Calculus

Problem 19201

Given the curve (2y+1)324x=3(2 y+1)^{3}-24 x=-3, prove that dydx=4(2y+1)2\frac{d y}{d x}=\frac{4}{(2 y+1)^{2}}.

See Solution

Problem 19202

Finde die Stammfunktionen für die folgenden Funktionen: a) f(x)=x32x+1f(x)=x^{3}-2 x+1 b) f(x)=x+sin(x)f(x)=x+\sin (x) c) f(x)=3xf(x)=3 \sqrt{x} d) f(x)=4x6f(x)=4 x^{6} e) f(x)=3asin(x)f(x)=3 a \cdot \sin (x) f) f(x)=1xf(x)=\frac{1}{\sqrt{x}}

See Solution

Problem 19203

Find the tangent line equation to (2y+1)324x=3(2y+1)^3 - 24x = -3 at the point (1,2)(-1,-2).

See Solution

Problem 19204

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} of (2y+1)3=24x3(2y+1)^3 = 24x-3 at the point (1,2)(-1,-2).

See Solution

Problem 19205

Find g(1)g^{\prime}(-1) for the function g(x)=f(x2)exg(x)=\frac{f\left(x^{2}\right)}{e^{x}} using the given values of f(x)f(x) and f(x)f^{\prime}(x).

See Solution

Problem 19206

Given a function ff with values in the table, find g(1)g^{\prime}(-1) for g(x)=f(x2)exg(x)=\frac{f(x^{2})}{e^{x}} and h(1)h^{\prime}(1) for h(x)=f(f(2x))h(x)=f(f(-2x)).

See Solution

Problem 19207

Calculate the integral: 11xex2dx\int_{-1}^{1} x e^{-x^{2}} d x

See Solution

Problem 19208

Gegeben ist fa(x)=aln(x2+a)f_{a}(x)=a \cdot \ln \left(x^{2}+a\right) mit a0a \neq 0. Bestimme den Definitionsbereich, Nullstellen und Extrempunkte für aa.

See Solution

Problem 19209

Find k(1)k^{\prime}(-1) for the function k(x)=f(x)arcsin(x2)k(x)=f(x) \cdot \arcsin \left(\frac{x}{2}\right) using f(1)f(-1) and f(1)f'(-1).

See Solution

Problem 19210

Bestimme die Ableitung von f(x)=x3(x2+5x)f(x)=x^{3}(x^{2}+5x) mit der Produktregel.

See Solution

Problem 19211

Find h(1)h^{\prime}(1) for the function h(x)=f(f(2x))h(x)=f(f(-2 x)) given f(x)f(x) and f(x)f^{\prime}(x) values in the table.

See Solution

Problem 19212

Erkläre die Produktregel anhand der Funktion f(x)=x3(x2+5x)f(x)=x^{3}(x^{2}+5x).

See Solution

Problem 19213

Find (y1)(0)\left(y^{-1}\right)^{\prime}(0) for the curve (2y+1)3=24x3(2y+1)^3 = 24x-3 at the point (16,0)\left(\frac{1}{6}, 0\right).

See Solution

Problem 19214

Bestimmen Sie f(x)f^{\prime}(x) für f(x)=5x2lnxf(x)=5 x^{2} \cdot \ln x.

See Solution

Problem 19215

Untersuchen Sie die Funktion v(t)=5tt2v(t)=5 t-t^{2} für t=0t=0 bis t=5t=5: a) Änderung der Zuflussgeschwindigkeit, b) Wassermenge bis tt, c) Menge in 4 Stunden.

See Solution

Problem 19216

Berechnen Sie f(x)f^{\prime}(x) für f(x)=5x2lnxf(x)=5 x^{2} \cdot \ln x.

See Solution

Problem 19217

Estimate the change in drug concentration C(t)=2+3t1+t3e0.05tC(t)=2+\frac{3t}{1+t^3}-e^{-0.05t} from t=30t=30 to t=40t=40 minutes.

See Solution

Problem 19218

A particle PP moves on the xx-axis with displacement s=5t2t3s=5t^{2}-t^{3}. Find: a) displacement change from t=2t=2 to t=4t=4 b) displacement change in the third second (between t=2t=2 and t=3t=3).

See Solution

Problem 19219

Find the position at time tt given a(t)=12,v(0)=7,s(0)=6a(t)=12, v(0)=-7, s(0)=-6, and the displacement from t=0t=0 to t=2t=2.

See Solution

Problem 19220

Find the derivative of G(x)=4x3sintdtG(x)=\int_{4}^{x^{3}} \sin t \, dt. What is G(x)G^{\prime}(x)?

See Solution

Problem 19221

Bestimme die Ableitung von ff an den Stellen x0x_{0}: a) f(x)=x2f(x)=x^{2}, x0=3x_{0}=3; b) f(x)=2x2f(x)=2x^{2}, x0=1x_{0}=1; c) f(x)=x2f(x)=-x^{2}, x0=2x_{0}=2; d) f(x)=3xf(x)=-\frac{3}{x}, x0=4x_{0}=4; e) f(x)=x+2f(x)=-x+2, x0=3x_{0}=3; f) f(x)=4f(x)=4, x0=7x_{0}=7.

See Solution

Problem 19222

Find the volume v=π04(2x14x2)2dxv=\pi \cdot \int_{0}^{4}\left(2 x-\frac{1}{4} x^{2}\right)^{2} \, dx.

See Solution

Problem 19223

1. Bestimme den Grenzwert von f(x)=12xx+2f(x)=\frac{1-2 x}{x+2} für xx \to \infty und xx \to -\infty.
2. Finde limx42x232x4\lim_{x \to 4} \frac{2x^2 - 32}{x - 4} durch Umformung oder h-Methode.
3. Ordne jedem Term seinen Grenzwert für xx \to \infty zu.
4. a) Skizziere h(t)h(t) der Tulpe. b) Bestimme die mittlere Zuwachsrate. c) Wann wuchs die Tulpe am schnellsten?
5. a) Skizziere h(t)h(t) des Segelflugzeugs. b) Bestimme die mittlere Steig-/Sinkgeschwindigkeit. c) Wann steigt das Flugzeug mit 400mmin400 \frac{m}{min}?
6. Gegeben f(x)=12x2f(x)=\frac{1}{2}x^2. a) Bestimme die mittlere Änderungsrate auf [0;2][0;2]. b) Lokale Änderungsrate bei x0=1x_0=-1 zeichnerisch. c) Lokale Änderungsrate bei x0=2x_0=2 rechnerisch.
7. Ein Auto bremst: s(t)=40t4t2s(t)=40t-4t^2. a) Skizziere ss für 0t50 \leq t \leq 5. b) Wann steht das Auto? c) Bestimme die mittlere Geschwindigkeit. d) Momentangeschwindigkeit zu Beginn (t=0)(t=0)?

See Solution

Problem 19224

Find the new limits of integration for u=cos(x)u=\cos(x) in the integral ππ48sin(x)cos2(x)dx\int_{\pi}^{\frac{\pi}{4}}-8 \sin(x) \cos^{2}(x) dx.
The new lower bound is \square and the new upper bound is \square.

See Solution

Problem 19225

Find the new limits of integration for u=3x3+3u=3 x^{3}+3 in the integral 303x2(3x3+3)6dx\int_{-3}^{0} 3 x^{2}(3 x^{3}+3)^{6} dx.
The new lower bound is \square and the new upper bound is \square.

See Solution

Problem 19226

Evaluate the integral: 52(2(2x+4)4)dx\int_{-5}^{2}\left(2(2 x+4)^{4}\right) d x. Provide the exact answer or round to two decimal places.

See Solution

Problem 19227

Find the average value of f(x)=8x2+7f(x)=8 x^{2}+7 on the interval [1,3][-1,3]. Provide your answer exactly or rounded to two decimal places.

See Solution

Problem 19228

Evaluate the integral: 34(3(3x+6)23)dx\int_{3}^{4}\left(3 \sqrt[3]{(3 x+6)^{2}}\right) d x. Provide exact or rounded answer.

See Solution

Problem 19229

Find the total distance traveled by the particle with velocity v(t)=6+2ln(t+8)v(t)=6+2 \ln (t+8) from t=1t=1 to t=6t=6.

See Solution

Problem 19230

Find the number of fruit flies added from day 4 to day 9 given g(t)=4e0.04tg(t)=4 e^{0.04 t} and initial population 380. Round to nearest whole number.

See Solution

Problem 19231

Evaluate the integral from 2 to 9 of 18x+3\frac{1}{8x+3} dx. Provide the answer exactly or rounded to two decimal places.

See Solution

Problem 19232

Find the total distance traveled by the particle with velocity v(t)=24t2+124t3+6t+9v(t)=\frac{24 t^{2}+12}{4 t^{3}+6 t+9} from t=1t=1 to t=2t=2.

See Solution

Problem 19233

How many fruit flies are in a population after 80 days if it starts at 360 and grows at g(t)=5e0.01tg(t)=5 e^{0.01 t}?

See Solution

Problem 19234

Find the acceleration of particle PP when its velocity v=12tt2v = 12 - t - t^2 is zero.

See Solution

Problem 19235

Find the distance between the two points where the particle's displacement x=4t339t2+120tx=4 t^{3}-39 t^{2}+120 t is at rest.

See Solution

Problem 19236

Two flies on a balloon inflate at 5 cm³/s. Find their distance over time and how fast they separate at various intervals.

See Solution

Problem 19237

Find the second derivative f(t)f''(t) if f(t)=1.5cos(2π12.6(t6.3))2π12.6f'(t) = 1.5 \cos\left(\frac{2\pi}{12.6}(t-6.3)\right) \cdot \frac{2\pi}{12.6}.

See Solution

Problem 19238

Find the derivative of f(x)=3x22x3+1f(x) = \frac{-3 x^{2}}{2\sqrt{-x^{3}+1}}.

See Solution

Problem 19239

Bestimme die Punkte, wo die Tangentensteigung von f(x)=x2+2xf(x)=\frac{x^{2}+2}{x} gleich -1 oder 0 ist. Berechne f(x)f^{\prime}(x) für f(x)=kxf(x)=\frac{k}{x}.

See Solution

Problem 19240

Find and simplify p(q+h)p(q)h\frac{p(q+h)-p(q)}{h} for p(q)=q2+2q5p(q)=q^{2}+2q-5. What happens as h0h \to 0?

See Solution

Problem 19241

Find and simplify f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=1x2f(x)=1-x^{2}. What happens as h0h \to 0?

See Solution

Problem 19242

Maximize the volume given by the function 13π(x+8)2(224x)\frac{1}{3} \pi(x+8)^{2}(22-4 x).

See Solution

Problem 19243

Find the equation of F(x)F(x) if its slope is 6e3x+5ex6 e^{3 x}+5 e^{-x} and it has a yy-intercept of 5.

See Solution

Problem 19244

Find the average rate of change for f(x)=x32x2+x+1f(x)=x^{3}-2 x^{2}+x+1 on [0,2][0,2] and [2,4][2,4]. Which interval has a greater rate?

See Solution

Problem 19245

Find the derivative of the function 3t2+32t8t3+16t2\frac{-3 t^{2}+32 t}{8 \sqrt{-t^{3}+16 t^{2}}}.

See Solution

Problem 19246

Find F(2)F(-2), F(2)F^{\prime}(-2), and F(2)F^{\prime}(2) for F(x)=2xduu2+1F(x)=\int_{-2}^{x} \frac{d u}{u^{2}+1}.

See Solution

Problem 19247

Schreiben Sie die Ableitungen der Funktionen f(x)=10xf(x)=10^{x} und f(x)=20,1xf(x)=2 \cdot 0,1^{x} mit der Basis e.

See Solution

Problem 19248

Find and simplify C(x+h)C(x)h\frac{C(x+h)-C(x)}{h} for C(x)=2x24x+3C(x)=2x^{2}-4x+3. What happens as hh approaches 0?

See Solution

Problem 19249

Find the indefinite integral x75x67dx\int \frac{\sqrt[7]{x}-5}{\sqrt[7]{x^{6}}} d x using the substitution u=x75u=\sqrt[7]{x}-5. What is dud u?

See Solution

Problem 19250

Evaluate the integral x4(x511)26dx\int x^{4}(x^{5}-11)^{26} dx using substitution u=x511u = x^{5} - 11. Find the result in terms of xx.

See Solution

Problem 19251

Evaluate the integral: x58+x6dx=+C\int x^{5} \sqrt{8+x^{6}} \, dx = \square + C

See Solution

Problem 19252

Evaluate the integral 1(5x+15)4dx\int \frac{1}{(5 x+15)^{4}} d x using substitution: u=u=, then find 1(5x+15)4dx=+C\int \frac{1}{(5 x+15)^{4}} d x=\square+C.

See Solution

Problem 19253

Find where f(x)=x33x+1f(x)=x^{3}-3x+1 is increasing/decreasing on [3,3][-3,3] and identify all extrema with labels.

See Solution

Problem 19254

Berechnen Sie die Ableitungen: a) f(x)=xx+1f(x)=\frac{x}{x+1} b) g(x)=2x1+3xg(x)=\frac{2 x}{1+3 x} c) f(z)=1z2z+2f(z)=\frac{1-z^{2}}{z+2} d) f(t)=t2+t+1t21f(t)=\frac{t^{2}+t+1}{t^{2}-1}

See Solution

Problem 19255

Find the centripetal acceleration of a particle with total acceleration 5 m/s25 \mathrm{~m} / \mathrm{s}^{2} and tangential acceleration 3 m/s23 \mathrm{~m} / \mathrm{s}^{2}.

See Solution

Problem 19256

Find where f(x)=x312x+2f(x)=x^{3}-12x+2 is increasing/decreasing on [3,3][-3,3] and identify all extrema with their types.

See Solution

Problem 19257

Berechne die Ableitung von f(x)f(x) in e), f) und g) mit der Produktregel und durch Ausmultiplizieren.

See Solution

Problem 19258

Berechnen Sie die Ableitung von f(x)=(0,25x22x+4)(2x3+4x3)f(x)=\left(0,25 x^{2}-2 x+4\right)\left(2 x^{3}+4 x-3\right) und f(x)=(x2x)(12x2+12x)f(x)=\left(x^{2}-x\right)\left(\frac{1}{2} x^{2}+\frac{1}{2} x\right) mit Produktregel und Ausmultiplizieren.

See Solution

Problem 19259

Evaluate the integral: 6sin5(x)cos(x)dx=6 \sin^{5}(x) \cos(x) \, dx =

See Solution

Problem 19260

Evaluate the integral: 6sin5(x)cos(x)dx=+C\int 6 \sin^{5}(x) \cos(x) \, dx = \square + C

See Solution

Problem 19261

Express the limit limP0k=1n(ck64ck)Δxk\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n}(c_{k}^{6}-4 c_{k}) \Delta x_{k} as a definite integral.

See Solution

Problem 19262

Determine the domain, range, and asymptote of the function f(x)=exf(x)=-e^{x}.

See Solution

Problem 19263

Calculate the integral: 1/214e2x1dx\int_{1/2}^{1} 4 e^{2x-1} \, dx

See Solution

Problem 19264

Integrate: 4tt2dt=\int 4 t \sqrt{t-2} dt = (Hint: Use substitution u=t2u=t-2).

See Solution

Problem 19265

Evaluate these integrals: (a) 1214e2x1dx\int_{\frac{1}{2}}^{1} 4 e^{2 x-1} d x and (b) 106x(13x2)5dx\int_{-1}^{0} 6 x(1-3 x^{2})^{5} d x (use substitution).

See Solution

Problem 19266

Evaluate the integral from 1 to 4: 14(5x2+x)dx=(\int_{1}^{4}\left(5 x^{2}+\sqrt{x}\right) d x=\square( Simplify your answer. ))

See Solution

Problem 19267

Evaluate the surface integral Sx2yzdS\iint_{S} x^{2} y z d S over the plane z=1+4x+2yz=1+4x+2y above the rectangle 0x40 \leq x \leq 4, 0y20 \leq y \leq 2.

See Solution

Problem 19268

Find the volume of the solid formed by rotating the triangle with vertices (0,0),(3,3)(0,0),(3,3), and (0,3)(0,3) about the yy axis.

See Solution

Problem 19269

Evaluate the integral: x51+x2dx\int x^{5} \sqrt{1+x^{2}} \, dx

See Solution

Problem 19270

Evaluate the integral C(x)=24(x2)2[8(x2)3]3/2dxC(x)=\int_{2}^{4}(x-2)^{2}\left[8-(x-2)^{3}\right]^{3 / 2} dx.

See Solution

Problem 19271

Evaluate the integral: (2x)eexdx\int(2-x) \cdot e^{e^{x}} \, dx

See Solution

Problem 19272

Evaluate the integral π4π4sec2(θ)tan(θ)dθ.\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sec ^{2}(\theta) \tan (\theta) d \theta.

See Solution

Problem 19273

Find the volume of the solid formed by rotating the region QQ (bounded by g(y)=2y+4g(y)=2\sqrt{y+4}, y=1y=-1, y=2y=2) around the yy-axis using the disk method.

See Solution

Problem 19274

Calculate the area between the parabola y=x211y=x^{2}-11 and the line y=10xy=10x using integration.

See Solution

Problem 19275

Find the limit: limx0x21cosx\lim _{x \rightarrow 0} \frac{x^{2}}{1-\cos x}.

See Solution

Problem 19276

Find limxe2xx1x2\lim _{x \rightarrow \infty} \frac{e^{2 x}-x-1}{x^{2}}.

See Solution

Problem 19277

Find the limit: limx0tanxx\lim _{x \rightarrow 0} \frac{\tan x}{x}.

See Solution

Problem 19278

Find the limit: limx0x3sinxx\lim _{x \rightarrow 0} \frac{x^{3}}{\sin x-x}.

See Solution

Problem 19279

Ein Stein fällt von einem Turm. Beantworte folgende Fragen: a) Höhe des Turms? b) Aufprallgeschwindigkeit? c) Zeit für die Hälfte des Fallweges? d) Zeit für die letzten 20 m20 \mathrm{~m}? e) Wann hört man den Aufprall (Schallgeschwindigkeit 320 m/s320 \mathrm{~m/s})?

See Solution

Problem 19280

Evaluate the integral: 0211x2dx\int_{0}^{2} \frac{1}{1-x^{2}} d x.

See Solution

Problem 19281

Find the limit: limx1lnx2x21\lim _{x \rightarrow 1} \frac{\ln x^{2}}{x^{2}-1}.

See Solution

Problem 19282

Calculez l'utilisation totale de l'ordinateur pour les 14 premières semaines avec w(t)=620+900et43+et4w(t)=620+900 \frac{e^{\frac{t}{4}}}{3+e^{\frac{t}{4}}}.

See Solution

Problem 19283

Find the volume of the solid formed by rotating the region RR (bounded by f(x)=2ex2f(x)=-2 e^{\frac{x}{2}}, x=0x=0, x=2x=2) around the xx-axis.

See Solution

Problem 19284

Find the cylinder dimensions to hold 500 cm³ of soup while minimizing costs: sides at 0.03 cents/cm², top at 0.08 cents/cm².

See Solution

Problem 19285

Find the limit: limxxx2+1\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+1}}.

See Solution

Problem 19286

Evaluate the integral 01(2x36x+3x2+1)dx\int_{0}^{1}\left(2 x^{3}-6 x+\frac{3}{x^{2}+1}\right) d x.

See Solution

Problem 19287

Find the xx-coordinates of relative minima for the function ff on [3,3][-3, 3] given its critical points and derivatives. Options: (A) x=1x=-1, (B) x=0x=0, (C) x=1x=1, (D) none.

See Solution

Problem 19288

Find the positive value of xx where the second derivative f(x)=0f^{\prime \prime}(x)=0 for f(x)=xexp(x2/4)f(x)=x \exp(-x^{2}/4). Round to three decimals.

See Solution

Problem 19289

Find the area between the curve y=x22xy=x^{2}-2x and the xx-axis for xx in [0,3][0,3].

See Solution

Problem 19290

Berechnen Sie die Integrale: a) 01x3dx\int_{0}^{1} x^{3} d x, b) 00x3dx\int_{0}^{0} x^{3} d x, c) 24x3dx\int_{2}^{4} x^{3} d x, d) 44x3dx\int_{4}^{4} x^{3} d x.

See Solution

Problem 19291

Find dydx\frac{d y}{d x} using implicit differentiation of V=4x2ln(x)+1.4y2.2ln(y)V=-4 x-2 \ln (x)+1.4 y-2.2 \ln (y), then evaluate at x=6x=6, y=2y=2.

See Solution

Problem 19292

Estimez le coût total d'expédition en utilisant l'intégrale de q(t)p(t)q(t) \cdot p(t) sur [0,10][0, 10].

See Solution

Problem 19293

Estimate f(2.4)f(2.4) using linear approximation, given f(2)=5f(2)=5 and f(2)=2.8f^{\prime}(2)=2.8. Round to three decimal places.

See Solution

Problem 19294

Find the derivative of g(x)=5x11+t5dtg(x)=\int_{5}^{x} \frac{1}{1+t^{5}} dt. What is g(x)g'(x)?

See Solution

Problem 19295

Evaluate the integral from 1 to 7\sqrt{7} of 19s7+3ss7\frac{19 s^{7}+3 \sqrt{s}}{s^{7}} ds.

See Solution

Problem 19296

Find the integral for the area between y=x2y=x^{2}, x=2x=2, and the xx-axis: options include 02x2dx\int_{0}^{2} x^{2} d x.

See Solution

Problem 19297

Estimez le coût total des expéditions sur 10 mois avec q(t)=3200+25tq(t)=3200+25t et p(t)=4e0.04tp(t)=4e^{0.04t}.

See Solution

Problem 19298

Näherungswerte für ff an den Stellen a berechnen und auf vier Dezimalen runden: a) f(x)=2,3e0,9xf(x)=2,3 \cdot e^{0,9 x} bei a=2a=2 b) f(x)=20e0,01xf(x)=20 \cdot e^{-0,01 x} bei a=2,2a=2,2 c) f(x)=ln(x)f(x)=\ln (x) bei a=0,5a=0,5

See Solution

Problem 19299

Évaluez les intégrales suivantes : a) x1+4xdx\int x \sqrt{1+4 x} d x, b) 1+2x1+16x2dx\int \frac{1+2 x}{1+16 x^{2}} d x, c) (4t+2)et2+tdx\int(4 t+2) e^{t^{2}+t} d x, d) exex+exdx\int \frac{e^{x}}{e^{x}+e^{-x}} d x, e) x22xdx\int x^{2} 2^{x} d x, f) x2e4xdx\int x^{2} e^{4 x} d x, g) 3t3sin(t2)dt\int 3 t^{3} \sin \left(t^{2}\right) d t, h) x2(lnx)2dx\int x^{2}(\ln x)^{2} d x. Trouvez le profit maximal d'un appareil acheté à 2500 \avec avec Ret et Cdonneˊspar donnés par \frac{d R}{d t}=100(18-3 \sqrt{t})et et \frac{d C}{d t}=100(2+\sqrt{t})$.

See Solution

Problem 19300

Bestimme die Ableitung von f(x)=(x+1)exf(x)=(x+1) e^{-x}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord