=-\frac{3}{4}. Calculate y(34)=y^{\prime}\left(-\frac{3}{4}\right)=

See Solution

Problem 8256

Evaluate the limit: limx3x28x+15x2x6\lim _{x \rightarrow 3} \frac{x^{2}-8 x+15}{x^{2}-x-6}.

See Solution

Problem 8257

Find g(1)g^{\prime}(1) where f(x)=sinx+2x+1f(x)=\sin x + 2x + 1 and gg is the inverse of ff.

See Solution

Problem 8258

Find the position vector r(t)\vec{r}(t) for a particle with acceleration a(t)=4t,6sin(t),cos(2t)\vec{a}(t)=\langle 4 t, 6 \sin (t), \cos (2 t)\rangle, initial velocity v(0)=1,2,1\vec{v}(0)=\langle-1,-2,1\rangle, and initial position r(0)=2,0,1\vec{r}(0)=\langle-2,0,1\rangle.

See Solution

Problem 8259

Evaluate the limit as xx approaches 0: limx06cos(5x)5e2x15xsin(3x)\lim_{x \rightarrow 0} \frac{6 \cos(5x) - 5 e^{-2x} - 1}{5x - \sin(3x)}

See Solution

Problem 8260

Find the derivative of f(t)=(2t+1)(t22)f(t)=(2t+1)(t^{2}-2) using the product or quotient rule, then simplify and calculate the derivative.

See Solution

Problem 8261

Find the derivative dydx\frac{d y}{d x} for y=(4+x3lnx)7y=(4+x^{3} \ln x)^{7}.

See Solution

Problem 8262

Find dpdhh=4\left.\frac{d p}{d h}\right|_{h=4} for the function p=7eh2p=7 e^{h-2}.

See Solution

Problem 8263

Find the derivative of f(s)=s1/4+s1/3f(s) = s^{1/4} + s^{1/3}.

See Solution

Problem 8264

Find the limits of the function as xx \rightarrow \infty and xx \rightarrow -\infty: 3(1/x2)(5/x)+(7/x2)\frac{3-\left(1 / x^{2}\right)}{(-5 / x)+\left(7 / x^{2}\right)}

See Solution

Problem 8265

Find the derivative of the integral: ddx(3xtsin(t2)dt)\frac{d}{d x}\left(\int_{-3}^{\sqrt{x}} t \sin \left(t^{2}\right) d t\right).

See Solution

Problem 8266

Find dy dx\frac{\mathrm{d} y}{\mathrm{~d} x} for y=(5x23)9/10(6x26x+1)7/6y=\frac{(5 x^{2}-3)^{9/10}}{(6 x^{2}-6 x+1)^{7/6}} using logarithmic differentiation.

See Solution

Problem 8267

Find dy dx\frac{\mathrm{d} y}{\mathrm{~d} x} using logarithmic differentiation for y=(5x23)9/10(6x26x+1)7/6y=\frac{(5 x^{2}-3)^{9/10}}{(6 x^{2}-6 x+1)^{7/6}}.

See Solution

Problem 8268

Find values of cc such that limx2f(x)\lim_{x \to 2} f(x) exists for the piecewise function: f(x)={3x2+cx if x<2,1+3xc if x>2}f(x)=\{3 x^{2}+c x \text{ if } x<2, 1+\frac{3 x}{c} \text{ if } x>2\}.

See Solution

Problem 8269

Find dydx\frac{d y}{d x} using logarithmic differentiation for y=(5x23)9/10(6x26x+1)7/6y=\frac{(5 x^{2}-3)^{9/10}}{(6 x^{2}-6 x+1)^{7/6}}.

See Solution

Problem 8270

Find the integral I=1x2+17 dxI=\int \frac{1}{x^{2}+17} \mathrm{~d} x.

See Solution

Problem 8271

Find the derivative of y=6cos1(7x)y=6 \cos^{-1}(7x) at x=18x=-\frac{1}{8}. Compute y(18)=y^{\prime}\left(-\frac{1}{8}\right)=

See Solution

Problem 8272

Find the derivative of y=5sec1(x+7)y=5 \sec^{-1}(x+7). What is yy'?

See Solution

Problem 8273

Find the integral I=1x2+17 dxI=\int \frac{1}{x^{2}+17} \mathrm{~d} x.

See Solution

Problem 8274

Find the integral I=(7x+8)e7x dxI=\int(7 x+8) e^{7 x} \mathrm{~d} x.

See Solution

Problem 8275

Find dydx\frac{d y}{d x} using implicit differentiation for the equation 3x28xyy3=103 x^{2}-8 x y-y^{3}=10.

See Solution

Problem 8276

Find the integral I=(7x+8)e7x dxI=\int(7 x+8) e^{7 x} \mathrm{~d} x.

See Solution

Problem 8277

Calculate the average rate of change of f(x)=x32x2+3xf(x)=x^{3}-2 x^{2}+3 x between x=1x=1 and x=2x=2.

See Solution

Problem 8278

Find the integral I=(7x+8)e7xdxI=\int(7 x+8) e^{7 x} d x.

See Solution

Problem 8279

Find the integral I=6x2(2x3+5)4 dxI=\int \frac{6 x^{2}}{\left(2 x^{3}+5\right)^{4}} \mathrm{~d} x.

See Solution

Problem 8280

Find the derivative of y=cos1(12x)sin1(12x)y=\frac{\cos^{-1}(12x)}{\sin^{-1}(12x)}. What is yy'?

See Solution

Problem 8281

Differentiate p(x)=(x+1)f(x)+xg(x)p(x)=(x+1) f(x)+x g(x) to find p(x)p^{\prime}(x). Then, compute p(1)p^{\prime}(-1) using f(1)=6f(-1)=6, f(1)=3f^{\prime}(-1)=3, g(1)=4g(-1)=4, g(1)=4g^{\prime}(-1)=4.

See Solution

Problem 8282

Find the critical number AA for the function f(x)=9(x5)2/3f(x)=9(x-5)^{2/3} in the intervals (,A)(-\infty, A) and (A,)(A, \infty).

See Solution

Problem 8283

Find the derivative of f(x)=ln((2x3+4)4(2x1)5)f(x) = \ln \left(\frac{(-2 x^{3}+4)^{4}}{(2 x-1)^{5}}\right).

See Solution

Problem 8284

Find the derivative of y=cos1(12x)sin1(12x)y=\frac{\cos^{-1}(12x)}{\sin^{-1}(12x)}.

See Solution

Problem 8285

Solve the differential equation dy dx=8x(x21)y\frac{\mathrm{d} y}{\mathrm{~d} x}=8 x(x^{2}-1) \sqrt{y} with the initial condition y(1)=1y(1)=1.

See Solution

Problem 8286

Find the derivative of f(x)=x5x+2f(x)=\frac{x}{5x+2} using the limit definition.
(a) Simplify f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} to the form A(5(x+h)+2)(5x+2)\frac{A}{(5(x+h)+2)(5x+2)}. Find A=A=.
(b) Compute f(x)=limh0f(x+h)f(x)h=f^{\prime}(x)=\lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=.

See Solution

Problem 8287

Solve the differential equation dydx+6yx=8x2+3x4x5\frac{d y}{d x}+6 \frac{y}{x}=\frac{8 x^{2}+3 x-4}{x^{5}} with initial condition y(1)=0y(1)=0.

See Solution

Problem 8288

Find the first three non-zero terms of the MacLaurin series for f(x)=1exxf(x)=\frac{1-e^{-x}}{x}.

See Solution

Problem 8289

Find the interval where the quartic polynomial f(x)=x42+1.5x37.5x2f(x) = \frac{x^{4}}{2} + 1.5 x^{3} - 7.5 x^{2} is concave down. <x<<x<

See Solution

Problem 8290

Find the interval where the quartic polynomial f(x)=x42+2.5x318x2f(x) = \frac{x^{4}}{2} + 2.5 x^{3} - 18 x^{2} is concave down.

See Solution

Problem 8291

Find the critical numbers of the function F(x)=x4/5(x9)2F(x)=x^{4/5}(x-9)^{2}.

See Solution

Problem 8292

Find the first three non-zero terms of f(x)=1exxf(x) = \frac{1 - e^{-x}}{x} using its MacLaurin series.

See Solution

Problem 8293

Find the first three non-zero terms of f(x)=(1ex)/xf(x)=(1-e^{-x})/x using the MacLaurin series and approximate I=0b(1ex)/xdxI=\int_{0}^{b}(1-e^{-x})/x \, dx as a function of bb.

See Solution

Problem 8294

Find the interval where the quartic polynomial f(x)=x421.5x3+21x2f(x)=-\frac{x^{4}}{2}-1.5 x^{3}+21 x^{2} is concave up. <x<<x<

See Solution

Problem 8295

Find the value of f(1)f^{\prime}(1) for the function f(x)=ln(x)x6f(x)=\frac{\ln (x)}{x^{6}}.

See Solution

Problem 8296

Find the tangent line equation for the curve x3+y3=3xyx^{3}+y^{3}=3xy at the point (4865,1265)\left(\frac{48}{65}, \frac{12}{65}\right).

See Solution

Problem 8297

Find the domain of f(x,y)=cosh1(yx2)f(x, y)=\cosh^{-1}(y-x^2), compute fxf_x, fyf_y for f(x,y)=sinh(x2y+y3f(x, y)=\sinh(x^2 y+y^3, and find dzdt\frac{dz}{dt} for z=xy2+3cosyz=xy^2+3\cos y with x=etx=e^t, y=e2ty=e^{-2t}.

See Solution

Problem 8298

Find the derivative dydx\frac{d y}{d x} for ycos(y+x+x2)=x3y \cos(y+x+x^{2})=x^{3} at point P=(0,π2)P=\left(0, \frac{\pi}{2}\right).

See Solution

Problem 8299

Calculate the integral I=1(x41+x6)2dxI=\int_{-1}^{\infty}\left(\frac{x^{4}}{1+x^{6}}\right)^{2} d x.

See Solution

Problem 8300

Find constants aa and bb such that limx0sin(ax)+bxx3=43\lim _{x \rightarrow 0} \frac{\sin (a x)+b x}{x^{3}}=-\frac{4}{3}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord