Calculus

Problem 27201

Approximate the area under y=x44x3+8x+18y=x^{4}-4 x^{3}+8 x+18 from x=2x=-2 to x=4x=4 using the Mid-Ordinate rule with step size 22.

See Solution

Problem 27202

Approximate the area under y=x44x3+8x+18y = x^4 - 4x^3 + 8x + 18 from x=2x = -2 to x=4x = 4 using Simpson's rule with step size 1.

See Solution

Problem 27203

Integrate f(x)=x44x3+8x+18f(x) = x^4 - 4x^3 + 8x + 18 to find the area from x=2x = -2 to x=4x = 4. What is the area?

See Solution

Problem 27204

Calculate the average of the function f(x)=x44x3+8x+18f(x) = x^4 - 4x^3 + 8x + 18 from x=2x = -2 to x=4x = 4.

See Solution

Problem 27205

Find the value of xx for the curve x3+xyy2=10x^{3}+xy-y^{2}=10 where there is a vertical tangent line.

See Solution

Problem 27206

Is the rate of change of the volume of a sphere, VV, constant if the radius rr changes at a constant rate, drdt\frac{d r}{d t}?

See Solution

Problem 27207

An astronaut drops a rock on the Moon. Find the average speed, in m/s, of the rock between 5 and 10 seconds using d(t)=0.8t2d(t)=0.8 t^{2}.

See Solution

Problem 27208

Is dVr\frac{d V}{r} constant if drr\frac{d r}{r} is constant for a sphere's volume VV with radius rr? Explain.

See Solution

Problem 27209

Gegeben ist die Funktion f2(x)=14x3ax2+a2xf_{2}(x)=\frac{1}{4} x^{3}-a x^{2}+a^{2} x mit aR+a \in \mathbb{R}^{+}.
a) Finde die Nullstellen von ff in Abhängigkeit von aa und bewerte sie. b) Bestimme die Extremwerte und den Wendepunkt W in Abhängigkeit von aa. c) Berechne aa, sodass der Flächeninhalt A = 27 FE ist. d) Zeichne G3G_{3} für a=3a=3 im Intervall [0,5;7][-0,5 ; 7].

See Solution

Problem 27210

Find the derivative f(x)f^{\prime}(x) of f(x)=2x4+3x2+5x4f(x)=-2 x^{4}+3 x^{-2}+5 x-4. Which option is correct? A, B, C, or D?

See Solution

Problem 27211

Find the derivative yy^{\prime} of the function y=12xy=\sqrt{1-2x}.

See Solution

Problem 27212

Graph f(x)={5x,x23,x=2f(x)=\left\{\begin{array}{ll} 5-x, & x \neq 2 \\ -3, & x=2 \end{array}\right., find limx2f(x)\lim_{x \rightarrow 2} f(x), f(2)f(2), and check continuity at 2.

See Solution

Problem 27213

Find the volume of the solid with base area R\mathrm{R} under f(x)=3x3f(x)=3x^3, y=1y=1, and the yy-axis, with semicircular cross sections.

See Solution

Problem 27214

Find the inflection point of the function f(x)=x33xf(x)=x^{3}-3 x. Choose from: A. (0,1)(0,-1) B. (0,0)(0,0) C. (0,1)(0,1) D. (0,2)(0,2).

See Solution

Problem 27215

The function f(x)=x+1f(x)=|x+1| is not differentiable at which point: A. x=0x=0, B. x=1x=-1, C. x=1x=1, D. x=2x=2?

See Solution

Problem 27216

Find the marginal profit for production of 20 units given demand p(x)=3x+5x2p(x)=3x+5x^2 and average cost Cˉ(x)=5+4x\bar{C}(x)=5+4x.

See Solution

Problem 27217

Find the function with the instantaneous rate of change near 5 at x=2x=2: a) f(x)=x2f(x)=x^{2}, b) h(x)=x2+0.5x+1h(x)=x^{2}+0.5 x+1, c) j(x)=1.1xj(x)=1.1^{x}, d) g(x)=x2+1g(x)=x^{2}+1. Also, estimate the rate of change for g(x)=x22x+5g(x)=x^{2}-2 x+5 at x=3x=3.

See Solution

Problem 27218

Find the displacement and total distance traveled by a particle with velocity v(t)=5t9v(t)=5t-9 for 0t30 \leq t \leq 3.

See Solution

Problem 27219

Find the marginal cost of production when the average cost is Cˉ(x)=2x2+4+100x\bar{C}(x)=-2 x^{2}+4+\frac{100}{x} at 50 units.

See Solution

Problem 27220

Find where the function f(x)=x1f(x)=|x-1| is not differentiable: A. x=0x=0, B. x=1x=-1, C. x=1x=1, D. x=2x=2.

See Solution

Problem 27221

Find the instantaneous rate of change of f(x)=130000(1.06)xf(x)=130000(1.06)^{x} after 5 years. Choices: a) \$8000 b) \$10000 c) \$12000 d) \$14000

See Solution

Problem 27222

Find the integral x5x63dx\int \frac{x^{5}}{x^{6}-3} d x using the substitution u=x63u=x^{6}-3, and find dud u. Rewrite and evaluate the integral.

See Solution

Problem 27223

Find the integral cos(8x)dx\int \cos(8x) \, dx using the substitution u=8xu=8x. Determine dudu and rewrite the integral as ()du\int(\square) \, du. Evaluate it with constant CC.

See Solution

Problem 27224

Find the average rate of change in height from t=4t=4 s to t=5t=5 s for h(t)=4.9t2+150h(t)=-4.9 t^{2}+150. Options: a) 24.524.5 m/s, b) 19.6-19.6 m/s, c) 44.1-44.1 m/s, d) 24.5-24.5 m/s.

See Solution

Problem 27225

Find the value of xx where the function's instantaneous rate of change is negative. Also, estimate the value change rate at t=5t=5 for v(t)=24000(0.95)tv(t) = 24000(0.95)^t.

See Solution

Problem 27226

Find the inflection point of the function f(x)=x33x2+1f(x)=x^{3}-3 x^{2}+1. Choose from: A. (1,1)(1,-1) B. (1,1)(1,1) C. (1,0)(-1,0) D. (1,0)(1,0)

See Solution

Problem 27227

Rewrite the integral t4et5dt\int t^{4} e^{-t^{5}} d t using substitution to express it as 15eudu-\frac{1}{5} e^{u} d u. Find uu and dud u, then evaluate the integral with constant CC.

See Solution

Problem 27228

Calculate the total oil leaked in the first hour from the rate r(t)=65e0.02tr(t)=65 e^{-0.02 t} liters/minute. Round to the nearest liter.

See Solution

Problem 27229

A drug with a half-life of 67 min starts at 1.7μg/mL1.7 \mu \mathrm{g} / \mathrm{mL}. What is its concentration after 268 min? Round to 2 sig. figs. μgmL\square \frac{\mu \mathrm{g}}{\mathrm{mL}} ×10\square \times 10^{\square}

See Solution

Problem 27230

A drug with a half-life of 73 min starts at 1.4μg/mL1.4 \mu \mathrm{g} / \mathrm{mL}. What is the concentration after 146 min? Round to 2 sig. digits. μgmL\square \frac{\mu \mathrm{g}}{\mathrm{mL}}

See Solution

Problem 27231

A drug with a half-life of 82 min starts at 0.30μg/mL0.30 \mu \mathrm{g} / \mathrm{mL}. What is its concentration after 246 min? Round to 2 sig. figs. μgmL\square \frac{\mu \mathrm{g}}{\mathrm{mL}}

See Solution

Problem 27232

Find the derivative f(x)f^{\prime}(x) of the function f(x)=x(x+1)2f(x)=-x(x+1)^{2}. Choose from the options provided.

See Solution

Problem 27233

Find the derivative of f(x)=2(cosx)f(x)=2^{(\cos x)}. What is f(x)f^{\prime}(x)? A. 2(cosx)(sinx)ln22^{(\cos x)}(\sin x) \ln 2 B. 2(cosx)(sinx)ln2-2^{(\cos x)}(\sin x) \ln 2 C. 2(cosx)(sinx)2^{(\cos x)}(\sin x) D. 2(cosx)(sinx)-2^{(\cos x)}(\sin x)

See Solution

Problem 27234

A cuboid with a square base has height 2s2s. Volume increases at 24 cm3 s124 \mathrm{~cm}^{3} \mathrm{~s}^{-1}. Find surface area change rate when height is 12 cm12 \mathrm{~cm}.

See Solution

Problem 27235

Find the value of f(3+h)f(3)h\frac{f(3+h)-f(3)}{h} for the function f(x)=215xf(x)=21-5x.

See Solution

Problem 27236

Estimate and classify the critical points of the function f(x)=sin(x)f(x) = \sin(x).

See Solution

Problem 27237

Calculate the average rate of change for f(x)=log78xf(x)=\log _{7} 8 x from x=3x=3 to x=9x=9. Answer as an integer or decimal to three decimal places.

See Solution

Problem 27238

Find the average rate of the function f(x)=ex24f(x)=e^{x-2}-4 between x=2x=2 and x=4x=4.

See Solution

Problem 27239

Find the average velocity of an object dropped from rest on Planet XX over the interval t=6t=6 to t=9t=9 using d(t)=20t2d(t)=20 t^{2}.

See Solution

Problem 27240

Calculate the average rate of change of f(x)=log48xf(x)=\log _{4} 8 x from x=4x=4 to x=9x=9. Answer as an integer or decimal to three places.

See Solution

Problem 27241

Find the integral of the function: 4+2xx3dx\int \frac{4+2 x}{x^{3}} d x.

See Solution

Problem 27242

Find the sum: n=1nk(nn+1)n2\sum_{n=1}^{\infty} n^{k}\left(\frac{n}{n+1}\right)^{n^{2}}.

See Solution

Problem 27243

Find the limit as xx approaches 1 for the expression x2+x11x1\frac{x^{2}+|x-1|-1}{x-1}.

See Solution

Problem 27244

Evaluate the series: n=1(n!)33n(3n)!sin(n)\sum_{n=1}^{\infty} \frac{(n!)^{3} \cdot 3^{n}}{(3n)!} \cdot \sin(n).

See Solution

Problem 27245

Find the limit: limx0xsin(x)1cos(x)\lim _{x \rightarrow 0} \frac{x \sin (x)}{1-\cos (x)}

See Solution

Problem 27246

Find the normalization constant NN, expectation values of LL, L2L^{2}, and their variances for ψ=Neαr2(x+y)z\psi=N e^{-\alpha r^{2}}(x+y) z.

See Solution

Problem 27247

Find the slope and tangent line equation at point PP for (1) y=x24xy=x^{2}-4x, P:(1,3)P:(1,-3) and (2) y=2x3y=2-x^{3}, P:(1,1)P:(1,1).

See Solution

Problem 27248

Berechnen Sie den mittleren Anstieg der Funktion p(t)=2t3+9t2+15t+75p(t)=-2 t^{3}+9 t^{2}+15 t+75 und bestimmen Sie, wann die Änderungsrate maximal ist.

See Solution

Problem 27249

Fruchtfliegen wachsen um 35%35\% täglich. Gegeben sind 20 Fliegen. a) Funktionsgleichung aufstellen. b) Fliegenzahl nach 7 Tagen berechnen. c) Zeit bis 2000 Fliegen berechnen.

See Solution

Problem 27250

Find the average rate of change of h(t)=cotth(t)=\cot t over these intervals: a. [π/4,3π/4][\pi / 4,3 \pi / 4] b. [π/6,π/2][\pi / 6, \pi / 2]

See Solution

Problem 27251

Prove that if y=f(u)y=f(u) and u=g(x)u=g(x), then dydx=dydu×dudx\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}.

See Solution

Problem 27252

Which integral finds the length of the graph y=sin(x)y=\sin (\sqrt{x}) from x=ax=a to x=bx=b where 0<a<b0<a<b?
Select one: a. abx+cos2(x)dx\int_{a}^{b} \sqrt{x+\cos ^{2}(\sqrt{x})} d x b. ab1+cos2(x)4xdx\int_{a}^{b} \sqrt{\frac{1+\cos ^{2}(\sqrt{x})}{4 x}} d x c. absin2(x)+14xcos2(x)dx\int_{a}^{b} \sqrt{\sin ^{2}(\sqrt{x})+\frac{1}{4 x} \cos ^{2}(\sqrt{x})} d x d. ab1+14xcos2(x)dx\int_{a}^{b} \sqrt{1+\frac{1}{4 x} \cos ^{2}(\sqrt{x})} d x

See Solution

Problem 27253

Berechne die Ableitung der Funktion f(x)=2x2f(x)=-2x^{2} an der Stelle x0=3x_{0}=3.

See Solution

Problem 27254

Finde k<Rk<R, so dass 0k2x2dx=18\int_{0}^{k} 2 x^{2} d x=18. Skizziere und erkläre die Fragestellung.

See Solution

Problem 27255

Bearbeiten Sie die Wasserzuflussgeschwindigkeit v(t)=5tt2v(t)=5t-t^{2} für t=0t=0 bis t=5t=5. Berechnen Sie die Menge in 4 Stunden. Analysieren Sie die Gewinnfunktion f(x)=20x3+240x21200f(x)=-20x^{3}+240x^{2}-1200 für 12 Monate.

See Solution

Problem 27256

Ein Lieferant möchte die Produktionskosten überprüfen. Gegeben ist die Kostenfunktion K(x)=0,75x3+3,75x2+13,5x+30K(x)=0,75 x^{3}+3,75 x^{2}+13,5 x+30. Aktuell produziert er 15 Produkte und erwartet eine 20%20 \% Steigerung.
a) Wie ändern sich die geschätzten Kosten? b) Wie hoch ist die exakte Kostenveränderung?
Die Erlösfunktion ist E(x)=0,5x3+7,5x2+40xE(x)=0,5 x^{3}+7,5 x^{2}+40 x.
c) Was ist der Erfolg bei keiner Produktion? d) Wo liegen die Gewinnschwellen? e) Wie groß ist die Fläche unter K(x)K(x) von 1-3? f) Bei welcher Menge ist der Gewinn maximal und wie hoch ist der Gesamtgewinn?

See Solution

Problem 27257

Bestimme die Ableitung von f(x)=0,5x2f(x)=0,5 x^{2} an der Stelle x0=4x_{0}=4 mit dem Differenzenquotienten.

See Solution

Problem 27258

Bestimme die Ableitung von f(x)=0,5x2f(x)=0,5 x^{2} bei x0=4x_{0}=4 und die Ableitungsfunktion von f(x)=4x25f(x)=4 x^{2}-5.

See Solution

Problem 27259

Bestimme die Ableitungsfunktion von f(x)=4x25f(x)=4 x^{2}-5.

See Solution

Problem 27260

Bestimme die Ableitungen der Funktionen: a. f(x)=7x32x2f(x)=7 x^{3}-2 x^{2}, b. g(x)=3x5+5x3g(x)=3 x^{5}+5 x^{3}.

See Solution

Problem 27261

Finde den Wert von aa, sodass der Graph der Funktion fa(x)=1ax3xf_{a}(x) = \frac{1}{a} \cdot x^3 - x bei x=3x=3 einen Extrempunkt hat.

See Solution

Problem 27262

Find the limit as xx approaches 1 from the left: limx1(x121ln(x))\lim _{x \rightarrow 1^{-}}\left(\frac{x-1}{2}-\frac{1}{\ln (x)}\right).

See Solution

Problem 27263

Find the limit as xx approaches infinity: limxxtan13x\lim _{x \rightarrow \infty} x \tan ^{-1} \frac{3}{x}.

See Solution

Problem 27264

Find the xx-coordinates of relative extrema and inflection points for f(x)f(x) using its derivatives from the table.

See Solution

Problem 27265

Evaluate the integral: dxx24x3\int \frac{d x}{\sqrt{-x^{2}-4 x-3}}

See Solution

Problem 27266

Calculate the integral π6π4sec2xdx\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \sec ^{2} x \, dx.

See Solution

Problem 27267

Find the particular solution to dydx=x2+1\frac{d y}{d x}=x^{2}+1 that passes through (3,13)(3,13).

See Solution

Problem 27268

Find the derivative of the integral ddx[2xtt2+1dt]\frac{d}{d x}\left[\int_{2}^{x} \frac{\sqrt{t}}{t^{2}+1} d t\right].

See Solution

Problem 27269

Find the limit as xx approaches 0 for the function x\sqrt{x}.

See Solution

Problem 27270

Find the second derivative yy^{\prime \prime} of the function y=excosxy=e^{x} \cos x.

See Solution

Problem 27271

What does the table suggest about limx2f(x)\lim _{x \rightarrow 2^{-}} f(x)? Options: 2, 6.5, 27, or does not exist?

See Solution

Problem 27272

Find the upper sum SbS_{b} for f(x)=x2xf(x)=x^{2}-x over [0,10][0,10] with 5 subintervals. What is S6S_{6}? Options: 340, 420, 260, 500.

See Solution

Problem 27273

What does the table indicate about the derivative of f(x)=1xf(x)=\frac{1}{x} at x=2x=2? Options: f(2)0.2500f^{\prime}(2) \approx -0.2500, f(2)=0f^{\prime}(2)=0, f(2)=12f^{\prime}(2)=\frac{1}{2}, f(2)0.2000f^{\prime}(2) \approx -0.2000.

See Solution

Problem 27274

Find the second derivative of y=excosxy=e^{x} \cos x. Choices: 2excosx-2 e^{x} \cos x, 2exsinx-2 e^{x} \sin x, 2exsinx2 e^{x} \sin x, 2excosx2 e^{x} \cos x.

See Solution

Problem 27275

Find the value of xx for which the function ff has a relative minimum given f(x)=3x218x+15f^{\prime}(x)=3 x^{2}-18 x+15.

See Solution

Problem 27276

Find the sum of the series: n=0(1125)(5)n\sum_{n=0}^{\infty} \left( \frac{1}{125} \right) \left( -5 \right)^n

See Solution

Problem 27277

Find the value of xx for the relative minimum of ff given f(x)=3x218x+15f^{\prime}(x)=3 x^{2}-18 x+15. Options: 5, 0, 4, 2.

See Solution

Problem 27278

Find the derivative of the integral from 1 to x of lnt\ln t with respect to xx. What is the result?

See Solution

Problem 27279

Find the derivative of f(x)=ln(secx)f(x)=\ln (\sec x). What is f(x)f^{\prime}(x)? Options: cscx\csc x, cotx\cot x, tan2x\tan ^{2} x, tanx\tan x.

See Solution

Problem 27280

Find the upper sum S5S_{5} for the area under f(x)=x2xf(x)=x^{2}-x from x=0x=0 to x=10x=10 using 5 subintervals. Options: 420, 340, 500, 260.

See Solution

Problem 27281

Find the limit as (x,y)(x, y) approaches (0,0)(0, 0) for x6+y6x2y2\frac{x^{6}+y^{6}}{x^{2}-y^{2}}. Options: a. 0, b. 1, c. 2, d. 3, e. Does not exist.

See Solution

Problem 27282

(a) Use the tangent line at x=1x=1 to estimate s(1.1)s(1.1). Is this an over or underestimate? (b) When is the particle at rest? (c) When is speed decreasing for 0<t<60<t<6? Given: s(t)=13t3+3t28t+5s(t) = \frac{1}{3} t^{3} + 3 t^{2} - 8 t + 5

See Solution

Problem 27283

A 70 kg skateboarder moves at 6 m/s over a hill with a radius of curvature of 9 m. Find:
1. Centripetal acceleration
2. Centripetal net force
3. Normal force

See Solution

Problem 27284

Andres wants \$4,700 in 11 years at a 4\% continuous interest rate. How much should he invest?

See Solution

Problem 27285

Michael wants to invest for an account to reach \100,000in14yearsatacontinuousinterestrateof100,000 in 14 years at a continuous interest rate of 6.7 \%$. How much does he need to invest?

See Solution

Problem 27286

Q1 Sketch level curves of f(x)=42x3yf(x)=4-2x-3y for values 4,0,4,8-4, 0, 4, 8. Q2 Find the domain and sketch f(x,y)=ln(2x3y+1)f(x, y)=\ln(2x-3y+1). Q3 Show f(x,y)=x2y2+2xyf(x, y)=x^{2}-y^{2}+2xy satisfies Laplace's equation. Q4 Sketch f(x,y)=y2f(x, y)=y^{2} in 3D. Q5 Find parametric equations for the tangent line at (3,1,6)(3,1,6) for z=2y2xz=2y^{2}x with planes x=3x=3 and y=1y=1. Q6 Find dzdz as (x,y)(x,y) changes from (2,1)(2,-1) to (2.01,0.98)(2.01,-0.98) for z=2y2+3x2z=2y^{2}+3x^{2}. Q7 Use differentials to find the pressure change in PV=8.314TPV=8.314T as volume goes from 20L20L to 20.2L20.2L and TT from 300K300K to 295K295K. Q8 Find slopes of f(x,y)=1(x1)2(y+2)3f(x, y)=1-(x-1)^{2}-(y+2)^{3} at (1,2,1)(1,2,1) in xx and yy directions. Q9 Show u(x,t)=10etsinxu(x, t)=10e^{-t}\sin x satisfies the heat equation with k=1k=1.

See Solution

Problem 27287

Compare the volume growth rates of a cube V(x)=x3V(x)=x^3 and a sphere V(x)=43π(0.5x)3V(x)=\frac{4}{3}\pi(0.5x)^3 over [1,2][1,2].

See Solution

Problem 27288

Find the average rate of change of height h(t)=4.9t2+553h(t)=-4.9 t^{2}+553 from t=4t=4 to t=5t=5 seconds.

See Solution

Problem 27289

How long for a \$2500 account at 1\% continuous interest to grow to \$3000? Round to the nearest month.

See Solution

Problem 27290

A bowling ball drops from a building and hits the ground at 37.0 m/s37.0 \mathrm{~m} / \mathrm{s}. Find the building's height.

See Solution

Problem 27291

A ring of radius r=1.0mr = 1.0 \, \mathrm{m} has sections with charge densities λ1=+1.0nC/m\lambda_{1} = +1.0 \, \mathrm{nC/m} and λ2=2.2nC/m\lambda_{2} = -2.2 \, \mathrm{nC/m}. Find the electric potential VV at point PP, d=75cmd = 75 \, \mathrm{cm} above the center. Options: a) -25 V, b) 9.0 V, c) 11 V, d) 15 V, e) 34 V.

See Solution

Problem 27292

Find the limit: limxx3x(x1)\lim _{x \rightarrow \infty} \frac{x-3}{x(x-1)}.

See Solution

Problem 27293

Find the limit: limxx3x(x1)\lim _{x \rightarrow-\infty} \frac{x-3}{x(x-1)}.

See Solution

Problem 27294

Find the max initial velocity v0v_{0} for a roller coaster at height h=16 mh=16 \mathrm{~m} and radius R=26 mR=26 \mathrm{~m} due to gravity. Answer in m/s\mathrm{m/s}.

See Solution

Problem 27295

Find values of aa and bb so that the piecewise function g(x)g(x) is differentiable at x=1x=1.

See Solution

Problem 27296

Find the rate at which the water level rises when the water is 2ft2 \mathrm{ft} deep in a conical tank that is 8ft8 \mathrm{ft} high and 12ft12 \mathrm{ft} wide, with water flowing in at 15n3/min15 \mathrm{n}^{3} / \mathrm{min}.

See Solution

Problem 27297

Find the velocity of a glass piece falling 33.39 m in 5.34 seconds. Round your answer to the nearest hundredth.

See Solution

Problem 27298

Find the values of AA for which the function f(x)={x32,x28x+A,x>2f(x)=\left\{\begin{array}{l}x^{3}-2, x \leq 2 \\ 8 x+A, x>2\end{array}\right. is continuous at x=2x=2.

See Solution

Problem 27299

An observer 100 m away sees a balloon rise at 3 m/s.
a) Find the rate of change in distance when the balloon is 105 m high.
b) Find the rate of change of the angle of elevation in radians/sec at that height.

See Solution

Problem 27300

A cone has height 10 cm10 \mathrm{~cm} and diameter 10 cm10 \mathrm{~cm}. Water depth hh changes at 310 cm/hr-\frac{3}{10} \mathrm{~cm/hr}.
a) Find volume VV when h=5h=5. Include units. b) Find rate of change of volume when h=5 cmh=5 \mathrm{~cm}. Include units.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord