a.) ¿Cuántas delegaciones diferentes se pueden formar con al menos un miembro de 18 estudiantes?
b.) ¿Cuántas delegaciones diferentes se pueden formar con al menos dos miembros de 18 estudiantes?
Arrange 8 students with the following conditions: 1) A & B together: 10,080; 2) A & B at ends: 1,440; 3) A & B apart: 30,240; 4) Alternating genders: 1,152; 5) 4 boys & 4 girls together: 1,152.
En una universidad, 90 aspirantes quieren estudiar Derecho (40), Enfermería (38) y Gastronomía (33). Hay intersecciones: 20 Derecho y Enfermería, 18 Derecho y Gastronomía, 14 Enfermería y Gastronomía, y 9 en los tres. a. ¿Cuántos aspirantes quieren al menos uno de los programas?
b. ¿Cuántos quieren al menos dos programas?
Complete the unmagic square with different sums for rows, columns, and diagonals using digits 1-9: 8 & & 9
& 7 &
1 & & 6 Choose from options A, B, C, or D.
a.) ¿Cuántas delegaciones diferentes se pueden formar con al menos 1 miembro de 16 estudiantes?
b.) ¿Cuántas delegaciones diferentes se pueden formar con al menos 2 miembros de 16 estudiantes?
How many different salad variations can be made with lettuce and any combination of green peppers, tomatoes, sunflower seeds, cucumbers, banana peppers, carrots, and mushrooms?
A group has 5 men and 7 women. 6 people are chosen. a. How many ways to select 6 from 12?
b. How many ways to select 6 women from 7?
c. What is the probability all selected are women?
a. Ways to select 6 from 12 is (612).
A group has 7 men and 6 women. Select 3 people. Find:
a. Ways to choose 3 from 13.
b. Ways to choose 3 women from 6.
c. Probability all selected are women.
a. The number of ways to select is (313).
Find the probabilities for the following scenarios with 6 comics (A, B, C, D, E, F):
a. B first,
b. F second & A fourth,
c. order B, F, A, C, D, E,
d. D or E fifth.
In a talent show with 8 acts, find the probabilities of: A) singer first, comedian second, dancer third, pianist fourth; B) any order of pianist, comedian, dancer, juggler in first four. Provide answers as simplified fractions.
P(A)=P(B)=
In a checker game, move colors to switch sides. 1. With 1 checker each, how many moves for blue right, red left? 3 moves 2. With 3 checkers each, find moves needed. 3. Estimate for 2 or 4 checkers, then test. 4. Explain how 3 checkers help with 4. 5. Estimate moves for 7 checkers each.
Find the probabilities for a 5-card hand from a 52-card deck: a. Exactly 2 kings: P(2 Kings)=0.0399
b. All hearts: P( All hearts)=0.000495
c. Exactly 4 face cards: P(4 Face Cards)=