Calculus

Problem 11601

Find the derivative of yy with respect to vv where y=ln(cosh(6v))12tanh2(6v)y=\ln (\cosh (6 v))-\frac{1}{2} \tanh ^{2}(6 v).

See Solution

Problem 11602

Solve the equation 5xydydx=45 \sqrt{x y} \frac{d y}{d x}=4 for yy where x,y>0x, y>0. Find y=y=\square.

See Solution

Problem 11603

Find the derivative of yy where y=3sinh(x2)y=3 \sinh \left(\frac{x}{2}\right).

See Solution

Problem 11604

Berechnen Sie die Fläche zwischen den Funktionen und der xx-Achse für: a) f1(x)=(x4)(2+x)f_{1}(x)=-(x-4)(2+x) b) f2(x)=x26x5f_{2}(x)=-x^{2}-6 x-5 c) f3(x)=(x4)xf_{3}(x)=(x-4) \sqrt{x} d) f4(x)=x410x2+9f_{4}(x)=x^{4}-10 x^{2}+9 e) f5(x)=x3+6x2+3x10f_{5}(x)=x^{3}+6 x^{2}+3 x-10

See Solution

Problem 11605

Sketch a function f(x)f(x) with: domain {xRx4,2}\{x \in \mathbb{R} \mid x \neq-4,-2\}, f(3)=0f^{\prime}(-3)=0, f(0)f^{\prime}(0) non-existent, f(x)>0f^{\prime}(x)>0 on (,4)(3,2)(0,)(-\infty,-4) \cup(-3,-2) \cup(0, \infty), f(x)<0f^{\prime}(x)<0 on (4,3)(2,0)(-4,-3) \cup(-2,0), f(0)=0f(0)=0, f(3)=2f(-3)=2, limxf(x)=1\lim_{x \to -\infty} f(x)=1, limxf(x)=1\lim_{x \to \infty} f(x)=1.

See Solution

Problem 11606

Differentiate the function: f(x)=(3x25x)exf(x)=(3 x^{2}-5 x) e^{x}.

See Solution

Problem 11607

Find the inverse of P(t)=10001+9etP(t)=\frac{1000}{1+9 e^{-t}}, then determine the time for PP to reach 800 and analyze tt \rightarrow \infty.

See Solution

Problem 11608

Find the derivative of f(x)=xx+1f(x)=x \cdot \sqrt{x+1}.

See Solution

Problem 11609

En kloss på 155 g155 \mathrm{~g} henger i en fjær med stivhet 320 N/m320 \mathrm{~N/m}. Hva er farten ved likevektsstillingen og 1.1 cm1.1 \mathrm{~cm} fra den? Svar i m/s\mathrm{m/s}.

See Solution

Problem 11610

Find the derivative y(t)y^{\prime}(t) of y(t)=302t/30y(t) = 30 \cdot 2^{-t / 30} to analyze decay rate after tt years. Explain your steps.

See Solution

Problem 11611

Find the derivative of y=ex1exy=\frac{e^{x}}{1-e^{x}}.

See Solution

Problem 11612

Find the first derivative of f(x)=x5/3ln(x)f(x)=x^{5/3} \ln(x) and determine where it has horizontal tangents. x=x=

See Solution

Problem 11613

Find the derivative of G(x)=x222x+1G(x)=\frac{x^{2}-2}{2 x+1}.

See Solution

Problem 11614

Find the xx-coordinates of inflection points for the function g(x)=1+x1+x2g(x)=\frac{1+x}{1+x^{2}} with g(x)=2(x1)(x2+4x+1)(1+x2)3g^{\prime \prime}(x)=\frac{2(x-1)(x^{2}+4x+1)}{(1+x^{2})^{3}}.

See Solution

Problem 11615

Find the derivative of H(u)=(uu)(u+u)H(u)=(u-\sqrt{u})(u+\sqrt{u}).

See Solution

Problem 11616

Find the limit: limx5x3/24x+1\lim _{x \rightarrow \infty} \frac{5 x^{3 / 2}}{4 \sqrt{x}+1}.

See Solution

Problem 11617

Given the function f(x)=x3+9x2+4f(x)=x^{3}+9 x^{2}+4, find if f(x)f^{\prime \prime}(x) is + or - in the intervals (,3)(-\infty,-3), -3, and (3,)(-3, \infty).

See Solution

Problem 11618

Find critical points of f(x)=23x3+x212xf(x)=\frac{2}{3} x^{3}+x^{2}-12 x and classify them using the first derivative test.

See Solution

Problem 11619

Find the derivative of J(v)=(v32v)(v4+v2)J(v)=(v^{3}-2v)(v^{-4}+v^{-2}).

See Solution

Problem 11620

Given f(x)=x3+9x2+4f(x) = x^3 + 9x^2 + 4, verify:
1. Is x=3x=-3 a point of inflection?
2. Find critical value at x=6x=-6 using the second derivative test.
3. Find critical value at x=0x=0 using the second derivative test.

See Solution

Problem 11621

Find the differential dyd y for each: 1) y=x32y=-x^{3}-2 2) y=3xy=-\frac{3}{x}.

See Solution

Problem 11622

15. Verkehrszählung: f(x)=11010x51130000x3+16x+6f(x)=\frac{1}{10^{10}} x^{5}-\frac{1}{130000} x^{3}+\frac{1}{6} x+6.
a) Höchste Verkehrsdichte? b) Fahrzeuge zwischen 6 und 9 Uhr? c) Durchschnittlicher Fahrzeugstrom zwischen 6 und 8 Uhr?

See Solution

Problem 11623

Die Funktion f(t)=14t3114t24t+44f(t)=\frac{1}{4} t^{3}-\frac{11}{4} t^{2}-4 t+44 beschreibt die Wasseränderung.
a) Wann nimmt die Wassermenge zu? b) Bestimme den Zeitpunkt mit der geringsten Änderungsrate. c) Was bedeutet dieser Zeitpunkt für die Funktion g(t)g(t)?

See Solution

Problem 11624

Find the critical points of the function f(x)=2x2x9f(x)=\frac{2 x^{2}}{x-9}. What are the xx-values?

See Solution

Problem 11625

Evaluate the triple integral B(2x+3y2+4z3)dV\iiint_{B}(2 x+3 y^{2}+4 z^{3}) d V over the box B={(x,y,z)0x4,0y2,0z1}B=\{(x, y, z) \mid 0 \leq x \leq 4,0 \leq y \leq 2,0 \leq z \leq 1\}.

See Solution

Problem 11626

Berechne die unbestimmten Integrale: a) x6dx\int x^{6} d x, b) 6x2dx\int 6 x^{2} d x, c) nx2n1dx\int n \cdot x^{2n-1} dx, d) (4x2+2x)dx\int(4 x^{2}+2 x) dx, e) (2x34x+1)dx\int(2 x^{3}-4 x+1) dx, f) (ax2+6x)dx\int(a x^{2}+6 x) dx, g) 3x2dx\int 3 x^{-2} dx, h) (2x+1x)xdx\int(2 x+\frac{1}{x}) \cdot x dx, i) (x+3x2)dx\int(x+\frac{3}{x^{2}}) dx, j) exex+2dx\int e^{x} \cdot e^{x+2} dx, k) 4exdx\int \frac{4}{e^{x}} dx, l) (sinx+2cosx)dx\int(\sin x+2 \cos x) dx.

See Solution

Problem 11627

Find cc such that f(9)f(4)94=f(c)\frac{f(9)-f(4)}{9-4}=f'(c) for f(x)=x4f(x)=\sqrt{x-4} on [4,9][4,9]. c= c=\square

See Solution

Problem 11628

Find the derivative of y=ln(tan(x2))1sinxy=\ln(\tan(\frac{x}{2})) - \frac{1}{\sin x}.

See Solution

Problem 11629

Evaluate the triple integral Ex2dV\iiint_{E} x^{2} dV for E={(x,y,z)1y2xy21,1y1,1z8}E=\{(x, y, z) \mid 1-y^{2} \leq x \leq y^{2}-1, -1 \leq y \leq 1, 1 \leq z \leq 8\}.

See Solution

Problem 11630

Bestimme die Flächeninhaltsfunktion von ff mit unterer Grenze 0 für: a) f(x)=4f(x)=4, b) f(x)=xf(x)=x, c) f(x)=3x+1f(x)=3x+1, d) f(x)=3x2f(x)=3x^2, e) f(x)=12x2f(x)=\frac{1}{2}x^2, f) f(x)=x3+2xf(x)=x^3+2x.

See Solution

Problem 11631

Solve (secx)dydx=eyesinx(\sec x) \frac{d y}{d x}=\mathrm{e}^{y} \cdot \mathrm{e}^{\sin x} using separation of variables.

See Solution

Problem 11632

A frog jumps at 30 degrees with a speed of 4.5 m/s4.5 \mathrm{~m/s}. How far does it jump? (1.8 m)(1.8 \mathrm{~m})

See Solution

Problem 11633

A conical cup has a diameter of 8 cm and depth of 10 cm. Liquid leaves at 7 cm³/s. Find the rate of level change when depth is 7 cm.

See Solution

Problem 11634

Evaluate the integral EzdV\iiint_{E} z \, dV for the solid EE bounded by y2+z2=4y^{2}+z^{2}=4, z=0z=0, x=0x=0, and x=5x=5.

See Solution

Problem 11635

Find the max and min values of g(x)=4cscxg(x)=4 \csc x on [π4,3π4]\left[\frac{\pi}{4}, \frac{3\pi}{4}\right] and graph it.

See Solution

Problem 11636

Evaluate the triple integral Ef(x,y,z)dV\iiint_{E} f(x, y, z) d V where f(x,y,z)=ex2+y2f(x, y, z)=e^{\sqrt{x^{2}}+y^{2}} and EE is defined by the given conditions.

See Solution

Problem 11637

Leite die Funktion f(x)=x2xf(x)=x^{2} \cdot x ab.

See Solution

Problem 11638

Leite die Funktion f(x)=x2xf(x)=x^{2} \cdot x ab. Ergebnis: f(x)=3x2f^{\prime}(x)=3 x^{2}.

See Solution

Problem 11639

Given the velocities (in mi/hr) of a car over 2 hours:
tt (hr): 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 vv (mi/hr): 30, 30, 50, 50, 45, 60, 30, 50, 80
a. Sketch a smooth curve through the points. b. Calculate the midpoint Riemann sum for displacement on [0,2][0,2] with n=2n=2 and n=4n=4.

See Solution

Problem 11640

Find dxdt\frac{d x}{d t} when x+y=6\sqrt{x}+y=6 and dydt=2\frac{d y}{d t}=2, given x=4x=4.

See Solution

Problem 11641

A kite is at 40 ft height and moves horizontally at 3 ft/sec. Find the rate of string release when its length is 50 ft.

See Solution

Problem 11642

Find the half-life of a substance that decays to 111\frac{1}{11} of its original amount in 18 hours. Answer to 3 decimal places.

See Solution

Problem 11643

Find f(0)f^{\prime}(0) if f(x)=sin2(3x)f(x)=\sin ^{2}(3-x).

See Solution

Problem 11644

Find formulas for dyd y and Δy\Delta y for the functions: 3) y=x32y=-x^{3}-2 and 4) y=2xy=\frac{2}{x}.

See Solution

Problem 11645

An archaeologist finds a wood fragment with 16\frac{1}{6} of its original Carbon-14. How old is it? Use decay constant 0.00012.

See Solution

Problem 11646

Find the tangent line equation for y=2arccosxy=2 \arccos \sqrt{x} at x=12x=\frac{1}{2}.

See Solution

Problem 11647

Find P(t)P^{\prime}(t) when P(t)P(t) satisfies y=12yy^{\prime}=12y, with P(0)=500P(0)=500 and P(t)=900P(t)=900.

See Solution

Problem 11648

Find the tangent line equation for y=2arccosxy=2 \arccos \sqrt{x} at x=12x=\frac{1}{2}, where slope y=1x(1x)y'=-\frac{1}{\sqrt{x(1-x)}}.

See Solution

Problem 11649

Calculate the work done when a gas with an initial volume of 5.29 L5.29 \mathrm{~L} expands to double its volume at 0.987 atm0.987 \mathrm{~atm}.

See Solution

Problem 11650

Find limx1f(x)g(x)+2\lim_{x \rightarrow 1} \frac{f(x)}{g(x)+2} where g(x)=110(4x3+3x210x17)g(x)=\frac{1}{10}(4x^3 + 3x^2 - 10x - 17) and f(1)=0f(1)=0.

See Solution

Problem 11651

Approximate 6563\sqrt{65}-\sqrt{63} using the tangent line of f(x)=xf(x)=\sqrt{x} at x=64x=64. (A) 0 (B) 1

See Solution

Problem 11652

Find a linear approximation for: 7) sin122\sin 122^{\circ} 8) 6.9946.99^{4}

See Solution

Problem 11653

Find the total compression ΔL\Delta L (in m) of an 8 m sandstone pillar with density 2250 kg/m³ and Young's Modulus 12.5 GPa.

See Solution

Problem 11654

Given the function f(x)=x2x2+3f(x)=\frac{x^{2}}{x^{2}+3}, find where ff is increasing, decreasing, local minimum, inflection points, and concavity.

See Solution

Problem 11655

Use differentials to estimate errors: 9) Sphere radius is 7 cm7 \mathrm{~cm} with error ±110 cm\pm \frac{1}{10} \mathrm{~cm}. Find volume error. 10) Square sides are 4 in with error ±15\pm \frac{1}{5} in. Find area error.

See Solution

Problem 11656

Find the inflection point coordinates (x,y)(x, y) for the function f(x)=ex1+exf(x)=\frac{e^{x}}{1+e^{x}}.

See Solution

Problem 11657

Find the coordinates of the inflection point for the function f(x)=ex1+exf(x)=\frac{e^{x}}{1+e^{x}}. Determine xx and yy.

See Solution

Problem 11658

Find the formula for the zz coordinate of the centroid of the region defined by x2+y2+z24x^{2}+y^{2}+z^{2} \leq 4 and z0z \geq 0.

See Solution

Problem 11659

Find the average speed s(x)=360060+xs(x)=\frac{3600}{60+x} for traveling one mile in 66 seconds. Approximate speed at x=6x=6.

See Solution

Problem 11660

A person travels DD miles at speed (60+x)mi/hr(60+x) \mathrm{mi/hr}.
a. Use L(x)=D(1x60)L(x)=D\left(1-\frac{x}{60}\right) to approximate time for 77 miles at 58 mi/hr. b. Find the exact time.
a. Approximate time is 80 min. b. Exact time is \square min.

See Solution

Problem 11661

Find the time tt when the oxygen level f(t)=t2+10t+100t2+36t+324f(t)=\frac{t^{2}+10 t+100}{t^{2}+36 t+324} is lowest.

See Solution

Problem 11662

A gardener has 850 m850 \mathrm{~m} of fence to create a rectangular garden divided into 8 sub-gardens. What's the max area?

See Solution

Problem 11663

Find the monthly cost C(90)C(90), marginal cost at x=90x=90, estimate cost for 92 chairs, and actual cost increase for 92 chairs.

See Solution

Problem 11664

A coffee cup cools from 95C95^{\circ} \mathrm{C} to 60C60^{\circ} \mathrm{C} in 11 minutes. How long to cool to 30C30^{\circ} \mathrm{C}? It takes approximately \square minutes.

See Solution

Problem 11665

Evaluate the limit using the derivative definition: limxe1lnx+1xe1=\lim _{x \rightarrow e^{-1}} \frac{\ln x+1}{x-e^{-1}}=\square

See Solution

Problem 11666

Find the second derivative of the cubic function f(x)=13x3+19x2+10x9f(x)=13 x^{3}+19 x^{2}+10 x-9. What is f(x)f^{\prime \prime}(x)?

See Solution

Problem 11667

Find the integral that calculates the probability P(YX)\mathbb{P}(Y \geq X) for 0X,Y20 \leq X, Y \leq 2.

See Solution

Problem 11668

Find the second derivative of f(x)=11x3+17x213x+10f(x)=11 x^{3}+17 x^{2}-13 x+10.

See Solution

Problem 11669

Find the inflection point of f(x)=ex1+exf(x)=\frac{e^{x}}{1+e^{x}}. Determine x=x= Number and y=y= Number.

See Solution

Problem 11670

Evaluate the limit using the derivative definition: limh0(3+h)4+h81h\lim _{h \rightarrow 0} \frac{(3+h)^{4+h}-81}{h}.

See Solution

Problem 11671

Find the second derivative of f(x)=x5lnxf(x)=x^{5} \ln x and identify its inflection point.

See Solution

Problem 11672

Find the derivative of yy with respect to xx, where y=(x4+1)sech(2lnx)y=(x^{4}+1) \operatorname{sech}(2 \ln x).

See Solution

Problem 11673

Find the derivative of yy with respect to vv for y=ln(cosh(6v))12tanh2(6v)y=\ln (\cosh (6 v))-\frac{1}{2} \tanh ^{2}(6 v).

See Solution

Problem 11674

Find the derivative of yy with respect to xx: y=(x4+1)sech(2lnx)y=(x^{4}+1) \operatorname{sech}(2 \ln x). Simplify first.

See Solution

Problem 11675

Differentiate g(θ)=eθ(tan(θ)θ)g(\theta)=e^{\theta}(\tan (\theta)-\theta) and find g(θ)g^{\prime}(\theta).

See Solution

Problem 11676

Find the time tt when the oxygen level f(t)=t2+10t+100t2+34t+289f(t)=\frac{t^{2}+10 t+100}{t^{2}+34 t+289} is lowest after waste is added.

See Solution

Problem 11677

Find the derivative of the function y=(1θ)tanh1θy=(1-\theta) \tanh^{-1} \theta with respect to θ\theta.

See Solution

Problem 11678

Find the minimum and maximum values of f(4)f(4) given f(0)=9f(0)=9 and 4f(x)74 \leq f'(x) \leq 7 for x[5,5]x \in [-5,5].

See Solution

Problem 11679

Find the derivative of y=(13θ)coth1(3θ)y=(1-3 \theta) \operatorname{coth}^{-1}(3 \theta) with respect to θ\theta: dydθ=\frac{d y}{d \theta}=\square.

See Solution

Problem 11680

Differentiate the function s(t)=t2+3t(t21)(t39)s(t)=\frac{t^{2}+3 t}{(t^{2}-1)(t^{3}-9)}.

See Solution

Problem 11681

Differentiate the function s(t)=t2+4t(t21)(t35)s(t)=\frac{t^{2}+4 t}{(t^{2}-1)(t^{3}-5)}.

See Solution

Problem 11682

Find the derivative of f(t)=2+tan(t)8f(t) = \sqrt[8]{2 + \tan(t)}.

See Solution

Problem 11683

Differentiate f(x)=(2x)ln2xf(x)=(2 x)^{\ln 2 x} using logarithmic differentiation to find f(x)f^{\prime}(x).

See Solution

Problem 11684

Find iterated integrals for the hyperboloid x2+y2=z21x^{2}+y^{2}=z^{2}-1 and cylinder x2+z2=4x^{2}+z^{2}=4 over specified regions.

See Solution

Problem 11685

Set up an iterated integral for the solid UU defined by x2+y21x^2+y^2 \geq 1 and x2+y2z4x^2+y^2 \leq z \leq 4 to calculate U2zdV\iiint_U 2z \, dV. No need to evaluate.

See Solution

Problem 11686

How long would it take for two rocks to fall from a height of 177 feet? Use d=12gt2d = \frac{1}{2}gt^2 to find tt.

See Solution

Problem 11687

Find the surface area from revolving x=y33x=\frac{y^{3}}{3}, 0y40 \leq y \leq 4, around the yy-axis. Answer in terms of π\pi.

See Solution

Problem 11688

Find the derivative of y=(13t)coth13ty=(1-3 t) \operatorname{coth}^{-1} \sqrt{3 t} with respect to tt: dydt=\frac{d y}{d t}=\square.

See Solution

Problem 11689

Calculate the deceleration of a bullet going from 400 m s1400 \mathrm{~m} \mathrm{~s}^{-1} to rest after 10 cm10 \mathrm{~cm}.

See Solution

Problem 11690

How long does it take for the ruble to lose half its value if it falls by 12%12\% per year? Use the half-life formula.

See Solution

Problem 11691

Given f(π6)=8f\left(\frac{\pi}{6}\right)=-8, f(π6)=7f^{\prime}\left(\frac{\pi}{6}\right)=7, find g(π/6)g^{\prime}(\pi / 6) and h(π/6)h^{\prime}(\pi / 6) for g(x)=f(x)sinxg(x)=f(x) \sin x, h(x)=cosxf(x)h(x)=\frac{\cos x}{f(x)}.

See Solution

Problem 11692

Given f(π6)=8f\left(\frac{\pi}{6}\right)=-8, f(π6)=7f^{\prime}\left(\frac{\pi}{6}\right)=7, find g(π6)g^{\prime}(\frac{\pi}{6}) and h(π6)h^{\prime}(\frac{\pi}{6}) for g(x)=f(x)sinxg(x)=f(x)\sin x, h(x)=cosxf(x)h(x)=\frac{\cos x}{f(x)}.

See Solution

Problem 11693

Semi-infinite rod diffusion problem:
1. Find c(x,t)c(x,t) for 14.5<x<14.5-14.5<x<14.5, D=1 nm2 s1D=1 \mathrm{~nm}^2 \mathrm{~s}^{-1}, and t=0,5,,30t=0,5,\ldots,30 s using c(x,t)=c2c12(1+erf(x2Dt))+c1c(x, t)=\frac{c_{2}-c_{1}}{2}\left(1+\operatorname{erf}\left(\frac{x}{2 \sqrt{D t}}\right)\right)+c_{1}.
2. Simulate and plot the numerical solution for the same DD and time intervals.
3. Identify XX where c(x,t)c(x,t) is closest to 0.92 from t=1t=1 to t=30t=30 and plot this characteristic length.

See Solution

Problem 11694

Determine the horizontal and vertical asymptotes for the function f(x)=4x2+3f(x)=\frac{4}{x^{2}+3}.

See Solution

Problem 11695

Find the tangent line equation for f(x)=(2x2)1/5f(x)=(2 x-2)^{1/5} at x=2x=2. Also, find xx values for horizontal tangents.

See Solution

Problem 11696

Find the line equation for the linear approximation of f(x)=xx+1f(x)=\frac{x}{x+1} at a=1a=1, estimate f(0.9)f(0.9), and compute percent error.

See Solution

Problem 11697

A girl flies a kite at 300ft300 \mathrm{ft} high, moving away at 25ft/sec25 \mathrm{ft/sec}. How fast to let out string when 500ft500 \mathrm{ft} away?

See Solution

Problem 11698

Find the line equation for the linear approximation of f(x)=exf(x)=e^{-x} at a=0a=0, estimate e0.04e^{-0.04}, and compute percent error.

See Solution

Problem 11699

Use a linear approximation to estimate ln(0.95)\ln(0.95). Choose a suitable aa for minimal error without a calculator. What is the estimate?

See Solution

Problem 11700

Estimate ln(0.95)\ln(0.95) using linear approximation with a suitable value of aa for minimal error (no calculator).

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord