Calculus

Problem 28901

Find the equation of the tangent line y=35x+2y=\frac{-3}{5 x+2} at x=3x=3.

See Solution

Problem 28902

Find the value(s) of xx where the function g(x)=x+1xg(x)=\frac{x+1}{\sqrt{x}} has a horizontal tangent.

See Solution

Problem 28903

Differentiate the function f(x)=cosxsinxf(x)=\sqrt{\cos x \sin x}.

See Solution

Problem 28904

How long until 80 g80 \mathrm{~g} of carbon-14 remains from 100 g100 \mathrm{~g}? Also, find the rate of change at 100 years.

See Solution

Problem 28905

Carbon-14 has a half-life of 5730 years. A plant had 100 g100 \mathrm{~g} at death. Find: a) remaining after 5730 years, b) equation for remaining after tt years, c) years for 80 g80 \mathrm{~g} left, d) rate of change at 100 years.

See Solution

Problem 28906

Find the absolute extrema of f(x)=(x3)exf(x)=(x-3)e^{x} for 1x3-1 \leq x \leq 3.

See Solution

Problem 28907

A cone-shaped tank is 18 ft tall and 12 ft wide. If drained at 4ft3/min4 \mathrm{ft}^3/\mathrm{min}, how fast drops water level at 6 ft?

See Solution

Problem 28908

Find bb such that the slope of the tangent to f(x)=(3x2+1)(2x2+b)f(x)=(3 x^{2}+1)(2 x^{2}+b) at x=1x=-1 is -16.

See Solution

Problem 28909

How fast is the diameter of a balloon increasing at a radius of 5 cm if air is pumped in at 100 cm3/sec100 \mathrm{~cm}^{3} / \mathrm{sec}?

See Solution

Problem 28910

Find the limit: limx06x+2lnxx+sinx\lim _{x \rightarrow 0} \frac{6 x+2 \ln x}{x+\sin x}.

See Solution

Problem 28911

Find the instantaneous rate of change of ww for w=1z+z2w=\frac{1}{z}+\frac{z}{2}. Choices: (A) 32\frac{3}{2} (B) -2 (C) z222z2\frac{z^{2}-2}{2 z^{2}} (D) 1z2-\frac{1}{z^{2}} (E) None.

See Solution

Problem 28912

Sia ff una funzione integrabile con 01f(x)dx=3\int_{0}^{1} f(x) d x = 3. Quale affermazione è vera tra (a), (b), (c), (d) o (e)?

See Solution

Problem 28913

Sia ff una funzione integrabile con 01f(x)dx=3\int_{0}^{1} f(x) d x = 3. Quale delle seguenti affermazioni è vera? (a), (b), (c), (d) o (e)?

See Solution

Problem 28914

Trova l'espressione esplicita di f(x)f^{\prime}(x) per la funzione f(x)=3x27xet2dtf(x) = \int_{3 x^{2}}^{7 x} e^{-t^{2}} \mathrm{d} t, con x[0,1]x \in [0,1].

See Solution

Problem 28915

Find the limit: limx0(1+3x)1/x\lim _{x \rightarrow 0^{-}}\left(1+3^{x}\right)^{1 / x}.

See Solution

Problem 28916

Approximate the rate of change for f(x)=x35f(x)=x^{3}-5 at x=1x=1 using h=0.1,h=0.01,h=0.001h=0.1, h=0.01, h=0.001.

See Solution

Problem 28917

Find the normal line equation to y=x1xy=x-\frac{1}{x} at point (1,0)(1,0) in the form y=mx+by=mx+b.

See Solution

Problem 28918

Find a real number between n=5n = -5 and b=4b = -4 for the function f(x)=x3+3x29x13f(x) = x^{3} + 3x^{2} - 9x - 13 using the Intermediate Value Theorem.

See Solution

Problem 28919

Calculate the volume of the solid using the formula π[x22x99]01\pi\left[\frac{x^{2}}{2}-\frac{x^{9}}{9}\right]_{0}^{1}.

See Solution

Problem 28920

Find the rate of change of revenue when producing 4000 products, given R(x)=x(0.25x2+7.5x+18.75)R(x)=x(-0.25 x^{2}+7.5 x+18.75).

See Solution

Problem 28921

The cost to produce xx boxes of cookies is C=0.0001x30.03x2+4x+300C=0.0001 x^{3}-0.03 x^{2}+4 x+300. Production after tt weeks is x=1400+100tx=1400+100 t.
(a) Find the marginal cost C(x)C^{\prime}(x). C(x)= C^{\prime}(x)= (b) Use dCdt=dCdxdxdt\frac{d C}{d t}=\frac{d C}{d x} \cdot \frac{d x}{d t} to find the rate of cost change over time. dCdt= \frac{d C}{d t}= (c) Find the cost increase rate (in \perweek)when per week) when t=3$ weeks.

See Solution

Problem 28922

Find the tangent line equation for y=sin(2x+π3)y=\sin \left(2 x+\frac{\pi}{3}\right) at x=π3x=\frac{\pi}{3}.

See Solution

Problem 28923

Find the melting rate of a snowball with volume S=43πr3S=\frac{4}{3} \pi r^{3}, where r=1(t+1)2117r=\frac{1}{(t+1)^{2}}-\frac{1}{17}.

See Solution

Problem 28924

Find the average velocity of a ball rolling down a ramp given s(t)=10t2s(t)=10 t^{2} from t1=3t_{1}=3 to t2=4t_{2}=4.

See Solution

Problem 28925

Calculate the limit: limx1+arctan(x21x2)\lim _{x \rightarrow 1^{+}} \arctan \left(\frac{x^{2}}{1-x^{2}}\right). Does it exist?

See Solution

Problem 28926

1. Find the limit: limn(e1)k=01ek(1+2n)n\lim _{n \rightarrow \infty} \frac{(e-1) \sum_{k=0}^{\infty} \frac{1}{e^{k}}}{(1+\frac{2}{n})^{n}}.
2. Determine if the series n=1n!sin(1/n)nn\sum_{n=1}^{\infty} \frac{n ! \sin (1 / n)}{n^{n}} converges or diverges.
3. Calculate the radius of convergence for n=12n(n+1n)xn\sum_{n=1}^{\infty} 2^{n}\left(n+\frac{1}{n}\right) x^{n}.
4. Does f(x)=xxf(x)=x-\sqrt{x} for x1x \geq 1 have an inverse? (YES / NO)
5. For f(x)=1x21f(x)=\frac{1}{x^{2}-1}, determine: (a) has a maximum? (YES / NO) (b) has a minimum? (YES / NO) (c) is increasing? (YES / NO)

See Solution

Problem 28927

Find the rate of change of depth D(t)=7sin(π6t7π6)+4D(t)=7 \sin \left(\frac{\pi}{6} t-\frac{7 \pi}{6}\right)+4 at t=6t=6 hours. Round to one decimal place.

See Solution

Problem 28928

Find the general antiderivative of f(x)=3x24x+8x2f(x)=\frac{3 x^{2}-4 x+8}{x^{2}} for x>0x>0.

See Solution

Problem 28929

Given the function y=cot(csc(x))y=\cot(\csc(x)), decompose it as y=f(u)y=f(u) and u=g(x)u=g(x). Then find dydx\frac{d y}{d x}.

See Solution

Problem 28930

Estimate the area under the curve y=f(x)y=f(x) from x=0x=0 to x=10x=10 using 5 rectangles. Round to 1 decimal place.

See Solution

Problem 28931

Which properties are needed to evaluate 14(2x+3)dx\int_{1}^{4}(2 x+3) d x? Options: a) P only b) Q only c) Both P and Q d) Neither P nor Q

See Solution

Problem 28932

Berechnen Sie die Ableitung von f(x)=(x+3)2(x+2)3f(x)=\frac{(x+3)^{2}}{(x+2)^{3}}.

See Solution

Problem 28933

Evaluate the limit as xx approaches 4 for the expression x45x+6x^{4}-5x+6. What is the limit?

See Solution

Problem 28934

Find the value of 02/3(4x2)dx\int_{0}^{2/3}(4-x^{2})dx given that 01(4x2)dx=113\int_{0}^{1}(4-x^{2})dx=\frac{11}{3}. Options: a) 169\frac{16}{9} b) 229\frac{22}{9} c) 103\frac{10}{3} d) less than 113\frac{11}{3}.

See Solution

Problem 28935

Find the limit as x approaches 2 from the right: limx2+1x2=\lim _{x \rightarrow 2^{+}}-\frac{1}{x-2}=\square

See Solution

Problem 28936

Which properties are needed to evaluate 03x1dx\int_{0}^{3}|x-1| d x? a) P only b) Q only c) Both P and Q d) Neither P nor Q

See Solution

Problem 28937

Estimate the limit: limθ0sin(7θ)θ=\lim _{\theta \rightarrow 0} \frac{\sin (7 \theta)}{\theta}=\square, with θ\theta in radians.

See Solution

Problem 28938

Find bounds for I=30(x2+2x)dxI = \int_{-3}^{0} (x^{2} + 2x) \, dx. Options: a) 1I31 \leq I \leq 3 b) \bigcirc c) 3I5-3 \leq I \leq -5 d) 3I9-3 \leq I \leq 9.

See Solution

Problem 28939

Fill in the table to estimate limx3f(x)\lim_{x \to 3} f(x) for f(x)=x327x29f(x) = \frac{x^3 - 27}{x^2 - 9}.

See Solution

Problem 28940

Which integral equals 34f(x)dx+58f(x)dx+43f(x)dx\int_{3}^{4} f(x) dx + \int_{5}^{8} f(x) dx + \int_{4}^{3} f(x) dx? a) 013f(x)dx0 \int_{1}^{3} f(x) dx b) 035f(x)dx0 \int_{3}^{5} f(x) dx c) 058f(x)dx0 \int_{5}^{8} f(x) dx d) O1215f(x)dxO \int_{12}^{15} f(x) dx

See Solution

Problem 28941

Which statement is true? P: For non-negative integer kk, 01xkf(x)dx01f(x)dx\left|\int_{0}^{1} x^{k} f(x) dx\right| \geq \int_{0}^{1}|f(x)| dx. Q: 01xdx01x2dx\int_{0}^{1} x dx \leq \int_{0}^{1} x^{2} dx. a) P Only b) Q Only c) Both P and Q d) Neither P nor Q

See Solution

Problem 28942

6. Find the limit: limx1x2+2x3x1\lim _{x \rightarrow 1^{-}} \frac{x^{2}+2 x-3}{|x-1|}. Does it exist?
7. Find the limit: limx0x3sin(x2)\lim _{x \rightarrow 0} \frac{x^{3}}{\sin \left(x^{2}\right)}. Does it exist?
8. Find the limit: limx1arctan(x21x2)\lim _{x \rightarrow 1^{-}} \arctan \left(\frac{x^{2}}{1-x^{2}}\right). Does it exist?
9. Is the function (x)={(x1)sin(1x1)x11x=1\int(x)=\left\{\begin{array}{cc} (x-1) \sin \left(\frac{1}{x-1}\right) & x \neq 1 \\ 1 & x=1 \end{array}\right. continuous on R\mathbb{R}?
10. For the function f(x)=x3ln(x)f(x)=x^{3} \ln (x): (a) Where is the tangent line horizontal in (0,)(0, \infty)? (b) Does the tangent line at (1,0)(1,0) intersect y=f(x)y=f(x) for some x(1,)x \in(1, \infty)? (YES / NO)

See Solution

Problem 28943

Evaluate limx6(f(x)+g(x))\lim _{x \rightarrow 6}(f(x)+g(x)) given limx6f(x)=4\lim _{x \rightarrow 6} f(x)=4 and limx6g(x)=3\lim _{x \rightarrow 6} g(x)=3. Limit =

See Solution

Problem 28944

Find the limit: limxah(x)+g(x)\lim _{x \rightarrow a} h(x)+g(x) given limxah(x)=4\lim _{x \rightarrow a} h(x)=4 and limxag(x)=0\lim _{x \rightarrow a} g(x)=0.

See Solution

Problem 28945

Evaluate the integral from 1 to 5 of x2x^{2} with respect to xx.

See Solution

Problem 28946

Evaluate the integral from 0 to 1 of the function x2+4x+3x^{2}+4x+3.

See Solution

Problem 28947

Find the sum of the series: n=0e1n\sum_{n=0}^{\infty} e^{\frac{1}{n}}.

See Solution

Problem 28948

Find the limits: 1. limxah(x)+g(x)\lim _{x \rightarrow a} h(x)+g(x), 2. limxah(x)g(x)\lim _{x \rightarrow a} h(x)-g(x) given limits are 4, 0, and 8.

See Solution

Problem 28949

Given limits:
1. limxh(x)+g(x)\lim _{x \rightarrow \infty} h(x)+g(x)
2. limxh(x)g(x)\lim _{x \rightarrow \infty} h(x)-g(x)
3. limxah(x)f(x)\lim _{x \rightarrow a} h(x) \cdot f(x)
4. limxh(x)g(x)\lim _{x \rightarrow \infty} \frac{h(x)}{g(x)}
5. limxh(x)f(x)\lim _{x \rightarrow \infty} \frac{h(x)}{f(x)}
6. limxaf(x)h(x)\lim _{x \rightarrow a} \frac{f(x)}{h(x)}
7. limxa(g(x))2\lim _{x \rightarrow a}(g(x))^{2}
8. limxa1g(x)\lim _{x \rightarrow a} \frac{1}{g(x)}
9. limxa1g(x)f(x)\lim _{x \rightarrow a} \frac{1}{g(x)-f(x)}

Find these limits or state DNE if they do not exist.

See Solution

Problem 28950

Find the limit: limx3x+63x3=\lim _{x \rightarrow 3} \frac{\sqrt{x+6}-3}{x-3}=\square

See Solution

Problem 28951

Given limits: limxah(x)=4\lim _{x \rightarrow a} h(x)=4, limxag(x)=0\lim _{x \rightarrow a} g(x)=0, limxaf(x)=8\lim _{x \rightarrow a} f(x)=8. Find the limits: 1. limxa(h(x)+g(x))\lim _{x \rightarrow a} (h(x)+g(x)), 2. limxa(h(x)g(x))\lim _{x \rightarrow a} (h(x)-g(x)), 3. limxa(h(x)f(x))\lim _{x \rightarrow a} (h(x) \cdot f(x)), 4. limxah(x)g(x)\lim _{x \rightarrow a} \frac{h(x)}{g(x)}, 5. limxah(x)f(x)\lim _{x \rightarrow a} \frac{h(x)}{f(x)}.

See Solution

Problem 28952

Find the limit as xx approaches 1 for x3xx21\frac{x^{3}-x}{x^{2}-1}. If it doesn't exist, write "DNE".

See Solution

Problem 28953

Find the limit as xx approaches 6 for x23x18x6\frac{x^{2}-3x-18}{x-6}. Answer with I, -I, or DNE.

See Solution

Problem 28954

Calculate m=13[0.5x2]12m=\frac{1}{3}\left[0.5 x^{2}\right]_{-1}^{2}.

See Solution

Problem 28955

1. Find the limit: limx3+x2+2x3x+3\lim _{x \rightarrow 3^{+}} \frac{x^{2}+2 x-3}{|x+3|}
2. Find the limit: limx0x3sin(3x2)\lim _{x \rightarrow 0} \frac{x^{3}}{\sin \left(3 x^{2}\right)}
3. Find the limit: limx1+arctan(x21x2)\lim _{x \rightarrow 1^{+}} \arctan \left(\frac{x^{2}}{1-x^{2}}\right)
4. Is the function f(x)={(x1)sin(1x1)x11x=1f(x)=\left\{\begin{array}{cc} (x-1) \sin \left(\frac{1}{x-1}\right) & x \neq 1 \\ -1 & x=1 \end{array}\right. continuous on R\mathbb{R}?
5. For f(x)=x3ln(x)f(x)=x^{3} \ln (x): (a) Where is the tangent line horizontal in (0,)(0, \infty)? (b) Does the tangent line at (1,0)(1,0) intersect the graph in (1,)(1, \infty)? (YES / NO)

See Solution

Problem 28956

Calculate the integral: 14(8t12t3)dt\int_{1}^{4}\left(\frac{8}{\sqrt{t}}-12 \sqrt{t^{3}}\right) d t

See Solution

Problem 28957

1. Find function hh such that hf(x)=11cos2(x)+sin(x)h \circ f(x) = \frac{1}{1-\cos^{2}(x)} + \sin(x) for f(x)=sin(x)f(x)=\sin(x).
2. Does f(x)=8(x2)4+1f(x)=\frac{8}{(x-2)^{4}+1} have an inverse for x[2,)x \in [2, \infty)?
3. Find the radius of convergence for n=16n(n+1n)xn\sum_{n=1}^{\infty} 6^{n}(n+\frac{1}{n})x^{n}.
4. Does f(x)=2x2xf(x)=2x-\sqrt{2x} for x12x \geq \frac{1}{2} have an inverse? (YES / NO)
5. For f(x)=11x2f(x)=\frac{1}{1-x^{2}}, determine if it has a max (YES/NO), min (YES/NO), and if it is increasing (YES/NO).

See Solution

Problem 28958

Evaluate limx8f(x)g(x)\lim _{x \rightarrow 8} f(x) \cdot g(x) given limx8f(x)=8\lim _{x \rightarrow 8} f(x)=8 and limx8g(x)=3\lim _{x \rightarrow 8} g(x)=3. Limit ==

See Solution

Problem 28959

Find the limit: limx0x2+2xx=\lim _{x \rightarrow 0} \frac{x^{2}+2 x}{x}=\square

See Solution

Problem 28960

Evaluate limx6f(x)g(x)\lim _{x \rightarrow 6} \frac{f(x)}{g(x)} given limx6f(x)=8\lim _{x \rightarrow 6} f(x)=8 and limx6g(x)=7\lim _{x \rightarrow 6} g(x)=7. Limit =

See Solution

Problem 28961

Find the limit: limx0sin3xx=\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}=\square

See Solution

Problem 28962

Find the limit: limx5x23x10x28x+15.\lim _{x \rightarrow 5} \frac{x^{2}-3 x-10}{x^{2}-8 x+15}.

See Solution

Problem 28963

Find the limit: limx0cos2xsin2x7x=\lim _{x \rightarrow 0} \frac{\cos 2 x \sin 2 x}{7 x}=\square

See Solution

Problem 28964

Find the limit: limx5x27x+10x225=\lim _{x \rightarrow 5} \frac{x^{2}-7 x+10}{x^{2}-25}=\square

See Solution

Problem 28965

Find the limit: limx2x+22x2=\lim _{x \rightarrow 2} \frac{\sqrt{x+2}-2}{x-2}=\square

See Solution

Problem 28966

Evaluate the limit as θ\theta approaches 0: limθ0sin2θsin5θθ2\lim _{\theta \rightarrow 0} \frac{\sin 2 \theta \sin 5 \theta}{\theta^{2}}

See Solution

Problem 28967

Find the limit: limx2x24x+2=\lim _{x \rightarrow-2} \frac{x^{2}-4}{x+2}=\square

See Solution

Problem 28968

Determine the critical points of f(x)=43xtanxf(x)=\frac{4}{3} x-\tan x for π2<x<π2-\frac{\pi}{2}<x<\frac{\pi}{2}. Options include: 1 point at x=23x=\frac{2}{\sqrt{3}}, 1 point at x=π6x=\frac{\pi}{6}, 2 points at x=23x=-\frac{2}{\sqrt{3}} and x=23x=\frac{2}{\sqrt{3}}, none, or 2 points at x=π6x=-\frac{\pi}{6} and x=π6x=\frac{\pi}{6}.

See Solution

Problem 28969

Determine if the function f(x)f(x) has a jump discontinuity at x=8x=8 by finding limx8f(x)\lim _{x \rightarrow 8^{-}} f(x) and limx8+f(x)\lim _{x \rightarrow 8^{+}} f(x).

See Solution

Problem 28970

Berechne die Wendepunkte der Funktion f(x)=xx2+4f(x) = \frac{x}{x^{2}+4}.

See Solution

Problem 28971

Find the derivative of h(t)=(t2+9)(t+7)h(t)=(t^{2}+9)(t+7) at t=1t=1 using the Product Rule. Provide a whole number answer. dhdtt=1=\left.\frac{d h}{d t}\right|_{t=1}=

See Solution

Problem 28972

Find the second derivative at 1 for the function f(t)=15tt+1f(t)=\frac{15 t}{t+1}.

See Solution

Problem 28973

Find the first five derivatives of f(x)=sin(x)f(x)=\sin(x), then calculate f(110)(x)f^{(110)}(x) and f(9)(x)f^{(9)}(x).

See Solution

Problem 28974

Find the limit as xx approaches infinity for 5x+2lnxx+3lnx\frac{5x + 2 \ln x}{x + 3 \ln x}.

See Solution

Problem 28975

Find U1U_{1} in the DE y2y+y=exx2y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x^{2}} with yp=U1ex+U2xexy_{p}=U_{1} e^{x}+U_{2} x e^{x}. Options: I. ex6x2\frac{e^{x}}{6 x^{2}}, II. lnx-\ln x, III. ex(x+1)e^{x}(x+1), IV. 1x-\frac{1}{x}, V. x+1x\frac{x+1}{x}.

See Solution

Problem 28976

Find yy^{\prime} and yy^{\prime \prime} for y552x2=3y^{5}-\frac{5}{2} x^{2}=3. Express yy^{\prime} as a function of xx and yy.

See Solution

Problem 28977

Bestimme die Temperaturen von f(t)f(t) für t=0t=0 und t=2t=2, berechne die prozentuale Abweichung. Zeige, dass ff einen Extrempunkt hat.

See Solution

Problem 28978

Find the value of kk for the point (4.2,k)(4.2, k) on the curve 8x2+5xy+y3=149-8x^2 + 5xy + y^3 = -149 using the tangent line y=3x13y = 3x - 13.

See Solution

Problem 28979

Zwei Läusepopulationen: Eine wächst täglich um 500, die andere um 5%5\%. a) Funktionsgleichungen aufstellen. b) f(t)=kf(t)f^{\prime}(t)=k \cdot f(t) prüfen und k bestimmen. c) Funktionstyp für b) untersuchen.

See Solution

Problem 28980

Berechnen Sie f(0)f(0) und f(2)f(2) für f(t)=23+20te110tf(t)=23+20 \cdot t \cdot e^{-\frac{1}{10} t} und die prozentuale Abweichung. Zeigen Sie, dass ff einen Extrempunkt hat.

See Solution

Problem 28981

Berechne die Steigung von f(x)=4x5+6x3+14x2f(x)=4 x^{5}+6 x^{3}+\frac{1}{4} x^{2} bei x0=1x_{0}=1.

See Solution

Problem 28982

Find where the function f(x)=4x43x3+5x10f(x)=4 x^{4}-3 x^{3}+5 x-10 is concave up. Options: A, B, C, D, E.

See Solution

Problem 28983

Find the relative extreme point of f(x)=3+6xx2f(x)=-3+6x-x^{2} and determine if it's a max or min at (3,6)(3,6). What is ff''?

See Solution

Problem 28984

Find the derivative: dydx=(2x3x2+3x+2)5\frac{d y}{d x} = (2 x^{3} - x^{2} + 3 x + 2)^{5}.

See Solution

Problem 28985

Find the xx-coordinates of relative extrema for f(x)=23x37x2+24x72f(x)=\frac{2}{3} x^{3}-7 x^{2}+24 x-72.

See Solution

Problem 28986

3 Berechne f(1)f(-1) für f(x)=x4+2x2+2x+7f(x)=-x^{4}+2 x^{2}+2 x+\sqrt{7} 4 Berechne die Steigung bei x=2x=2 für f(x)=0.25x4+2x3+3x2+7f(x)=0.25 x^{4}+2 x^{3}+3 x^{2}+7 5 Berechne f(3)f'(-3) für f(x)=23x3+13x3+23f(x)=-\frac{2}{3} x^{3}+\frac{1}{3} x^{3}+2 \sqrt{3} 6 Finde die fehlende Koordinate für f(x)=34x8+2.5x42x+4f(x)=-\frac{3}{4} x^{8}+2.5 x^{4}-2 x+4, P(1.5/)P(1.5 / \quad) 7 Berechne f(0.2)f'(0.2) für f(x)=5x40.2x3+0.4x27f(x)=5 x^{4}-0.2 x^{3}+0.4 x^{2}-7 8 Finde die fehlende Koordinate für f(x)=0.3x5+17x3+2xf(x)=0.3 x^{5}+\frac{1}{7} x^{3}+2 x, P(3/4I,)P(-3 / 4 I,) 9 Berechne die Steigung bei x=1.5x=1.5 für f(x)=34x4+12x4+x3f(x)=-\frac{3}{4} x^{4}+\frac{1}{2} x^{4}+x-3 10 Berechne f(3)f(-3) für f(x)=13x42x3+34x2f(x)=-\frac{1}{3} x^{4}-2 x^{3}+\frac{3}{4} x^{2} 11 Berechne die Geschwindigkeit bei t=5t=5 für s(t)=t40.8t27ts(t)=t^{4}-0.8 t^{2}-7 t 12 Berechne die Strecke bei t=2t=-2 für s(t)=0.5t31.8t27s(t)=0.5 t^{3}-1.8 t^{2}-7

See Solution

Problem 28987

Finde die Stammfunktion von f(x)=12x3+32x2f(x) = \frac{1}{2}x^3 + \frac{3}{2}x^2 ohne Konstante CC.

See Solution

Problem 28988

Berechne die Stammfunktion von g(x)=13x2g(x)=\frac{1}{3} x^{2}.

See Solution

Problem 28989

Zeige, dass F(x)=ex(x1)F(x) = e^{x}(x-1) die Stammfunktion von f(x)=xexf(x) = x \cdot e^{x} ist.

See Solution

Problem 28990

Zeige, dass F(x)=ex(x1)F(x)=e^{x}(x-1) eine Stammfunktion von f(x)=xexf(x)=x \cdot e^{x} ist.

See Solution

Problem 28991

Find the curve where dy dx=2x+1\frac{\mathrm{d} y}{\mathrm{~d} x}=\sqrt{2 x+1} and it passes through (4,11)(4,11).

See Solution

Problem 28992

Find the vertical asymptotes of f(x)=3x(x3)(x+2)f(x)=\frac{3x}{(x-3)(x+2)} and evaluate limxf(x)\lim_{x \to -\infty} f(x) and limxf(x)\lim_{x \to \infty} f(x).

See Solution

Problem 28993

Find the area between the curves y=1x2y=\frac{1}{x^{2}}, y=x2y=-x^{2} from x=1x=1 to x=2x=2.

See Solution

Problem 28994

What fits in the blank? "If limxaf(x)=L\lim _{x \rightarrow a} f(x)=L, then f(x)f(x) is ____ to L." Options: slightly larger, always equal, slightly smaller, never equal.

See Solution

Problem 28995

Find δ\delta values that satisfy limx25x+2=12\lim _{x \rightarrow 2} 5 x+2=12 for ε=0.3\varepsilon=0.3. Options: 0.00360.0036, 0.060.06, 0.120.12, 0.020.02.

See Solution

Problem 28996

Complete the sentence: "If limxaf(x)L\lim _{x \rightarrow a} f(x) \neq L, then there exists ε>0\varepsilon>0 such that f(x)f(x) is at least ε\varepsilon away from LL."

See Solution

Problem 28997

Find δ\delta values for limx15x+4=9\lim _{x \rightarrow 1} 5 x+4=9 with ε=0.3\varepsilon=0.3. Options: δ=0.0036\delta=0.0036, δ=0.02\delta=0.02, δ=0.06\delta=0.06, δ=0.12\delta=0.12.

See Solution

Problem 28998

Find a suitable δ\delta value for limx15x+2=7\lim _{x \rightarrow 1} 5 x+2=7 with ε=0.4\varepsilon=0.4. Options: 0.160.16, 0.00640.0064, 0.080.08, 0.02666666666666670.0266666666666667.

See Solution

Problem 28999

Find the definite integral for the area between y=xy=x and y=5x2x3y=5x^2-x^3. Options are A, B, C, or D.

See Solution

Problem 29000

Find a suitable δ\delta for limx24x+5=13\lim _{x \rightarrow 2} 4 x+5=13 with ε=0.4\varepsilon=0.4: δ=0.1\delta=0.1, δ=0.0333\delta=0.0333, δ=0.2\delta=0.2, δ=0.01\delta=0.01.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord