Calculus

Problem 10401

Use the substitution x=48secθx=\sqrt{48} \sec \theta to solve the integral 24x2x248dx\int \frac{24}{x^{2} \sqrt{x^{2}-48}} dx.

See Solution

Problem 10402

Find the critical number AA for the function f(x)=4x2+4x4f(x)=-4x^{2}+4x-4. Is it a local min (LMIN), local max (LMAX), or neither (NEITHER)?

See Solution

Problem 10403

Find the local minimum and maximum of the function f(x)=2x3+36x2192x+9f(x)=-2 x^{3}+36 x^{2}-192 x+9.

See Solution

Problem 10404

Compute the integral of 3(3+x2)3/2\frac{3}{(3+x^{2})^{3/2}} with respect to xx.

See Solution

Problem 10405

Find the derivative of y=55x6y=5^{-5 x^{6}}.

See Solution

Problem 10406

Find the rate of change of sales given by S(t)=10690e0.3tS(t)=106-90 e^{-0.3 t} at t=1t=1 and t=5t=5 years. What happens as tt increases? Does it ever equal zero?

See Solution

Problem 10407

Estimate the population in 2010 using p(t)=37.47(1.023)tp(t)=37.47(1.023)^{t} and find the instantaneous rate at t=10t=10.

See Solution

Problem 10408

Find the growth function G(t)G(t) for online course students since 2002 with k=0.0474k=0.0474 and initial enrollment 1.674 million. Then, find enrollment for 2004, 2006, and 2013, and describe the growth rate over time.

See Solution

Problem 10409

A runaway semi at 40 m/s40 \mathrm{~m/s} starts 400 m400 \mathrm{~m} high. How high will it go before stopping? Assume no friction.

See Solution

Problem 10410

Calculate the roofing area of the barn using the function y=3110(ex/20+ex/20)y=31-10\left(e^{x / 20}+e^{-x / 20}\right) from x=20x=-20 to x=20x=20.

See Solution

Problem 10411

Find the difference quotient for the function f(x)=4x2f(x)=4x-2: f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}.

See Solution

Problem 10412

Find cc from the Mean Value Theorem for f(x)=2xf(x)=2 \sqrt{x} on [0,25][0,25]. Options: a. c=5c=5, b. c=15c=\frac{1}{5}, c. c=0c=0, d. c=254c=\frac{25}{4}, e. None.

See Solution

Problem 10413

Evaluate the integral: 031(1+x2)52dx\int_{0}^{\sqrt{3}} \frac{1}{(1+x^{2})^{\frac{5}{2}}} \, dx

See Solution

Problem 10414

Find the smallest value of MM such that f(1)Mf(1) \leq M for all differentiable ff with f4f' \leq 4 and f(1)=3f(-1)=3.

See Solution

Problem 10415

Find the limits as xx approaches aa: (a) f(x)+6g(x)f(x)+6g(x), (b) f(x)g(x)f(x)g(x), (c) 3+f(x)3\sqrt[3]{3+f(x)}, (d) 4g(x)9f(x)+g(x)\frac{4g(x)}{9f(x)+g(x)}.

See Solution

Problem 10416

Find the minimum value of f(x)=13x35x2+9x+3f(x)=\frac{1}{3} x^{3}-5 x^{2}+9 x+3 on [0,3][0,3].

See Solution

Problem 10417

Find the smallest value of MM such that f(1)Mf(1) \leq M for all differentiable ff with f4f' \leq 4 and f(1)=3f(-1)=3.

See Solution

Problem 10418

Find the linear approximation L(x)L(x) of f(x)=excosx+sinxf(x)=e^{x} \cos x+\sin x at x=0x=0. Which is correct?

See Solution

Problem 10419

Find the real zero of f(x)=x3+4x2+x9f(x)=x^{3}+4 x^{2}+x-9 using the intermediate value theorem. Round to two decimal places.

See Solution

Problem 10420

Find all values of cc for the function f(t)=tt6f(t)=\frac{t}{t-6} on the interval [-2, 0] using the Mean Value Theorem.

See Solution

Problem 10421

Find a2a_{2} in the second degree Taylor polynomial of y=f(x)g(x)y=f(x)g(x) at x=3x=3 given f(3)=g(3)=0f(3)=g(3)=0, f(3)=2f'(3)=2, g(3)=1g'(3)=1.

See Solution

Problem 10422

A box with square base xx and height yy has dxdt=3 cm/s\frac{d x}{d t}=3 \mathrm{~cm/s}, dydt=7 cm/s\frac{d y}{d t}=7 \mathrm{~cm/s}. Find dVdt\frac{d V}{d t} when x=2 cmx=2 \mathrm{~cm}, y=4 cmy=4 \mathrm{~cm}.

See Solution

Problem 10423

Find the integrals: x(x+1)5/2dx \int x(x+1)^{5/2} \, dx and 11+exdx \int \frac{1}{1+e^{x}} \, dx .

See Solution

Problem 10424

Use integration by parts to solve the integral x(x+1)5/2 dx\int x(x+1)^{5/2} \mathrm{~d} x. What is the result?

See Solution

Problem 10425

Find all xx where the graph of f(x)=13x32x2+7f(x)=\frac{1}{3} x^{3}-2 x^{2}+7 has a point of inflection.

See Solution

Problem 10426

Find the rectangle with the largest area that fits inside a circle of radius rr. What are its dimensions?

See Solution

Problem 10427

Determine where the graph of y=x24cosxy=x^{2}-4 \cos x changes concavity in the interval (π/2,π/2)(-\pi / 2, \pi / 2).

See Solution

Problem 10428

Find the second derivative, ff^{\prime \prime}, of the function f(x)=xcos(x2)+4x2f(x)=x \cos(x^{2}) + 4x^{2}.

See Solution

Problem 10429

Ein Stein fällt aus 45 m45 \mathrm{~m} Höhe. Berechne nach 2 s Höhe und Geschwindigkeit. Wann trifft er den Boden und mit welcher Geschwindigkeit?

See Solution

Problem 10430

A point moves on the curve 3x3+4y3=xy3 x^{3}+4 y^{3}=x y. At P=(17,17)P=\left(\frac{1}{7}, \frac{1}{7}\right), yy increases at 4 units/sec. Find the speed and direction of xx.

See Solution

Problem 10431

Find dy/dxd y / d x at the point (1,0)(1,0) for the equation 5e6y=2xy+5x5 e^{6 y}=2 x y+5 x.

See Solution

Problem 10432

Skizzieren Sie die Graphen von f(x)=exf(x)=e^{x} und g(x)=exg(x)=e^{-x}. Wie hängen die Graphen zusammen? Zeigen Sie, dass g(x)=exg^{\prime}(x)=-e^{-x}.

See Solution

Problem 10433

Find the average rate of change of f(t)=6t+8f(t)=6t+8 over [7,8][7,8] and compare it to the instantaneous rates at the endpoints.

See Solution

Problem 10434

Maximize z=20xy(x2+y2)z=20xy-(x^2+y^2) with the constraint x+y=4x+y=4.

See Solution

Problem 10435

Berechnen Sie den Grenzwert limx239x26x3x2\lim _{x \rightarrow \frac{2}{3}} \frac{9 x^{2}-6 x}{3 x-2} und überprüfen Sie mit einer Wertetabelle. Bestimmen Sie die Art der Definitionslücke bei x=23x=\frac{2}{3}.

See Solution

Problem 10436

Find the derivative of the function f(x)=4x3+2cosxf(x)=\frac{4}{\sqrt[3]{x}}+2 \cos x.

See Solution

Problem 10437

Find the rate of change of the function y=3x+3y=3x+3.

See Solution

Problem 10438

Find the rate of change of the function y=2x2y=-2x-2.

See Solution

Problem 10439

Bestimme aa, sodass limx2f(x)=2\lim_{x \to 2} f(x) = -2 für f(x)=3ax24af(x) = 3ax^2 - 4a.

See Solution

Problem 10440

Check if Rolle's Theorem applies for each function. State reasons for conditions a & b, and values for c.
5. f(x)=x2+2[2,2]f(x)=x^{2}+2 \quad[-2,2] a. continuous on [2,2][-2,2] ? Yes b. differentiable on (a,b)(a, b) ? Yes c. f(a)=f(b)f(a)=f(b) ? Yes
6. f(x)=x29x3[0,6]f(x)=\frac{x^{2}-9}{x-3} \quad[0,6] a. continuous on [a,b][a,b] ? No b. differentiable on (a,b)(a,b) ? c. f(a)=f(b)f(a)=f(b) ?
7. f(x)=x3[0,6]f(x)=|x-3| \quad[0,6] a. continuous on [a,b][a,b] ? b. differentiable on (a,b)(a,b) ? c. f(a)=f(b)f(a)=f(b) ?

See Solution

Problem 10441

Find the derivative of f(x)=x8(x7)3(x2+4)5f(x)=\frac{x^{8}(x-7)^{3}}{(x^{2}+4)^{5}} using logarithmic differentiation.

See Solution

Problem 10442

Berechne die Grenzwerte für die folgenden Funktionen: a) limx32x218x+3\lim _{x \rightarrow-3} \frac{2 x^{2}-18}{x+3} b) limx5x27x+10x5\lim _{x \rightarrow 5} \frac{x^{2}-7 x+10}{x-5} c) limx1x2xx1\lim _{x \rightarrow 1} \frac{x^{2}-x}{x-1} d) limxx0x2x02xx0\lim _{x \rightarrow x_{0}} \frac{x^{2}-x_{0}^{2}}{x-x_{0}}

See Solution

Problem 10443

A hunter accidentally fires a bullet straight up at 200 m/s200 \mathrm{~m/s}. How long until it falls back and how high does it go?

See Solution

Problem 10444

Familie Stein wacht um 8.00 Uhr bei 20C20^{\circ} \mathrm{C} auf. Die Temperatur wird durch T(t)=52t+26T(t)=\frac{52}{t+2}-6 beschrieben.
a) Wie tief könnte die Temperatur fallen? b) Wann wird der Gefrierpunkt erreicht? c) Wann fiel die Heizung aus?

See Solution

Problem 10445

Josue invested \$3,300 at a 7.5% continuous interest rate. Fatoumata invested \$3,300 at a 7.75% annual rate. How much longer to triple?

See Solution

Problem 10446

Evaluate the double integral 03u23evvdvdu\int_{0}^{\sqrt{3}} \int_{u^{2}}^{3} \frac{e^{v}}{\sqrt{v}} dv \, du.

See Solution

Problem 10447

Find the values of aa and bb that maximize the function F(a,b)=0a0b4x2y2dydxF(a, b)=\int_{0}^{a} \int_{0}^{b} 4-x^{2}-y^{2} d y d x. Calculate the product aba b.

See Solution

Problem 10448

Find the second derivative f(t)f^{\prime \prime}(t) of the function f(t)=0tx1+x3dxf(t)=\int_{0}^{t} x^{1+x^{3}} d x for t>0t>0.

See Solution

Problem 10449

Find the limits of integration for the triple integral 022z413f(x,y,z)dxdydz\int_{0}^{2} \int_{2 z}^{4} \int_{1}^{3} f(x, y, z) d x d y d z when reordered.

See Solution

Problem 10450

Find the limits of integration for the integral of f(x,y,z)=xy2z3f(x, y, z)=x y^{2} z^{3} over the domain x24+y2+z291\frac{x^{2}}{4}+y^{2}+\frac{z^{2}}{9} \leq 1, x0x \geq 0, y0y \geq 0, z0z \geq 0.

See Solution

Problem 10451

Find the derivative of y=cos(x)2tan(x)y = \cos(x) - 2\tan(x) using the chain rule.

See Solution

Problem 10452

Find dydx\frac{d y}{d x} in terms of xx and yy for the equation y+y2+x3=0y + y^{2} + x^{3} = 0.

See Solution

Problem 10453

Find the derivative of sin(3x)-\sin(-3x) with respect to xx.

See Solution

Problem 10454

Find the first derivative of f(x)=xt3f(x)=x^{t-3}.

See Solution

Problem 10455

Bestimmen Sie die Ableitung von f(b)=4abf(b)=4ab.

See Solution

Problem 10456

Find the power series for f(x)=3(13x)2f(x)=\frac{3}{(1-3x)^{2}} and its radius of convergence. Use 11x=n=0xn\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}.

See Solution

Problem 10457

Differentiate the function G(y)=ln((4y+1)3y2+1)G(y)=\ln \left(\frac{(4 y+1)^{3}}{\sqrt{y^{2}+1}}\right). Find G(y)G^{\prime}(y).

See Solution

Problem 10458

Find the first derivative of f(z)=4z+zf(z)=\frac{4}{z}+\sqrt{z}.

See Solution

Problem 10459

Use the Intermediate Value Theorem to check if f(x)=7x4+2x2+10f(x)=-7 x^{4}+2 x^{2}+10 has a zero between -2 and -1.

See Solution

Problem 10460

Find the derivative of y=x6cos(x)y = x^{6} \cos(x) using logarithmic differentiation. What is yy'?

See Solution

Problem 10461

Use Newton's method for f(x)=x25f(x)=x^{2}-5 with x0=2x_{0}=2 to find x1x_{1} and x2x_{2}. Choose the correct formula.

See Solution

Problem 10462

Find dydx\frac{d y}{d x} for the function y=x4+x28x2y=\sqrt[4]{x}+\frac{x^{2}-8}{x^{2}}.

See Solution

Problem 10463

Find the derivative of y=(cos(9x))xy=(\cos(9x))^x using logarithmic differentiation. Set y(x)=1y'(x)=1.

See Solution

Problem 10464

How far does a ball fall in 5 seconds? Use the formula for distance: d=12gt2d = \frac{1}{2} g t^2, where g9.8m/s2g \approx 9.8 \, m/s^2.

See Solution

Problem 10465

Find the formula for Newton's method for f(x)=4tan(3x)f(x)=4-\tan(3x), starting with x0=1x_{0}=1. Compute x1x_{1}.

See Solution

Problem 10466

Find the derivative of 2sinxxe10x2 \sin x - x e^{-10 x} with respect to xx.

See Solution

Problem 10467

Calculate the integral 0tx1+x3dx\int_{0}^{t} x^{1+x^{3}} dx for t>0t>0 and determine f(t)f^{\prime \prime}(t).

See Solution

Problem 10468

Find Newton's method formula for f(x)=4tan(3x)f(x)=4-\tan(3x) with x0=1x_{0}=1. Compute x1x_{1} and round to six decimal places.

See Solution

Problem 10469

Find the derivative f(x)f^{\prime}(x) for the function f(x)=x53+π25x+2xf(x)=\sqrt[3]{x^{5}}+\pi^{2}-\frac{5}{x}+2^{x}.

See Solution

Problem 10470

Find the derivative of the function f(x)=x2cos(x31+2)f(x)=x^{2} \cos \left(\sqrt{x^{3}-1}+2\right).

See Solution

Problem 10471

Find the derivative f(x)f^{\prime}(x) for the function f(x)=exarctan(4x2)f(x)=e^{-x} \arctan(4 x^{2}).

See Solution

Problem 10472

Find the tangent line equation to 7x25xy+y3=37 x^{2}-5 x y+y^{3}=3 at point (1,1)(1,1). (5 points)

See Solution

Problem 10473

Find the derivative ddx(xf(x)g(x))x=1\left.\frac{d}{d x}\left(\frac{x f(x)}{g(x)}\right)\right|_{x=1} using the given values of ff and gg.

See Solution

Problem 10474

Find the derivative ddx(f(x)+2g(x))x=3\left.\frac{d}{d x}(f(x)+2 g(x))\right|_{x=3} using the given values of f(x)f(x) and g(x)g(x).

See Solution

Problem 10475

Find quantities for f(x)=3x2f(x)=3 x^{2}: (A) slope of secant line at (2,f(2))(2, f(2)), (B) slope at (2,f(2))(2, f(2)), (C) tangent line equation.

See Solution

Problem 10476

Find h(3)h^{\prime}(3) where h(x)=(fg)(x)h(x)=(f \circ g)(x) using the given values of ff and gg.

See Solution

Problem 10477

Find the slope of the secant line and tangent line for f(x)=3x2f(x)=3x^{2} at x=2x=2.

See Solution

Problem 10478

Find the derivative f(x)f^{\prime}(x) for f(x)=x1/xf(x)=x^{1/x} using logarithmic differentiation.

See Solution

Problem 10479

A cyclist rides 100 km, reaching 72 km in 2 hours at 40 km/h. Find average velocity for the first 2 hours and the slope of f(x)f(x).

See Solution

Problem 10480

Find the derivative of f(x)=x1/xf(x)=x^{1/x} using logarithmic differentiation.

See Solution

Problem 10481

Find the tangent line equation for f(x)=12+x2f(x)=\frac{1}{2+x^{2}} at x=1x=1 where the slope is 29-\frac{2}{9}.

See Solution

Problem 10482

Find dydx\frac{d y}{d x} using implicit differentiation for the equation x2+2xyy2+x=2x^{2}+2 x y-y^{2}+x=2.

See Solution

Problem 10483

Find the average rate of change of f(x)=3x2+2x+1f(x)=3 x^{2}+2 x+1 over the interval [2,4][2, 4].

See Solution

Problem 10484

Find dydx\frac{d y}{d x} using implicit differentiation for the equation x2+2xyy2+x=2x^{2}+2 x y-y^{2}+x=2.

See Solution

Problem 10485

Find the tangent line equation for f(x)=12+x2f(x)=\frac{1}{2+x^{2}} at x=3x=3 with slope 6121-\frac{6}{121}.

See Solution

Problem 10486

Find the tangent line equation for f(x)=17+x2f(x)=\frac{1}{7+x^{2}} at x=2x=2 with slope 4121-\frac{4}{121}.

See Solution

Problem 10487

Find the average rate of change of f(x)=3x2+2x+1f(x)=3 x^{2}+2 x+1 from x=2x=2 to x=4x=4.

See Solution

Problem 10488

Find s(x)s^{\prime}(x) for s(x)=7x8s(x)=7x-8 and calculate s(1)s^{\prime}(1), s(2)s^{\prime}(2), and s(3)s^{\prime}(3).

See Solution

Problem 10489

Find where the function f(x)=11x2+x4f(x)=11 x^{2}+x^{4} is concave up and concave down.

See Solution

Problem 10490

Calculate the limit: limh0(2+h)24h\lim _{h \rightarrow 0} \frac{(-2+h)^{2}-4}{h}.

See Solution

Problem 10491

True or False: a) The nnth derivative of 5x3+2x+55x^3 + 2x + 5 is 0 for n3n \geq 3. d) Use the Chain Rule to differentiate f(x)=ex+1f(x)=e^{\sqrt{x+1}}. e) Is ddx(2x)=x2x1\frac{d}{dx}(\sqrt{2}^x) = x \sqrt{2}^{x-1}?

See Solution

Problem 10492

Find f(x)f^{\prime}(x) for f(x)=2x29x+10f(x)=2 x^{2}-9 x+10 and then calculate f(3)f^{\prime}(3), f(5)f^{\prime}(5), and f(9)f^{\prime}(9).

See Solution

Problem 10493

Find the length of the curve r(t)=2t,sint,cost\mathbf{r}(t)=\langle 2 t, \sin t, \cos t\rangle from (0,0,1)(0,0,1) to (2π,0,1)(2\pi,0,-1).

See Solution

Problem 10494

Find the slopes of secant lines between points and the tangent line at (2,f(2))(2, f(2)) for f(x)=x2+xf(x)=x^{2}+x.

See Solution

Problem 10495

Find the extreme values of y=f(x)=x33xy=f(x)=x^{3}-3x for 0x20 \leq x \leq 2.

See Solution

Problem 10496

Differentiate x34x2+3x^{3}-4 x^{2}+3.

See Solution

Problem 10497

Calculate the integral from 2 to 3 of the function 1x\frac{1}{x}.

See Solution

Problem 10498

Find the derivative of siny=x3+y4\sin y = x^3 + y^4 using implicit differentiation.

See Solution

Problem 10499

Find the limit statements for the end behavior of y=(4x+3)2(3x1)(2x+5)y=\frac{(4 x+3)^{2}}{(3 x-1)(2 x+5)}.

See Solution

Problem 10500

Determine the end behavior limits for the function y=2x35x+66x3+10x24x12y=\frac{2 x^{3}-5 x+6}{6 x^{3}+10 x^{2}-4 x-12}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord