Calculus

Problem 24901

Differentiate y=(2x)ln(6x)y=(2 x)^{\ln (6 x)} using logarithmic differentiation to find yy^{\prime}.

See Solution

Problem 24902

Find the derivative of y=xx2+1(x+1)23y=\frac{x \sqrt{x^{2}+1}}{(x+1)^{\frac{2}{3}}} using logarithmic differentiation.

See Solution

Problem 24903

Find all values of cc satisfying the Mean Value Theorem for f(x)=x3+13x2+47x+30f(x) = x^3 + 13x^2 + 47x + 30 on [5,0][-5, 0].

See Solution

Problem 24904

A 0.65 kg0.65 \mathrm{~kg} balloon is launched at 6060^{\circ} from a 52 m52 \mathrm{~m} building with 12 m/s12 \mathrm{~m/s}. Find its speed on impact using energy methods.

See Solution

Problem 24905

A roller coaster starts from rest at 35 m. Find speeds at points 2 (0 m), 3 (28 m), and 4 (15 m) using energy equations.

See Solution

Problem 24906

Evaluate 67f(x)dx\int_{6}^{7} f(x) \mathrm{d} x given 37f(x)=9\int_{3}^{7} f(x)=9 and 362f(x)dx=4\int_{3}^{6} 2 f(x) \mathrm{d} x=4.

See Solution

Problem 24907

Find the area AA of the shaded region under the standard normal distribution with mean 0 and std dev 1. Round to four decimal places.

See Solution

Problem 24908

Soit f(x)={x3+1 si x<1x1 si x1f(x)=\left\{\begin{array}{lll}x^{3}+1 & \text { si } & x<1 \\ \sqrt{x-1} & \text { si } & x \geq 1\end{array}\right.. Vérifiez la continuité en x=1x=1, les nombres de transition et les points d'inflexion.

See Solution

Problem 24909

Evaluate 02xf(x2)4x2dx\int_{0}^{2} x f\left(x^{2}\right) - \sqrt{4 - x^{2}} \, dx given 04f(x)dx=6\int_{0}^{4} f(x) \, dx = 6.

See Solution

Problem 24910

Find the 3rd-degree Maclaurin polynomial for f(x)=17x+3f(x)=\frac{1}{7x+3}.
Your answer is: p3(x)= p_{3}(x)=

See Solution

Problem 24911

Find the 3rd-degree Maclaurin polynomial for f(x)=cos(4x)f(x)=\cos(4x).
Provide your answer below: p3(x)= p_{3}(x)=

See Solution

Problem 24912

Find the Maclaurin polynomial p2(x)p_{2}(x) for f(x)=cos(x3)f(x)=\cos \left(\frac{x}{3}\right).
Answer: p˙2(x)= \dot{p}_{2}(x)=\square

See Solution

Problem 24913

Find the first and second degree Maclaurin polynomials for f(x)=5ex+3exf(x)=5 e^{x}+3 e^{-x} at a=0a=0.

See Solution

Problem 24914

Find the Maclaurin polynomial p1(x)p_{1}(x) for the function f(x)=e2xf(x)=e^{2x}.
Provide your answer below: p1(x)= p_{1}(x)=\square

See Solution

Problem 24915

Find the third-degree Maclaurin polynomial p3(x)p_{3}(x) for the function f(x)=5xf(x)=5^{x}.
Provide your answer below: p3(x)= p_{3}(x)=\square

See Solution

Problem 24916

Find the rate of change of the function f(x)=x3x2+x5f(x)=x^{3}-x^{2}+x-5 at x=2x=2. Options: 6, 9, -12, -10.

See Solution

Problem 24917

Find the second Maclaurin polynomial p2(x)p_{2}(x) for f(x)=16x+8f(x)=\frac{1}{6x+8}.
Provide your answer below: p2(x)= p_{2}(x)=\square

See Solution

Problem 24918

Find the limit: limx5x5x5=\lim _{x \rightarrow 5} \frac{\sqrt{x}-\sqrt{5}}{x-5}=

See Solution

Problem 24919

Calculate the length of the curve defined by x=1+3t2x=1+3 t^{2} and y=4+2t3y=4+2 t^{3} for 0t10 \leq t \leq 1.

See Solution

Problem 24920

Find the gradient of the curve 3x2y2=113 x^{2} - y^{2} = 11 at the point (2,3)(2, 3).

See Solution

Problem 24921

Find the value of aa if limx1a(x21)x41=2\lim _{x \rightarrow 1} \frac{a\left(x^{2}-1\right)}{x^{4}-1}=2.

See Solution

Problem 24922

Estimate sin(π25)\sin \left(\frac{\pi}{25}\right) using the second Maclaurin polynomial for f(x)=sin(x)f(x)=\sin (x). Round to four decimal places.
sin(π25) \sin \left(\frac{\pi}{25}\right) \approx \square

See Solution

Problem 24923

If x2+y2=9x^{2}+y^{2}=9, find dydx\frac{dy}{dx} in terms of xx and yy. Choices include 2x+2y2x+2y, 9x29-x^{2}, (3x)/y(3-x)/y, and x/y-x/y.

See Solution

Problem 24924

Estimate e0.5e^{0.5} using the fourth Maclaurin polynomial for f(x)=exf(x)=e^{x}. Round to four decimal places.

See Solution

Problem 24925

Evaluate the integral 2x(x2+1)8dx\int 2 x\left(x^{2}+1\right)^{8} d x using the substitution u=x2+1u=x^{2}+1.

See Solution

Problem 24926

Find the area of the surface formed by rotating x=13(y2+2)3/2x=\frac{1}{3}(y^{2}+2)^{3/2}, for 1y31 \leq y \leq 3, around the x-axis.

See Solution

Problem 24927

A cylinder's radius grows at 3 m/s, volume at 108 m³/s. With height 6 m and volume 33 m³, find height's rate of change. Use V=πr2hV=\pi r^{2} h. Round to three decimal places.

See Solution

Problem 24928

Estimate e7e^{7} using the second Taylor polynomial of f(x)=exf(x)=e^{x} at x=6x=6. Round to four decimal places.
e7 e^{7} \approx \square

See Solution

Problem 24929

Find the integral (4x3+9)x4+9xdx\int(4 x^{3}+9) \sqrt{x^{4}+9 x} \, dx using the substitution u=x4+9xu=x^{4}+9 x and verify by differentiation.

See Solution

Problem 24930

Evaluate the integral 9x+2dx\int \sqrt{9 x+2} \, dx using the substitution u=ax+bu = a x + b.

See Solution

Problem 24931

Find the one-sided limit: limx14x1\lim _{x \rightarrow 1^{-}} \frac{4}{x-1}. Options: -2, -4, \infty, -\infty.

See Solution

Problem 24932

Estimate sin(1+4π)\sin(-1 + 4\pi) using the fourth Taylor polynomial for f(x)=sin(x)f(x) = \sin(x) at x=4πx = 4\pi. Round to four decimal places.
Your answer: sin(1+4π) \sin(-1 + 4\pi) \approx

See Solution

Problem 24933

Estimate cos(1+2π)\cos(-1 + 2\pi) using the second Taylor polynomial of f(x)=cos(x)f(x) = \cos(x) at x=2πx = 2\pi. Round to four decimal places.
cos(1+2π) \cos(-1 + 2\pi) \approx \square

See Solution

Problem 24934

Estimate cos(1+π)\cos(1+\pi) using the fourth Taylor polynomial of f(x)=cos(x)f(x)=\cos(x) at x=πx=\pi. Round to four decimal places.
Your answer: cos(1+π) \cos(1+\pi) \approx \square

See Solution

Problem 24935

Find the one-sided limit: limx0x2+5xx\lim _{x \rightarrow 0^{-}} \frac{x^{2}+5 x}{|x|}. What is the answer?

See Solution

Problem 24936

Find the integral 16xsin(8x21)dx\int -16 x \sin(8 x^{2} - 1) \, dx using u=8x21u = 8 x^{2} - 1 and check by differentiating.

See Solution

Problem 24937

Estimate sin(π27)\sin \left(\frac{\pi}{27}\right) using the second Maclaurin polynomial for f(x)=sin(x)f(x)=\sin (x). Round to four decimal places.
Your answer: sin(π27) \sin \left(\frac{\pi}{27}\right) \approx \square

See Solution

Problem 24938

A conical cup is 10 cm tall and 10 cm radius. Water level drops at 3 cm/sec. Find volume change rate when water is 3 cm deep. Use V=13πr2hV=\frac{1}{3} \pi r^{2} h. Round to nearest thousandth or give exact in terms of π\pi.

See Solution

Problem 24939

Evaluate the integral x12ex13dx\int x^{12} e^{x^{13}} d x using a change of variables or a table.

See Solution

Problem 24940

Find the surface area of the curve x=5cos3θx=5 \cos^3 \theta, y=5sin3θy=5 \sin^3 \theta for 0θπ20 \leq \theta \leq \frac{\pi}{2}, rotated about the x-axis.

See Solution

Problem 24941

Estimate e1e^{-1} using the fourth Maclaurin polynomial for f(x)=exf(x)=e^{x}. Round to four decimal places.
e1 e^{-1} \approx

See Solution

Problem 24942

A balloon deflates at 32π3 cm3/sec\frac{32 \pi}{3} \mathrm{~cm}^{3} / \mathrm{sec}. Find the radius change rate when r=3 cmr=3 \mathrm{~cm}. Use V=43πr3V=\frac{4}{3} \pi r^{3}.

See Solution

Problem 24943

Find the tangent line equation to the curve y=4xy=4 \sqrt{x} at x=4x=4. Options: y=x4y=x-4, y=x+4y=x+4, y=x+6y=-x+6, y=x6y=x-6.

See Solution

Problem 24944

Evaluate the integral: 4x3316x4dx\int \frac{4 x^{3}}{\sqrt{3-16 x^{4}}} d x using a change of variables or a table.

See Solution

Problem 24945

Find f(2)f^{\prime \prime}(2) for the function f(x)=11xf(x)=1-\frac{1}{x}.

See Solution

Problem 24946

Find the third derivative of the function y=5x3+7x16y=5 x^{3}+7 x-16. What is d3ydx3\frac{d^{3} y}{d x^{3}}?

See Solution

Problem 24947

Evaluate the integral: (x3+x2)10(3x2+2x)dx\int\left(x^{3}+x^{2}\right)^{10}\left(3 x^{2}+2 x\right) dx using a change of variables.

See Solution

Problem 24948

Find g(3)g^{\prime}(3) for the function g(x)=(4x11)10g(x)=(4x-11)^{10}.

See Solution

Problem 24949

A 5-m ladder leans against a wall, top slides down at 2 m/s2 \mathrm{~m/s}. Find base's speed from wall when it's 4 m4 \mathrm{~m} away.

See Solution

Problem 24950

Estimate 53\sqrt[3]{5} with the fourth Taylor polynomial at x=4x=4 and bound the error using Taylor's Theorem. Round to six decimal places. Provide your answer: R4(x)\left|R_{4}(x)\right| \leq

See Solution

Problem 24951

Find the second derivative of the function f(x)=(x2)(x+8)f(x)=(x-2)(x+8). What is it?

See Solution

Problem 24952

Evaluate the integral 022x(x2+3)3dx\int_{0}^{2} \frac{2 x}{(x^{2}+3)^{3}} dx using a change of variables or a table.

See Solution

Problem 24953

Find the Maclaurin polynomial degree for 10cos(x)10 \cos (x) so that the error in estimating 10cos(0.15)10 \cos (0.15) is < 0.001.
Answer: n= n=

See Solution

Problem 24954

Evaluate the integral 08p225+p2dp\int_{0}^{8} \frac{p}{\sqrt{225+p^{2}}} d p using a change of variables or a table.

See Solution

Problem 24955

Find the indefinite integral (sin8y+cos3y)dy\int(\sin 8 y+\cos 3 y) dy and verify by differentiating your result.

See Solution

Problem 24956

Evaluate the integral: 12x+1dx\int \frac{1}{2 x+1} d x, assuming u>0u>0 when lnu\ln u appears.

See Solution

Problem 24957

Evaluate the integral: x2(2x3)4dx\int \frac{x^{2}}{\left(2-x^{3}\right)^{4}} d x, assuming u>0u>0 for lnu\ln u.

See Solution

Problem 24958

Bestimme das Integral 18(x3+1x)dx\int_{1}^{8} \left( x^{3}+\frac{1}{x} \right) dx.

See Solution

Problem 24959

Calculate the integral from 1 to 2 of the function x3+1xx^{3}+\frac{1}{x}.

See Solution

Problem 24960

Find the Maclaurin polynomial degree for 10cos(x)10 \cos (x) so that the error in 10cos(0.15)10 \cos (0.15) is < 0.001.

See Solution

Problem 24961

Bestimme die Ableitung von f(x)=1(12x3)2f(x) = \frac{1}{\left(\frac{1}{2} x - 3\right)^{2}}.

See Solution

Problem 24962

1. Löse die Gleichung x5,5x+3,25=0\sqrt{x-5,5}-\sqrt{x+3,25}=0.
2. Berechne das Integral 18x3+1xdx\int_{1}^{8} x^{3}+\frac{1}{x} d x.
3. Erkläre in Stichpunkten: a) Fläche zwischen zwei Funktionen, b) "orientierte Fläche" und Integralrechnung.
4. Finde die Stammfunktionen von 3x5+x5+1x5dx\int 3 x^{5}+\sqrt{x^{5}}+\frac{1}{x^{5}} d x.

See Solution

Problem 24963

Evaluate the integral: (x2)52xdx\int \frac{(\sqrt{x}-2)^{5}}{2 \sqrt{x}} d x using a change of variables.

See Solution

Problem 24964

Evaluate the integral: 3sinx(6+3cosx)3dx\int 3 \sin x(6+3 \cos x)^{3} d x

See Solution

Problem 24965

Find the Maclaurin polynomial degree needed for the error in estimating f(0.11)f(0.11) (where f(x)=6ln(x+1)f(x)=6 \ln (x+1)) to be < 0.001.
Enter your answer as a numerical value.
Provide your answer below: n= n=

See Solution

Problem 24966

Find the Maclaurin polynomial degree needed for the error in estimating f(0.31)f(0.31) with f(x)=2ln(x+1)f(x)=2 \ln (x+1) to be < 0.001.
Enter your answer as a numerical value.
Provide your answer below: n= n=

See Solution

Problem 24967

Finde alle Stammfunktionen für die Funktion 3x5+x5+1x53 x^{5}+\sqrt{x^{5}}+\frac{1}{x^{5}}.

See Solution

Problem 24968

Find the integral using substitution: tan10xsec210xdx\int \tan 10 x \sec ^{2} 10 x \, dx.

See Solution

Problem 24969

Bestimme die Ableitung von f(x)=sin(43x23)f(x) = \sin \left( \sqrt[3]{\frac{4}{3x - 2}} \right).

See Solution

Problem 24970

Find the distance a particle travels from hour 2 to hour 5 given v(t)=9t2+10tv(t)=9 t^{2}+10 t.

See Solution

Problem 24971

Use the divergence test on the series n=1(3n2+38n3+3n273)\sum_{n=1}^{\infty}\left(\frac{3 n^{2}+3}{\sqrt[3]{8 n^{3}+3 n^{2}-7}}\right) and choose the best result.

See Solution

Problem 24972

A town's population starts at 400 and grows at P(t)=30(1+t)P^{\prime}(t)=30(1+\sqrt{t}). Find population after 30 years and P(t)P(t).

See Solution

Problem 24973

A eucalyptus tree grows at 0.5+6(t+3)30.5 + \frac{6}{(t+3)^{3}} feet/year. Find growth in years 2 and 3.

See Solution

Problem 24974

Berechnen Sie die Fläche A zwischen den Graphen f(x)=0,5x2+2f(x)=0,5 x^{2}+2 und g(x)=0,5x+1g(x)=-0,5 x+1 im Intervall [1,1,5][-1, 1,5].

See Solution

Problem 24975

Estimate sin(0.3)\sin(0.3) with the third Maclaurin polynomial and bound the error using Taylor's Theorem. Round to six decimals.
Provide your answer below: R3(x) \left|R_{3}(x)\right| \leq \square

See Solution

Problem 24976

Given the function v(t)=t39t2+14tv(t)=t^{3}-9 t^{2}+14 t on [0,9][0,9], find when the motion is positive, displacement, and distance traveled.

See Solution

Problem 24977

Estimate the distance traveled in cm using left-endpoint and right-endpoint values from the given velocity data over 10 sec.

See Solution

Problem 24978

Estimate 8\sqrt{8} using the fourth Taylor polynomial at x=7x=7 and bound the error with Taylor's Theorem. Round to six decimals.
Provide your answer below: R4(x) \left|R_{4}(x)\right| \leq \square

See Solution

Problem 24979

Find the sum of the series n=1e2n111n\sum_{n=1}^{\infty} e^{2 n} 11^{1-n} as a fraction in terms of ee.

See Solution

Problem 24980

Check if the series n=13(1)n+1n37n3+6n2+7n+5\sum_{n=1}^{\infty} \frac{3(-1)^{n+1} n^{3}}{7 n^{3}+6 n^{2}+7 n+5} converges or diverges using tests.

See Solution

Problem 24981

Find the ball's displacement from t=0t=0 to t=4t=4 given v(t)=32t+142v(t)=-32t+142 ft/s. Displacement is \square feet.

See Solution

Problem 24982

Use the limit comparison test with n=11n\sum_{n=1}^{\infty} \frac{1}{n} to check if n=14e1/nn\sum_{n=1}^{\infty} \frac{4 e^{1/n}}{n} converges or diverges.

See Solution

Problem 24983

Estimate the distance traveled in cm using left and right endpoint values with ten 1 sec intervals from the given velocity data.

See Solution

Problem 24984

Find the Maclaurin polynomial degree needed for the error in f(0.21)f(0.21) with f(x)=13ln(x+1)f(x)=13 \ln (x+1) to be < 0.001.
Enter your answer as a numerical value.
Provide your answer below: n= n=

See Solution

Problem 24985

Find the sum of the series: n=1(19n819(n+1)8)\sum_{n=1}^{\infty}\left(\frac{19}{n^{8}}-\frac{19}{(n+1)^{8}}\right). If it diverges, enter \varnothing.

See Solution

Problem 24986

Find the displacement of a ball with velocity v(t)=32t+142v(t)=-32 t+142 from t=0t=0 to t=4t=4, then its position at t=4t=4 given s(0)=7s(0)=7.

See Solution

Problem 24987

Evaluate the integral: 5(5x+1)ln(5x+1)dx\int \frac{5}{(5 x+1) \ln (5 x+1)} d x

See Solution

Problem 24988

Bestimme die Fläche zwischen den Graphen der Funktionen f(x)=x33x2+1f(x)=x^{3}-3 x^{2}+1 und g(x)=x2g(x)=x-2.

See Solution

Problem 24989

Find the critical numbers of the function g(y)=y5y23y+15g(y)=\frac{y-5}{y^{2}-3y+15}. Enter answers as a comma-separated list or DNE.

See Solution

Problem 24990

Find the critical numbers of the function f(θ)=14cosθ+7sin2θf(\theta)=14 \cos \theta+7 \sin^{2} \theta. Enter as a comma-separated list.

See Solution

Problem 24991

Bestimme die Fläche zwischen den Graphen der Funktionen f(x)=x33x2+1f(x)=x^{3}-3 x^{2}+1 und g(x)=x2g(x)=x-2.

See Solution

Problem 24992

Find the max and min of f(x)=xln(x)f(x)=x-\ln (x) on the interval [1/6,6][1/6, 6].

See Solution

Problem 24993

Find the max and min of f(x)=xln(x)f(x)=x-\ln(x) on the interval [1/6,6][1/6, 6].

See Solution

Problem 24994

Untersuchen Sie die Konvergenz oder Divergenz der Funktionen für x+x \rightarrow+\infty und xx \rightarrow-\infty:
a) f:x0,5x2x2f: x \mapsto \frac{0,5 x}{2 x-2} b) f:x3x117xf: x \mapsto \frac{3 x-1}{1-7 x} c) f:x4x60,2x2f: x \mapsto \frac{4 x-6}{0,2 x^{2}} d) f:x2x26x+1112xf: x \mapsto \frac{2 x^{2}-6 x+1}{112 x} e) f:x82x+3x2f: x \mapsto \frac{-8}{2 x+3 x^{2}} f) f:x3x25x+120,25x2+6xf: x \mapsto \frac{-3 x^{2}-5 x+12}{-0,25 x^{2}+6 x} g) f:xx2+2x9x+3f: x \mapsto \frac{x^{2}+2 x}{-9 x+3} h) f:xx(3x)8x7f: x \mapsto \frac{x(3-x)}{-8 x-7}

See Solution

Problem 24995

Find the critical numbers of the function h(p)=p4p2+6h(p)=\frac{p-4}{p^{2}+6}. Enter answers as a comma-separated list or DNE.

See Solution

Problem 24996

Find the critical numbers of the function f(x)=x3+12x227xf(x)=x^{3}+12 x^{2}-27 x. Enter answers as a comma-separated list or DNE.

See Solution

Problem 24997

Find the tangent line equation using implicit differentiation for x2+2xyy2+x=74x^{2}+2xy-y^{2}+x=74 at the point (6,8). y=y=

See Solution

Problem 24998

Given f(x)+x2[f(x)]4=18f(x)+x^{2}[f(x)]^{4}=18 and f(1)=2f(1)=2, find f(1)f^{\prime}(1).

See Solution

Problem 24999

Find dy/dxdy/dx using implicit differentiation for 5cosxsiny=45 \cos x \sin y = 4. What is yy'?

See Solution

Problem 25000

Find dy/dxdy/dx using implicit differentiation for the equation: 6x3+x2yxy3=56x^3 + x^2y - xy^3 = 5.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord