Calculus

Problem 7601

Find the acceleration of a car at t=2t=2 seconds, where its position is given by s(t)=13(t2+5)3/2s(t)=\frac{1}{3}(t^{2}+5)^{3/2}.

See Solution

Problem 7602

Find the rate of water draining from a 2000-gallon tank after 10 minutes, using V=2000(1t40)2V=2000\left(1-\frac{t}{40}\right)^{2}.

See Solution

Problem 7603

Analyze the concavity of f(x)=3(x2)5/3f(x)=3(x-2)^{5/3} and identify any points of inflection.

See Solution

Problem 7604

Given the polynomial f(x)=x3+Ax2+Bxf(x)=x^{3}+A x^{2}+B x, if x=2x=2 is a critical point and x=3x=-3 is an inflection point, find f(1)f(1). Options: 38-38, 36-36, 57-57, 35-35, None.

See Solution

Problem 7605

Find the first and second derivatives of u(x)=ex+5u(x)=e^{x}+5.

See Solution

Problem 7606

Analyze the concavity of f(x)=12x412x2f(x)=\frac{1}{2} x^{4}-12 x^{2} and identify any points of inflection.

See Solution

Problem 7607

Find x-coordinates of inflection points for f(x)f(x) given f(x)=x225(x6)3(x10)3f''(x)=\frac{x^{2}-25}{(x-6)^{3}(x-10)^{3}}.

See Solution

Problem 7608

Find the xx-coordinates of points of inflection for the function with f(x)=x225(x6)3(x10)3f^{\prime \prime}(x)=\frac{x^{2}-25}{(x-6)^{3}(x-10)^{3}}.

See Solution

Problem 7609

Determine the concavity of f(x)=xx3f(x)=\frac{x}{x-3} and find any points of inflection.

See Solution

Problem 7610

Find cc such that the function f(x)=cx2+x2f(x)=c x^{2}+x^{-2} has an inflection point at (2,f(2))(2, f(2)).

See Solution

Problem 7611

Calculate the integral: 8x2cos(x)dx=\int 8 x^{2} \cos (x) \, dx =

See Solution

Problem 7612

Which statements about the graph of f(x)=6x312x2+6x+4f(x)=6 x^{3}-12 x^{2}+6 x+4 are true regarding local extrema and intervals?

See Solution

Problem 7613

Describe the concavity of f(x)=xx+4f(x)=\frac{x}{x+4} and find any points of inflection.

See Solution

Problem 7614

Select a suitable uu for integration by parts without evaluating the integral: e3xcos(5x)dx\int e^{3 x} \cos (5 x) d x

See Solution

Problem 7615

Calculate the integral of ln(4x+1)\ln(4x+1) with respect to xx: ln(4x+1)dx=+C\int \ln(4x+1) \, dx = +C

See Solution

Problem 7616

Determine the concavity and points of inflection for f(x)=14x46x2f(x)=\frac{1}{4} x^{4}-6 x^{2}.

See Solution

Problem 7617

Find the average rate of change of ff from x1x_{1} to x2x_{2}: A. f(x2)+f(x1)x2+x1\frac{f\left(x_{2}\right)+f\left(x_{1}\right)}{x_{2}+x_{1}}, B. f(x2)f(x1)x2+x1\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}+x_{1}}, C. f(x2)+f(x1)x2x1\frac{f\left(x_{2}\right)+f\left(x_{1}\right)}{x_{2}-x_{1}}, D. f(x2)f(x1)x2x1\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}.

See Solution

Problem 7618

Graph the linear approximation of f(x)=2f(x) = 2 at a=2a=2 using f~(x)=f(a)+f(a)(xa)\tilde{f}(x)=f(a)+f^{\prime}(a)(x-a) for x=3x=3.

See Solution

Problem 7619

Find the x-coordinates of all points of inflection for the function f(x)f(x) given f(x)=x32x2(x5)3(x6)3f^{\prime \prime}(x)=\frac{x^{3}-2 x^{2}}{(x-5)^{3}(x-6)^{3}}.

See Solution

Problem 7620

Estimate the change in area of a circular oil spill as the radius increases from 6 ft to 6.023 ft. Calculate new area too.

See Solution

Problem 7621

Find the linear approximation L(x)L(x) of f(x)=sin(x)f(x)=\sin (x) at a=11π6a=\frac{11 \pi}{6}. Enter the exact answer.

See Solution

Problem 7622

Find the derivative of π3(24r2r3)\frac{\pi}{3}(24 r^{2}-r^{3}).

See Solution

Problem 7623

Find the base radius rr and height hh of a cone (with r+h=24r+h=24 cm) that maximize volume, then calculate max volume.

See Solution

Problem 7624

What should we set dvd v to when using integration by parts to evaluate xln(x)dx\int x \ln (x) d x?

See Solution

Problem 7625

Estimate 25.05\sqrt{25.05} using linear approximation. Round your answer to three decimal places.

See Solution

Problem 7626

Find the volume of the solid formed by rotating the region RR (bounded by y=0y=0, y=xy=\sqrt{x}, and x=4x=4) around the xx-axis using the disk method.

See Solution

Problem 7627

Given the function y=2x3+3x236x+1y=2 x^{3}+3 x^{2}-36 x+1, find local max/min using the second derivative test and determine concavity intervals.

See Solution

Problem 7628

Find the first and second derivatives of h(x)=blogb(x)h(x)=b^{\log _{b}(x)} for b>1b > 1.

See Solution

Problem 7629

Find the derivative of y=tan(π4x2)y=\tan \left(\frac{\pi}{4}-\frac{x}{2}\right) with respect to xx.

See Solution

Problem 7630

Find the volume of the solid formed by rotating the region RR (bounded by y=2y=2, y=xy=\sqrt{x}, x=0x=0) around the yy-axis.

See Solution

Problem 7631

Find the xx-coordinate of the inflection point for the curve y=f(x)=53x3+25x248x196y=f(x)=\frac{5}{3} x^{3}+25 x^{2}-48 x-196.

See Solution

Problem 7632

Choose uu from x3x^3, cos(x)\cos(x), x6x^6, x3sin(x)x^3\sin(x), sin(x)\sin(x), or xx to evaluate x6sin(x)dx\int x^{6} \sin (x) dx using integration by parts.

See Solution

Problem 7633

Differentiate: y=tan(π4x2)y=\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)

See Solution

Problem 7634

Find the first and second derivatives of TR(Q)=Q(15Q3)2\operatorname{TR}(Q)=Q \cdot\left(\frac{15-Q}{3}\right)^{2}.

See Solution

Problem 7635

Find the first and second derivatives of TR(Q)=3P+15(15Q3)2TR(Q)=-3 \sqrt{P}+15 \cdot\left(\frac{15-Q}{3}\right)^{2}.

See Solution

Problem 7636

Estimate f(2.02)f(2.02) for y=f(x)=5x22x+3y=f(x)=5 x^{2}-2 x+3 using f(x)f^{\prime}(x): 10.02×[f(2.02)\frac{1}{0.02} \times[f(2.02)-

See Solution

Problem 7637

Estimate Δy\Delta y for y=sin(5x)y=\sin(5x) with Δx=0.3\Delta x=0.3 at x=0x=0 using linear approximation. Find the percentage error.

See Solution

Problem 7638

Estimate the paint needed in cm³ for a 0.07 cm thick coat on a hemispherical dome with a diameter of 7500 cm. Use V=23πr3V=\frac{2}{3} \pi r^{3}.

See Solution

Problem 7639

Estimate f(2.02)f(2.02) for y=f(x)=5x22x+3y=f(x)=5 x^{2}-2 x+3 using f(x)f^{\prime}(x): 10.02×[f(2.02)]\frac{1}{0.02} \times[f(2.02)-\square] \approx \square

See Solution

Problem 7640

A spherical ball bearing has a diameter of 5 mm5 \mathrm{~mm} and a possible error of 0.1 mm0.1 \mathrm{~mm}. Find: a. Maximum error in volume using differentials. b. Relative error in volume using differentials.

See Solution

Problem 7641

Estimate the paint needed for a hemispherical dome (diameter 4000 cm, thickness 0.09 cm). Use V=23πr3V=\frac{2}{3} \pi r^{3}.

See Solution

Problem 7642

Find the max error in volume of a ball bearing with diameter 6.8 mm6.8 \mathrm{~mm} and error 0.09 mm0.09 \mathrm{~mm} using differentials.

See Solution

Problem 7643

A ball bearing's diameter is 6.8 mm6.8 \mathrm{~mm} with a 0.09 mm0.09 \mathrm{~mm} error. Find max error and relative error in volume.

See Solution

Problem 7644

Given f(x)=71x+18x2f(x)=7-1 x+18 x^{2}, find f(a)f(a), f(a+h)f(a+h), and f(a+h)f(a)h\frac{f(a+h)-f(a)}{h} for h0h \neq 0.

See Solution

Problem 7645

Given y=2x2y=2 x^{2}, calculate Δy\Delta y for x=4x=4, Δx=0.4\Delta x=0.4 and find dyd y for dx=0.4d x=0.4.

See Solution

Problem 7646

Find dyd y for y=tan(3x+4)y=\tan(3x+4) at x=1x=1 for dx=0.3d x=0.3 and dx=0.6d x=0.6.

See Solution

Problem 7647

A ball bearing has a diameter of 5.8 mm5.8 \mathrm{~mm} and a possible error of 0.1 mm0.1 \mathrm{~mm}. Find the max and relative error in volume.

See Solution

Problem 7648

Bestimmen Sie die Ableitung von f(x)=3x5+0,5x3+x12f(x)=3 x^{5}+0,5 x^{3}+x-12.

See Solution

Problem 7649

Bestimmen Sie die Ableitung von f(x)=2x4+13x30,2x+cf(x)=-2 x^{4}+\frac{1}{3} x^{3}-0,2 x+c.

See Solution

Problem 7650

Analysiere die Funktion f(x)=x32x23xf(x)=x^{3}-2 x^{2}-3 x: Finde Nullstellen, zeichne sie, und bestimme Ableitung und Integral.

See Solution

Problem 7651

How fast is the water level in Jon's 16ft216 \mathrm{ft}^{2} bathtub rising if filled at 0.5ft3/min0.5 \mathrm{ft}^{3}/\mathrm{min}?

See Solution

Problem 7652

The oil slick's radius grows at 3 m/min3 \mathrm{~m/min}. Find the area increase rate when the radius is 59 m59 \mathrm{~m}. dAdt= \frac{d A}{d t} =

See Solution

Problem 7653

An oil slick's radius grows at 3 m/min3 \mathrm{~m/min}. Find area growth rate when radius is 59 m59 \mathrm{~m} and after 44 min.

See Solution

Problem 7654

A ladder of length 8.9 m slides down a wall at 1.1 m/s1.1 \mathrm{~m/s}. Find dxdt\frac{d x}{d t} when h=3.8h=3.8.

See Solution

Problem 7655

Gegeben ist die Funktion f(x)=1xcos(x)f(x) = \frac{1}{x} \cdot \cos(x). Bestimmen Sie:
a) Definitionsmenge, b) Nullstellen, d) Grenzwert für x+x \rightarrow +\infty, e) xx für Werte < 0,01 vom Grenzwert. Zeichnen Sie auch ff und g(x)=1xg(x) = \frac{1}{x} sowie h(x)=1x+cos(x)h(x) = \frac{1}{x} + \cos(x).

See Solution

Problem 7656

A car travels past a farmhouse 1.6 km away at 86 km/h. Find how fast the distance to the farmhouse increases when it's 3.4 km past the intersection.

See Solution

Problem 7657

Bestimme den Steigungswinkel der Funktion f(x)=3x2+4x3f(x)=3 x^{2}+4 x-3 an der Stelle x0=2x_{0}=2.

See Solution

Problem 7658

A police car moves south at 160 km/h160 \mathrm{~km/h} and a truck east at 140 km/h140 \mathrm{~km/h}. Find the distance change rate at t=5t=5 min.

See Solution

Problem 7659

Untersuchen Sie das Verhalten von f(x)=6xx2x3f(x)=\frac{6 x-x^{2}}{x^{3}} für x+x \to +\infty und xx \to -\infty.

See Solution

Problem 7660

Find the derivative of f(x)=x4x3f(x)=\sqrt{x}-\frac{4}{x^{3}} at x=1x=1. Also, clarify the issue with f(x)=x28x+7f(x)=x^{2}-8x+7.

See Solution

Problem 7661

Die Kochdauer tt (in min) für ein Ei hängt vom Durchmesser dd (in mm\mathrm{mm}) ab: t(d)=0,00262d2t(d)=0,00262 d^{2}. Berechne die mittleren Änderungsraten für [40; 50], [40; 45], [40; 41] und die lokale Änderungsrate bei 40 mm.

See Solution

Problem 7662

Berechnen Sie die mittlere Änderungsrate von ff in den Intervallen: a) f(x)=2xf(x)=2x, I=[0;1]I=[0;1]; b) f(x)=0,5x2f(x)=0,5x^{2}, I=[1;4]I=[1;4]; c) f(x)=1x2f(x)=1-x^{2}.

See Solution

Problem 7663

A baseball diamond is a square with sides of 90ft90 \mathrm{ft}. A player runs to first base at 23ft/s23 \mathrm{ft/s}. Find the rate of change of distance to second base when halfway to first. Give answer to two decimal places. dhdt= \frac{d h}{d t} =

See Solution

Problem 7664

Calculate 22x2dx+35x2dx+23x2dx\int_{-2}^{2} x^{2} dx + \int_{3}^{5} x^{2} dx + \int_{2}^{3} x^{2} dx.

See Solution

Problem 7665

Differentiate the function by expanding: f(x)=(4x+3)(3x2+1)f(x)=(4x+3)(3x^{2}+1).

See Solution

Problem 7666

Find the derivative of the function f(w)=7w33w8wf(w)=\frac{7 w^{3}-3 w}{8 w} after simplifying it.

See Solution

Problem 7667

Garten Teich: Bestimmen Sie die Symmetrie von h(x)h(x), das Verhalten für x+x \rightarrow+\infty, und den Flächeninhalt eines Dreiecks. Analysieren Sie lokale Extrempunkte und Tangenten auf G2G_{2}. Finden Sie den Parameter für einen Sattelpunkt und berechnen Sie die Seitenlängen einer Plane. Bestimmen Sie die Fläche im Schatten der Brücke und die Gleichung einer symmetrischen Parabel.

See Solution

Problem 7668

Differentiate the function by expanding: f(x)=(5x6)2f(x)=(5 x-6)^{2}.

See Solution

Problem 7669

Calculate the integrals: 22x2dx+35x2dx+23x2dx\int_{-2}^{2} x^{2} dx + \int_{3}^{5} x^{2} dx + \int_{2}^{3} x^{2} dx.

See Solution

Problem 7670

Find the derivative of the function f(w)=3w4+6w2+5wf(w) = 3w^{4} + 6w^{2} + 5w.

See Solution

Problem 7671

Find the derivative of g(w)=6e2w+7ewewg(w)=\frac{6 e^{2 w}+7 e^{w}}{e^{w}} after simplifying the expression.

See Solution

Problem 7672

Find values of KK for a local minimum at the origin for f(x,y)=Kx2+8xy+2Ky2f(x, y)=K x^{2}+8 x y+2 K y^{2}. Options: K<22|K|<2\sqrt{2}, K>2|K|>\sqrt{2}, K>2K>\sqrt{2}, K>22K>2\sqrt{2}, K<2K<\sqrt{2}, None, K<2K<-2.

See Solution

Problem 7673

Find the global minimum of f(x,y)=e3x5y+2zf(x, y)=e^{3 x-5 y+2 z} for 1x,y,z1-1 \leq x, y, z \leq 1.

See Solution

Problem 7674

Find the tangent line equation at x=ln13x=\ln 13 for the curve y=exy=e^{x} and graph both.

See Solution

Problem 7675

Find the derivative of y=sechx(1+lnsechx)y=\operatorname{sech} x(1+\ln \operatorname{sech} x).

See Solution

Problem 7676

Find xx where the slope of y=f(x)=2x212x1y=f(x)=2x^2-12x-1 is 0 and where it is 4.

See Solution

Problem 7677

Optimize the cost function f(x,y)=xyf(x, y)=x y with constraint ax+by=ca x+b y=c. Find the Lagrange equations.

See Solution

Problem 7678

Find points on the graph of f(x)=50x5xf(x)=50 \sqrt{x}-5 x where the tangent line is horizontal or has slope 52-\frac{5}{2}.

See Solution

Problem 7679

Find the first, second, and third derivatives of the function f(x)=6exf(x) = 6 e^{x}.

See Solution

Problem 7680

Bestimmen Sie die Ableitungen für die folgenden Funktionen: a) f(x)=x3+xf(x)=x^{3}+\sqrt{x} b) f(x)=3x175x12+4x36f(x)=3 x^{17}-5 x^{12}+4 x^{3}-6 c) f(x)=xn+x1+1xf(x)=x^{n}+x-1+\frac{1}{x} d) f(x)=(x1)2+4f(x)=-(x-1)^{2}+4 e) f(x)=4x+7f(x)=\sqrt{4 x+7} f) f(x)=23x6f(x)=\frac{2}{3 x-6} g) f(x)=(x2+1)(x21)f(x)=(x^{2}+1)(x^{2}-1) h) f(x)=xx+5f(x)=\frac{x}{x+5}

See Solution

Problem 7681

Find points on the graph of f(x)=50x5xf(x)=50 \sqrt{x}-5 x where the tangent line is horizontal or has slope 52-\frac{5}{2}.

See Solution

Problem 7682

Find the first three derivatives f(x)f^{\prime}(x), f(x)f^{\prime \prime}(x), and f(3)(x)f^{(3)}(x) for f(x)=x22x15x+3f(x)=\frac{x^{2}-2x-15}{x+3}.

See Solution

Problem 7683

Find the derivative of y=e2xcsc(12x)y=e^{2 x} \csc (1-2 x) with respect to xx.

See Solution

Problem 7684

Momentangeschwindigkeit: Ein Snowboarder hat die Bewegung s(t)=1,5t2s(t)=1,5 t^2. Berechne: a) Weg nach 1s und 5s, b) mittlere Geschwindigkeit in 5s, c) Momentangeschwindigkeit nach 5s.

See Solution

Problem 7685

Find a function ff and a number aa such that limx0ex1x=f(a)\lim _{x \rightarrow 0} \frac{e^{x}-1}{x} = f^{\prime}(a). Then, compute the limit.

See Solution

Problem 7686

Freier Fall auf dem Mond:
a) Fallstrecke in der ersten Sekunde? b) Durchschnittsgeschwindigkeit in der ersten Sekunde? c) Momentangeschwindigkeit nach 1s und 10s? d) Aufprallgeschwindigkeit aus 40 m Höhe? Weg-Zeit-Gesetz: s(t)=0,8t2s(t)=0,8 t^{2}.

See Solution

Problem 7687

Finde die Stellen, an denen der Graph von f(x)=2x2+2f(x)=2 x^{2}+2 die Steigung m=4m=4 hat und die gleiche Steigung wie g(x)=x34x1g(x)=x^{3}-4 x-1.

See Solution

Problem 7688

Estimate the distance a cyclist traveled using 3 equal-width strips under the curve from (0,0) to (9,25).

See Solution

Problem 7689

Gegeben sind die Funktionen f(x)=2x26x+6,5f(x)=2 x^{2}-6 x+6,5, g(x)=xg(x)=x, h(x)=x45x2+4h(x)=x^{4}-5 x^{2}+4. Finde die Ableitungen und Extrempunkte.

See Solution

Problem 7690

Berechnen Sie die Ableitungen f\mathrm{f}^{\prime} für die Funktionen a) bis f): a) f(x)=14x42x2f(x)=\frac{1}{4} x^{4}-2 x^{2}, b) f(x)=3x2+4f(x)=-3 x^{2}+4, c) f(x)=3(x2)2+xf(x)=3(x-2)^{2}+x, d) f(x)=ax3+bx2+cx+df(x)=a x^{3}+b x^{2}+c x+d, e) f(x)=2xf(x)=2 \sqrt{x}, f) f(x)=4x+1f(x)=\frac{4}{x}+1.

See Solution

Problem 7691

Bestimmen Sie die Ableitung von f(t)=2tf(t)=\sqrt{\frac{2}{t}}.

See Solution

Problem 7692

Berechnen Sie die Ableitungen f\mathrm{f}^{\prime} für die Funktionen: a) f(x)=14x42x2f(x)=\frac{1}{4} x^{4}-2 x^{2}, b) f(x)=3x2+4f(x)=-3 x^{2}+4, c) f(x)=3(x2)2+xf(x)=3(x-2)^{2}+x, d) f(x)=ax3+bx2+cx+df(x)=a x^{3}+b x^{2}+c x+d, e) f(x)=2xf(x)=2 \sqrt{x}, f) f(x)=4x+1f(x)=\frac{4}{x}+1.

See Solution

Problem 7693

Gegeben ist die Funktion f:x1xcos(x)f: x \mapsto \frac{1}{x} \cdot \cos (x). Bestimmen Sie die Definitionsmenge, Nullstellen, Grenzwert und zeichnen Sie die Graphen.

See Solution

Problem 7694

Find the derivative of f(x)=e4x+xf(x)=e^{4 x}+x at the point A(0,f(0))A(0, f(0)).

See Solution

Problem 7695

Differentiate and expand:
1. Find ddx[ex]\frac{d}{d x}\left[e^{x}\right].
2. For f(x)=3x(x21)(x3+2x+3)f(x)=3 x(x^{2}-1)(x^{3}+2 x+3), expand and differentiate.

See Solution

Problem 7696

Untersuchen Sie die Funktion ft(x)=(x+1t)etxf_{t}(x)=\left(x+\frac{1}{t}\right) \cdot e^{-t x} auf Nullstellen, Extrempunkte und Wendepunkte.

See Solution

Problem 7697

Find the tangent line equation for f(x)=e2x+0.25xf(x)=e^{-2 x}+0.25^{x} at point A(1,f(1))A(-1, f(-1)) using its derivative.

See Solution

Problem 7698

Untersuchen Sie die Funktion f1(x)=(x+1t)etxf_{1}(x)=(x+\frac{1}{t}) e^{-t x} auf Nullstellen, Extrempunkte und Wendepunkte. Finden Sie eine Gleichung für die Wendepunkte.

See Solution

Problem 7699

Berechnen Sie die Ableitungen fa(x)f_{a}^{\prime}(x) und fa(21)(x)f_{a}^{(21)}(x) für die Funktionen: a) f0(x)=cos(ax)f_{0}(x)=\cos (a x), b) fa(x)=(ax+5)21f_{a}(x)=(a x+5)^{21}, c) fa(x)=sin(a2x)f_{a}(x)=\sin \left(-a^{2} x\right).

See Solution

Problem 7700

Gegeben ist die Funktion y=f1(x)=(x+1t)etxy=f_{1}(x)=\left(x+\frac{1}{t}\right) e^{-t x}.
a) Untersuchen Sie Nullstellen und Extrempunkte. b) Geben Sie die Gleichung der Wendepunkte an. c) Zeichnen Sie f1f_{-1} und f0,5f_{0,5}. d) Berechnen Sie den Flächeninhalt A(k)A(k) und limkA(k)\lim_{k \to \infty} A(k). e) Bestimmen Sie das Volumen des Rotationskörpers über 0x10 \leq x \leq 1. f) Für W1(11;21e)W_{1}\left(\frac{1}{1} ; \frac{2}{1 e}\right): Finden Sie tt für Flächeninhalt 2 in P1Q1W1\triangle P_{1} Q_{1} W_{1}. g) Bestimmen Sie den Wert für II, so dass g1g_{1} die Funktion f1f_{1} in einem Punkt schneidet.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord