Vector

Problem 1

已知向量 a,b \vec{a}, \vec{b} 满足 a=1,b=3,a2b=3 |\vec{a}|=1,|\vec{b}|=\sqrt{3},|\vec{a}-2 \vec{b}|=3 ,求 ab \vec{a} \cdot \vec{b}

See Solution

Problem 2

Find the reflection of the point P=(4,1)P=(-4,-1) across the x-axis. What are the new coordinates?

See Solution

Problem 3

Find the new coordinates of (1,3)(-1,3) after moving 2 units down and rotating 270270^{\circ} counterclockwise around the origin.

See Solution

Problem 4

Find the image of point P=(2,1)P=(2,-1) after a 270270^{\circ} counterclockwise rotation about the origin.

See Solution

Problem 5

Four points A, B, C, D on a semicircle satisfy ABundefined=BCundefined=CDundefined|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{BC}}|=|\overrightarrow{\mathrm{CD}}|. Assess the validity of assertions A and R.

See Solution

Problem 6

¿Cuáles son magnitudes vectoriales? a. desplazamiento, trabajo, energía b. fuerza, aceleración, temperatura c. aceleración, masa, tiempo d. velocidad, desplazamiento, fuerza

See Solution

Problem 7

Un vector tiene magnitud y dirección, mientras que un escalar solo tiene magnitud. ¿Cuál es la diferencia?

See Solution

Problem 8

Calcula la magnitud de un vector con x=3x=3 y y=2y=2. Opciones: a. 5 b. 3.6 c. 6 d. 1

See Solution

Problem 9

La magnitud de un vector unitario es igual a: a. mayor a uno. b. suma de componentes al cuadrado\sqrt{\text{suma de componentes al cuadrado}}. c. múltiplo de la magnitud del vector desplazamiento. d. igual a 1.

See Solution

Problem 10

Three charges of +6.65μC+6.65 \mu \mathrm{C} at the triangle's vertices create a force. Find the resultant force: a. 172.34 N172.34 \mathrm{~N} b. 22.98 N22.98 \mathrm{~N} c. 34.47 N34.47 \mathrm{~N} d. 68.94 N68.94 \mathrm{~N} e. 0.89 N0.89 \mathrm{~N}

See Solution

Problem 11

Determine the location of the point (3,4)(-3,4) in the coordinate plane.

See Solution

Problem 12

Evaluate Fdr\int F \cdot dr for fˉ=xyiˉzj^+x2kˉ\bar{f}=x y \bar{i}-z \hat{j}+x^{2} \bar{k} along α:x=t2,y=2t,z=t3\alpha: x=t^{2}, y=2t, z=t^{3} from t=0t=0 to t=1t=1. Ans: 5170\frac{51}{70}

See Solution

Problem 13

Evaluate Fdr\int F \cdot d r for Fˉ=xyiˉzj+x2kˉ\bar{F}=x y \bar{i}-z j+x^{2} \bar{k} along the curve x=t2,y=2t,z=t3x=t^{2}, y=2t, z=t^{3} from t=0t=0 to t=1t=1.

See Solution

Problem 14

Evaluate Fdr\int F \cdot d r for Fˉ=xyiˉzj+x2kˉ\bar{F}=x y \bar{i}-z j+x^{2} \bar{k} along the curve x=t2x=t^{2}, y=2ty=2t, z=t3z=t^{3} from t=0t=0 to t=1t=1. Answer: 5170\frac{51}{70}.

See Solution

Problem 15

Calculate the work done by the force fˉ=zˉiˉ+xjˉ+yk^\bar{f}=\bar{z} \bar{i}+x \bar{j}+y \hat{k} along the curve rˉ=costi+sintjtkˉ\bar{r}=\cos t i+\sin t j-t \bar{k} from t=0t=0 to t=2πt=2 \pi.

See Solution

Problem 16

Evaluate C(yzdl+xzdy+lydz)\oint_{C}(y z \, dl + x z \, dy + l y \, dz) for the helix x=acost,y=asint,z=ktx=a \cos t, y=a \sin t, z=k t as tt goes from 0 to 2π2\pi.

See Solution

Problem 17

Translate Triangle RST with vertices R(4,2)R (-4,2), S(5,3)S (5,3), T(2,5)T (2,-5), 4 down and 3 left. Find new coordinates.

See Solution

Problem 18

Find point BB on line segment ACAC where A(6,6)A(6,-6), C(6,2)C(-6,-2), and AB=34ACAB=\frac{3}{4}AC.

See Solution

Problem 19

Gegeben sind die Punkte A(2,-3,0), B(2,2,0), C(-1,2,0) und E(2,-3,5) eines Quaders. Finde die anderen Eckpunkte und berechne die Diagonale AG\overline{A G}.

See Solution

Problem 20

Berechnen Sie die Vektor-Koordinaten aus den folgenden Linearkombinationen: a) (213)+(145)+2(114)\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)+\left(\begin{array}{r}1 \\ 4 \\ -5\end{array}\right)+2 \cdot\left(\begin{array}{l}1 \\ 1 \\ 4\end{array}\right) b) 3(2100)+2(031)5(111)3 \cdot\left(\begin{array}{r}2 \\ 10 \\ 0\end{array}\right)+2 \cdot\left(\begin{array}{r}0 \\ 3 \\ -1\end{array}\right)-5 \cdot\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) c) 12(312)+13(122)14(224)\frac{1}{2} \cdot\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)+\frac{1}{3} \cdot\left(\begin{array}{r}1 \\ 2 \\ -2\end{array}\right)-\frac{1}{4} \cdot\left(\begin{array}{l}2 \\ 2 \\ 4\end{array}\right)

See Solution

Problem 21

Gegeben sind die Punkte A(2|-3|0), B(2|2|0), C(-1|2|0) und E(2|-3|5) eines Quaders. Finde die anderen Eckpunkte und die Länge der Diagonale AG\overline{A G}.

See Solution

Problem 22

Find the projection of the vector u=3i+j+ku=3 i+j+k onto the vector a=4j3ka=4 j-3 k.

See Solution

Problem 23

Find the component of the vector a=3i+jka=3i+j-k in the direction of b=i2j+6kb=i-2j+6k.

See Solution

Problem 24

Find the new vertices K,L,M,NK^{\prime}, L^{\prime}, M^{\prime}, N^{\prime} after rotating polygon KLMN by 9090^{\circ} clockwise.

See Solution

Problem 25

Given lines OAN,OMBO A N, O M B and APBA P B, with AN=2OAA N = 2 O A. If MM is the midpoint of OBO B, find kk in APundefined=kABundefined\overrightarrow{A P} = k \overrightarrow{A B}, given MPNMPN is straight.

See Solution

Problem 26

Describe the symbols: alou PQundefined\overleftrightarrow{P Q}, PQundefined\overrightarrow{P Q}, PQundefined\overrightarrow{P Q}, QPundefined\overrightarrow{Q P}.

See Solution

Problem 27

Find the midpoint MM of the line segment with endpoints G(5,4)G(5,4) and H(7,4)H(7,4). Write MM as decimals or integers. M=M=

See Solution

Problem 28

Rotate the vector (5,3)(-5,3) using the matrix [0110]\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]. Find the terminal xx-value. x= x=

See Solution

Problem 29

Rotate the vector [53]\begin{bmatrix}-5 \\ -3\end{bmatrix} using the matrix [0110]\begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}. Find the xx-value of the new vector. x= x=

See Solution

Problem 30

John cycles south 15 m, east 21 m, then south 5 m to point Y. Calculate the distance from X to Y.

See Solution

Problem 31

Find the distance and bearing from Corpus Christi to the Coast Guard cutter after it travels at 30 knots for 4 hours on given courses.

See Solution

Problem 32

A boat travels at 40 knots on a course of 6565^{\circ} for 2 hours, then 155155^{\circ} for 4 hours. Find the distance and bearing from Fort Lauderdale.

See Solution

Problem 33

Find the vertices of parallelogram ABCDA^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime} after dilation by 4 and reflection. Are the parallelograms similar or congruent?

See Solution

Problem 34

Find the midpoint of the segment with endpoints (5,11)(5,11) and (3,1)(3,1).

See Solution

Problem 35

Find the midpoint of the line segment between the points (2,4)(-2,4) and (2,6)(2,6).

See Solution

Problem 36

Find the midpoint of the segment between the points (7,5)(-7,5) and (7,7)(7,7).

See Solution

Problem 37

Sketch an angle θ\theta with the point (6,0)(-6,0) on its terminal side. Find the six trig functions of θ\theta.

See Solution

Problem 38

Find the new coordinates of B (-5,-8), C (-5,-3), D (0,-3), E (0,-8) after a 180180^{\circ} rotation around the origin.

See Solution

Problem 39

Find the new coordinates of vertices B (2,9)(2,-9), C (2,4)(2,-4), and D (1,9)(1,-9) after a 270270^{\circ} clockwise rotation.

See Solution

Problem 40

A train starts from rest. After 40 s, it reaches 60 m/s. What is its acceleration?

See Solution

Problem 41

After 4 seconds, where is the sprite located? Choose from: (25,-25), (-25,0), (0,25), (-25,25).

See Solution

Problem 42

Sketch the figure for XY¨YZundefined\ddot{XY} \perp \overrightarrow{YZ}. What’s the first step: A, B, C, or D?

See Solution

Problem 43

Find point BB on line segment AC\overline{AC} such that the ratio AB:AC=1:3AB : AC = 1 : 3 where A=(2,4)A=(-2,4) and C=(4,7)C=(4,7).

See Solution

Problem 44

1. Find the midpoint of BD\overline{B D} where B is at (5,6)(-5,-6) and D is at (9,11)(9,11).
2. If M is the midpoint of XY\overline{X Y} with X(1,2)X(1,-2) and M(7,4)M(7,4), find Y's coordinates.
3. Calculate the length of RS\overline{R S} for R(8,2)R(8,2) and S(3,7)S(3,7), rounding to the nearest whole number.
4. Find the weighted average of 6 (weight 4) and 12 (weight 2).

See Solution

Problem 45

Which coordinates for points AA^{\prime} and BB^{\prime} show that lines ABAB and ABA^{\prime}B^{\prime} are perpendicular?
1. A:(p,m)A^{\prime}:(p, m) and B:(z,w)B^{\prime}:(z, w)
2. A:(p,m)A^{\prime}:(p, m) and B:(z,w)B^{\prime}:(z,-w)
3. A:(p,m)A^{\prime}:(p,-m) and B:(z,w)B^{\prime}:(z, w)
4. A:(p,m)A^{\prime}:(p,-m) and B:(z,w)B^{\prime}:(z,-w)

See Solution

Problem 46

Find the pre-image of vertex A(8,5)A^{\prime}(8,5) after reflection across the yy-axis. Options: (8,6)(-8,-6), (6,8)(-6,8), (8,6)(8,6), (6,8)(6,-8).

See Solution

Problem 47

Find which reflection of the segment from (4,6)(-4,-6) to (6,4)(-6,4) gives endpoints (4,6)(4,-6) and (6,4)(6,4).

See Solution

Problem 48

Combine the following translations into a single translation:
21. T3,3T2,4T_{\langle-3,3\rangle} \circ T_{\langle-2,4\rangle}
22. T4,3T3,1T_{\langle-4,-3\rangle} \circ T_{\langle 3,1\rangle}
23. T5,6T7,5T_{\langle 5,-6\rangle} \circ T_{\langle-7,5\rangle}
24. T8,2T4,9T_{\langle 8,-2\rangle} \circ T_{\langle-4,9\rangle}

See Solution

Problem 49

Find the midpoint of the line segment with endpoints K(7,7)K(7,7) and L(1,3)L(1,3). Choose from the options: A. (3,2)(-3,-2) B. (3,2)(3,-2) C. (3,2)(-3,2) D. (3,2)(3,2).

See Solution

Problem 50

Find the midpoint of the segment with endpoints (2,3)(-2,3) and (5,3)(5,-3).

See Solution

Problem 51

Identify the opposite ray to NMundefined\overrightarrow{N M} from the options: NOundefined\overrightarrow{N O}, MM, NPundefined\overrightarrow{N P}, MPundefined\overrightarrow{M P}, or all of the above.

See Solution

Problem 52

Find the midpoint of the segment with endpoints (9,2)(-9,-2) and (1,8)(-1,-8).

See Solution

Problem 53

Find the coordinates that divide the line segment from (2,6)(2,-6) to (5,6)(5,6) in a 1:5 ratio.

See Solution

Problem 54

Find the area of the parallelogram with vertices at (-4,-5), (3,-3), (-4,-9), (3,-7).

See Solution

Problem 55

Graph the reflection of the point T(10,2)T(10,-2) over the xx-axis.

See Solution

Problem 56

Reflect the point S(0,2)S(0,2) over the xx-axis. What are the coordinates of SS^{\prime}?

See Solution

Problem 57

Find u+v\mathbf{u}+\mathbf{v} and u3v\mathbf{u}-3 \mathbf{v} for u=[36],v=[54]u=\begin{bmatrix}-3 \\ 6\end{bmatrix}, v=\begin{bmatrix}-5 \\ 4\end{bmatrix}.

See Solution

Problem 58

Find u+v\mathbf{u}+\mathbf{v} and u3v\mathbf{u}-3 \mathbf{v} for u=[36]u=\begin{bmatrix}-3 \\ 6\end{bmatrix} and v=[54]v=\begin{bmatrix}-5 \\ 4\end{bmatrix}.

See Solution

Problem 59

Is vector bb a linear combination of a1,a2,a3a_{1}, a_{2}, a_{3}? Choose A, B, C, or D based on the echelon matrix pivots.

See Solution

Problem 60

Describe the Span {v1,v2}\{\mathbf{v}_{1}, \mathbf{v}_{2}\} for v1=[4102]\mathbf{v}_{1}=\begin{bmatrix}4 \\ 10 \\ -2\end{bmatrix} and v2=[10255]\mathbf{v}_{2}=\begin{bmatrix}10 \\ 25 \\ -5\end{bmatrix}. Choose A, B, C, or D.

See Solution

Problem 61

Find the value(s) of hh so that the vector b=[49h]b = \left[\begin{array}{r}4 \\ -9 \\ h\end{array}\right] lies in the plane spanned by a1=[131]a_{1} = \left[\begin{array}{r}1 \\ 3 \\ -1\end{array}\right] and a2=[6112]a_{2} = \left[\begin{array}{r}-6 \\ -11 \\ 2\end{array}\right]. The value(s) of hh is(are) \square.

See Solution

Problem 62

Do the vectors v1=[003]\mathbf{v}_{1} = \begin{bmatrix} 0 \\ 0 \\ -3 \end{bmatrix}, v2=[056]\mathbf{v}_{2} = \begin{bmatrix} 0 \\ -5 \\ 6 \end{bmatrix}, and v3=[539]\mathbf{v}_{3} = \begin{bmatrix} 5 \\ -3 \\ 9 \end{bmatrix} span $\mathbb{R}^{3$? Explain.

See Solution

Problem 63

Find the vectors PQundefined\overrightarrow{P Q} and PRundefined\overrightarrow{P R} for points P(2,1)P(-2,1), Q(5,3)Q(5,3), and R(x,y)R(x,y).

See Solution

Problem 64

Find the value(s) of hh such that the vector b=[53h]b=\left[\begin{array}{l}5 \\ 3 \\ h\end{array}\right] lies in the plane spanned by a1=[131]a_{1}=\left[\begin{array}{r}1 \\ 3 \\ -1\end{array}\right] and a2=[5112]a_{2}=\left[\begin{array}{r}-5 \\ -11 \\ 2\end{array}\right]. The value(s) of hh is(are) \square.

See Solution

Problem 65

Do the vectors v1,v2,v3\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} span R4\mathbb{R}^{4}? Choose A, B, C, or D for the answer.

See Solution

Problem 66

Find the midpoint of the segment with endpoints A(1.8,-4.3) and B(-5.6,-6.5). Options: (-3.8,-10.8), (-1.9,-5.4), (3.7,5.4), (7.4,10.8).

See Solution

Problem 67

Translate the point (1,-6) by 2 units right and 6 units down. Show your work.

See Solution

Problem 68

Find the translation from point Q(9,5)Q(-9,-5) to Q(2,8)Q^{\prime}(-2,-8) as x,y\langle x, y \rangle.

See Solution

Problem 69

Find the translation from point Q(9,5)Q(-9,-5) to Q(2,8)Q^{\prime}(-2,-8) as x,y\langle x, y\rangle. Show your work.

See Solution

Problem 70

Find the translation from Q(3,6)Q(3,6) to Q(9,3)Q^{\prime}(9,3) as x,y\langle x, y\rangle. Show your work.

See Solution

Problem 71

A ship moves at 30 knots on a 64° bearing for 2 hours, then turns to 154° for 3 hours. Find the distance and bearing from start.

See Solution

Problem 72

Find the unit vector in the direction of the sum of the vectors a=2i^j^+2k^\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k} and b=i^+j^+3k^\vec{b}=-\hat{i}+\hat{j}+3 \hat{k}.

See Solution

Problem 73

Find the distance, midpoint, and slope of the line between points (2,2)(2,-2) and (5,2)(5,2).

See Solution

Problem 74

Translate the vertices A(2,-6), B(-1,-1), C(-3,-5) by (x,y)(x+3,y+5)(x, y) \rightarrow (x+3, y+5). Find A', B', C'.

See Solution

Problem 75

A translation moves point V(2,3)V(-2,3) to V(2,7V^{\prime}(-2,7. Identify true statements about the translation.

See Solution

Problem 76

Find new coordinates of vertices MM', PP', QQ', and VV' after a 270270^{\circ} rotation of parallelogram MPQVMPQV around (5,10)(-5,-10).

See Solution

Problem 77

Find the midpoint of the segment from (1,5)(-1,5) to (2,3)(-2,3). What is Midpoint = ?

See Solution

Problem 78

A boat goes N 36° 40' W for 62.5 miles. Find north and west distances traveled, rounded to 0.1 miles.

See Solution

Problem 79

A boat sails N 38° 10' W for 78.3 miles. Find the north and west distances traveled, rounded to the nearest tenth.

See Solution

Problem 80

Find the coordinates of point YY that divides segment XZXZ (X(4,3)X(-4,3), Z(6,2)Z(6,-2)) one-fifth from XX to ZZ.

See Solution

Problem 81

Find the new vertices of ABC\triangle A B C after these translations: 1. T2,3T_{\langle-2,3\rangle}, 2. T4,1T_{\langle-4,-1\rangle}, 3. T(4,6)T_{(4,6)}.

See Solution

Problem 82

Find the new coordinates of point CC' after rotating point C(2,3)C(2, -3) 90 degrees clockwise and translating left by 2 units. Options: (1,2)(-1,2), (5,2)(-5,2), (6,3)(-6,-3), (3,2)(-3,2).

See Solution

Problem 83

Find the vector F\mathbf{F} from the equations:
1500x + 5000y + z = 1300, 3200x + 12000y + z = 5300, 4300x + 13000y + z = 6500.
F\mathbf{F} is the constants: [1300, 5300, 6500].

See Solution

Problem 84

Translate points D(-4,-5), E(0,-5), F(-1,-3), G(-3,-3) left 3 units and down 2 units. Find D', E', F', G'.

See Solution

Problem 85

Rotate points U(3,6)U(-3,6), V(8,1)V(-8,1), and W(3,1)W(-3,1) by 180180^{\circ} around the origin. Find U,V,WU^{\prime}, V^{\prime}, W^{\prime}.

See Solution

Problem 86

Describe the rotation that transforms triangle DEF with vertices D(0,3),E(1,8),F(3,4)D(0,3), E(1,8), F(-3,4) to D(3,0),E(8,1),F(4,3)D^{\prime}(3,0), E^{\prime}(8,-1), F(4,3).

See Solution

Problem 87

Find the translation from triangle KMNK M N with vertices K(12,3),M(5,2),N(8,4)K(12,3), M(-5,2), N(8,-4) to K(18,0),M(1,1),N(14,7)K^{\prime}(18,0), M^{\prime}(1,-1), N^{\prime}(14,-7).

See Solution

Problem 88

Describe the rotation that transforms triangle PQRP Q R with vertices P(9,2)P(9,-2), Q(1,0)Q(1,0), R(7,3)R(-7,3) to P(9,2)P^{\prime}(-9,2), Q(1,0)Q^{\prime}(-1,0), R(7,3)R^{\prime}(7,-3).

See Solution

Problem 89

Find the rotation that transforms triangle PQRPQR with vertices P(9,2)P(9,-2), Q(1,0)Q(1,0), R(7,3)R(-7,3) to P(9,2)P'(-9,2), Q(1,0)Q'(-1,0), R(7,3)R'(7,-3).

See Solution

Problem 90

Reflect triangle STW across the x-axis to get triangle S'T'W' with vertices S(15,6)S'(15,6), T(2,3)T'(-2,-3), W(8,8)W'(-8,8).

See Solution

Problem 91

Sketch the polar point (-6, -25π/12).

See Solution

Problem 92

Finde die Koordinaten der beiden anderen Ecken eines Quadrats mit einer Seitenkante ABAB zwischen A(34)A(3 \mid 4) und B(76)B(7 \mid 6).

See Solution

Problem 93

Find the point that is 710\frac{7}{10} of the way from A(3,5)A(-3,-5) to B(9,7)B(9,7).

See Solution

Problem 94

Calculate Michael Phelps' resultant velocity swimming North at 14 m/s14 \mathrm{~m/s} against a 5 m/s5 \mathrm{~m/s} South current.

See Solution

Problem 95

Find the resultant velocity when crossing a river with a current of 15 m/s15 \mathrm{~m/s} downstream and crossing at 2 m/s2 \mathrm{~m/s} north.

See Solution

Problem 96

Find slopes and lengths for quadrilateral with points Q(1,3), R(3,-4), S(9,-7), T(7,0). Identify its type.

See Solution

Problem 97

Find the point that is 310\frac{3}{10} of the way from A(3,6)A(-3,-6) to B(10,5)B(10,5).

See Solution

Problem 98

Plot the point (3, -\frac{7 \pi}{4}).

See Solution

Problem 99

Two ships leave a port. One sails at 4848^{\circ}, 12 knots; the other at 138138^{\circ}, 22 knots. Distance apart after 1.5 hours?

See Solution

Problem 100

Two ships leave a port at the same time. After 1.5 hours, how far apart are they if one sails at 24 knots and the other at 26 knots?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord