Calculus

Problem 29101

Find the sum of the series: k=11(k+1)(k+2)\sum_{k=1}^{\infty} \frac{1}{(k+1)(k+2)}.

See Solution

Problem 29102

Find the average rate of change of the function h(x)=x2+x+8h(x)=-x^{2}+x+8 over the interval [2,5][-2,5].

See Solution

Problem 29103

Bestimme die Asymptoten, Nullstellen und den Extrempunkt der Funktion f(x)=25(x24)21f(x)=\frac{25}{\left(x^{2}-4\right)^{2}}-1. Zeichne den Graphen für 6<x<6-6<x<6.

See Solution

Problem 29104

Find r=11(kr+1)(krk+1)\sum_{r=1}^{\infty} \frac{1}{(k r+1)(k r-k+1)} and r=nn21(kr+1)(krk+1)\sum_{r=n}^{n^{2}} \frac{1}{(k r+1)(k r-k+1)}.

See Solution

Problem 29105

Find the derivative of f(x)=4x3sin(x)+ln(x)f(x)=\frac{4 \sqrt[3]{x}}{\sin (x)+\ln (x)} for x>0x > 0. Does ff have an inverse?

See Solution

Problem 29106

How long will it take for \$440 to grow to \$610 at a continuous interest rate of 2%? Round to the nearest tenth of a year.

See Solution

Problem 29107

Find f(x)f^{\prime}(x) and calculate f(2)(1520)f^{\prime}(-2) \cdot(15-20) for the functions:
15. f(x)=3x10f(x)=3 x-10
16. f(x)=x23x+ef(x)=x^{2}-3 x+e
17. f(x)=x32x2+3x5f(x)=-x^{3}-2 x^{2}+3 x-5
18. f(x)=4x(x31x3)f(x)=-4 x\left(x^{3}-\frac{1}{x^{3}}\right)
19. f(x)=3x32x2+4x2xf(x)=\frac{3 x^{3}-2 x^{2}+4 x}{2 x}
20. f(x)=x3+8(1x1x2)f(x)=x^{3}+8\left(\frac{1}{x}-\frac{1}{x^{2}}\right)

See Solution

Problem 29108

Find the left and right endpoint Riemann sums for f(x)=13xf(x)=\frac{13}{x} on [2,4][2, 4] using 4 rectangles.

See Solution

Problem 29109

Find the tangent line to f(x)=ln(x2+ex)f(x)=\ln(x^{2}+e^{x}) at the point where x=1x=1.

See Solution

Problem 29110

Differentiate the function 4x54x+3x4x^5 - \frac{4}{x} + 3\sqrt{x}.

See Solution

Problem 29111

Find the derivative dv/dtdv/dt of the function 3tan(2t)4e3t+ln53 \tan (2 t) - 4 e^{3 t} + \ln 5.

See Solution

Problem 29112

Annabelle invested $5,900\$5,900 at 2%2\% interest compounded continuously. How long until the account reaches $7,440\$7,440?

See Solution

Problem 29113

Find f(x)f^{\prime}(x) and f(2)(1520)f^{\prime}(-2) \cdot (15-20) for:
15. f(x)=3x10f(x)=3x-10
16. f(x)=x23x+ef(x)=x^{2}-3x+e
17. f(x)=x32x2+3x5f(x)=-x^{3}-2x^{2}+3x-5
18. f(x)=4x(x31x3)f(x)=-4x\left(x^{3}-\frac{1}{x^{3}}\right)
19. f(x)=3x32x2+4x2xf(x)=\frac{3x^{3}-2x^{2}+4x}{2x}
20. f(x)=x3+8(1x1x2)f(x)=x^{3}+8\left(\frac{1}{x}-\frac{1}{x^{2}}\right)

See Solution

Problem 29114

Curve CC has polar equation r2=1θ2+1r^{2}=\frac{1}{\theta^{2}+1} for 0θπ0 \leq \theta \leq \pi.
(a) Sketch CC and find the furthest point's polar coordinates.
Calculate the area enclosed by CC, the initial line, and θ=π\theta=\pi.
Show that at the furthest point, (θ+1θ)cotθ1=0(\theta+\frac{1}{\theta}) \cot \theta-1=0 and verify a root exists between 1.1 and 1.2.

See Solution

Problem 29115

Calculate the left endpoint Riemann sum for f(x)=x29f(x)=\frac{x^{2}}{9} on [2,6][2,6] using 8 rectangles. What is the sum?

See Solution

Problem 29116

Bestimme die 1. und 2. Ableitung der Funktion f(x)=5e3x+2f(x)=5 \cdot e^{-3 x+2}.

See Solution

Problem 29117

Find the surface area of the curve y=2x+1y=2 \sqrt{x+1}, for 0x50 \leq x \leq 5, revolved around the xx-axis.

See Solution

Problem 29118

Bestimmen Sie die Ableitungsfunktion von f(x)=4x+1,871f(x) = 4x + 1,871, also f(x)f'(x).

See Solution

Problem 29119

Find the length of the curve x=tan(y)x=\tan (y) from y=π6y=\frac{\pi}{6} to y=π3y=\frac{\pi}{3}.

See Solution

Problem 29120

Find the surface area of the curve y=2x+1y=2 \sqrt{x+1} from 0x10 \leq x \leq 1 revolved around the xx-axis.

See Solution

Problem 29121

Find the length of the curve y=13(x2+3)3/2y=\frac{1}{3}(x^{2}+3)^{3/2} for 1x21 \leq x \leq 2.

See Solution

Problem 29122

Find the surface area from revolving x=2π3y+1x=\frac{2}{\pi} \sqrt{3y+1}, 0y10 \leq y \leq 1 about the yy-axis.

See Solution

Problem 29123

Find the surface area from revolving x=2π5y+1x=\frac{2}{\pi} \sqrt{5y+1}, 0y10 \leq y \leq 1 about the yy-axis.

See Solution

Problem 29124

Bestimme die Intervallgrenze uu für die Funktion f(x)=1x2f(x)=\frac{1}{x^{2}} im Intervall I=[u;6]I=[u ; 6], wenn der Flächeninhalt A=56A=\frac{5}{6} ist.

See Solution

Problem 29125

Find the limit: limxπ2+(1+5tanx)=?\lim _{x \rightarrow \frac{\pi}{2}^{+}}\left(-1+5^{\tan x}\right)=? Choose: a. 0, b. 1, c. \infty, d. 2, e. -2, f. -1, 9. Else

See Solution

Problem 29126

Find the length of the curve y=13(x2+6)3/2y=\frac{1}{3}(x^{2}+6)^{3/2} for 1x21 \leq x \leq 2.

See Solution

Problem 29127

Bestimmen Sie die Stammfunktionen für die folgenden Funktionen: (1) f(x)=1+e32xf(x)=1+e^{3-2 x}, (2) f(x)=14e2x3ex+5f(x)=\frac{1}{4} e^{2 x}-3 e^{-x}+5, (3) f(x)=e52x+7e3xf(x)=e^{5-2 x}+\frac{7}{e^{3 x}}.

See Solution

Problem 29128

Gegeben ist die Funktion g(x)=x(x2)2(x4)g(x)=-x(x-2)^{2}(x-4).
a) Beschreiben Sie 4 Merkmale des Graphen.
b) Berechnen Sie den Flächeninhalt AA zwischen g(x)g(x) und der xx-Achse, wenn 02g(x)dx=6415\int_{0}^{2} g(x) \, dx = \frac{64}{15}.
Aufgabe A4: Bestimmen Sie je eine Stammfunktion für die Funktionen:
1) f(x)=1+e32xf(x)=1+e^{3-2 x}, 2) f(x)=14e2x3ex+5f(x)=\frac{1}{4} e^{2 x}-3 e^{-x}+5, 3) f(x)=e52x+7e3xf(x)=e^{5-2 x}+\frac{7}{e^{3 x}}.

See Solution

Problem 29129

Calculate the area in the first quadrant under the curve y=ln4xxy=\frac{\ln ^{4} x}{x} from x=1x=1 to x=8x=8.

See Solution

Problem 29130

Calculate the area in the first quadrant under y=3ln2xxy=\frac{3 \ln ^{2} x}{x} from x=1x=1 to x=8x=8.

See Solution

Problem 29131

Calculate the area in the first quadrant under y=4ln3xxy=\frac{4 \ln ^{3} x}{x} from x=1x=1 to x=5x=5.

See Solution

Problem 29132

Calculate the sum: n=1nln(1+1n2)\sum_{n=1}^{\infty} n \ln \left(1+\frac{1}{n^{2}}\right).

See Solution

Problem 29133

An object on a 30° incline accelerates at 12 ft/s² from 4 ft/s. How long to reach the end?

See Solution

Problem 29134

Zeige, dass F(x)=xln(x)xF(x) = x \ln(x) - x die Stammfunktion von f(x)=ln(x)f(x) = \ln(x) ist.

See Solution

Problem 29135

An object is shot down at 160 ft/s from 9600 ft. When does it hit the ground? Solve for tt in 9600=160t+12gt29600 = 160t + \frac{1}{2}gt^2.

See Solution

Problem 29136

Bestimme die Stammfunktionen für die Funktionen: a) fa(x)=14x313x212x+1f_{a}(x)=\frac{1}{4} x^{3}-\frac{1}{3} x^{2}-\frac{1}{2} x+1, b) fb(x)=sinxf_{b}(x)=\sin x, c) fc(x)=22x+5f_{c}(x)=\frac{2}{2 x+5}, d) fd(x)=15x22f_{d}(x)=\frac{1}{5 x^{2}-2}, e) fe(x)=5xf_{e}(x)=5^{x}.

See Solution

Problem 29137

Finde die Stammfunktionen für: f(x)=xf(x) = x, f(x)=xf(x) = \sqrt{x}, f(x)=1xf(x) = \frac{1}{x}, f(x)=1x2f(x) = \frac{1}{x^{2}}.

See Solution

Problem 29138

Gegeben sind die Angebots- und Nachfragefunktionen pN(x)=10e0,5x+2p_{N}(x)=10 e^{-0,5 \cdot x+2} und pA(x)=10e0,75x3p_{A}(x)=10 e^{0,75 \cdot x-3} für 0x90 \leq x \leq 9.
1) Finde das Marktgleichgewicht. 2) Berechne 04pN(x)dx\int_{0}^{4} p_{N}(x) \, dx und zeige es grafisch. 3) Berechne 0410dx\int_{0}^{4} 10 \, dx und zeige es grafisch. 4) Analysiere die Differenz der Integrale 04pN(x)dx0410dx\int_{0}^{4} p_{N}(x) \, dx - \int_{0}^{4} 10 \, dx.

See Solution

Problem 29139

1. Finde die Ableitung für: a) f(x)=3x2f(x)=3 x^{2} b) f(x)=7x4f(x)=-7 x^{4} c) f(x)=5xf(x)=5 x d) f(x)=15x10f(x)=-\frac{1}{5} x^{10} e) f(x)=4xf(x)=\frac{4}{x} f) f(x)=25x5f(x)=-\frac{2}{5} x^{-5} g) f(x)=23x6f(x)=\frac{2}{3} x^{-6} h) f(x)=4xf(x)=4 \sqrt{x} 2. Bestimme f(x)f^{\prime}(x) für: a) f(x)=2x3+5x2f(x)=2 x^{3}+5 x^{2} b) f(x)=4x53xf(x)=4 x^{5}-3 x c) f(x)=2x73x4f(x)=2 x^{7}-3 x^{4} d) f(x)=2x3+x2+4f(x)=-2 x^{3}+x^{2}+4 e) f(x)=2x3(x2+x1)f(x)=2 x^{3}(x^{2}+x-1) f) f(u)=u(u+3)2f(u)=u(u+3)^{2} 3. Finde die ersten drei Ableitungen für: a) f(x)=32x2+54x+2f(x)=-\frac{3}{2} x^{2}+\frac{5}{4} x+2 b) f(x)=0,2x30,5x2+0,8f(x)=0,2 x^{3}-0,5 x^{2}+0,8 c) f(x)=(x2)(x+2)(x5)f(x)=(x-2)(x+2)(x-5) d) f(t)=0,5(2t3)2f(t)=0,5(2 t-3)^{2} e) f(x)=2x14x2f(x)=2 x^{-1}-4 x^{-2} f) f(x)=3x+4x2f(x)=\frac{3}{x}+4 \sqrt{x}-2 4. Berechne die Steigung von ff bei A(2f(2))A(2 \mid f(2)) für: a) f(x)=32x2f(x)=\frac{3}{2} x^{2} b) f(t)=14t453t3f(t)=\frac{1}{4} t^{4}-\frac{5}{3} t^{3} c) f(z)=34z23z1f(z)=\frac{3}{4} z^{2}-3 z^{-1} d) f(x)=x2x4f(x)=-x-\frac{2}{x^{4}}

See Solution

Problem 29140

Bestimme die Stammfunktion von f(x)=x62+2x19f(x)=\frac{x^{6}}{2}+\frac{2}{x^{\frac{1}{9}}}.

See Solution

Problem 29141

Bestimme die allgemeine Stammfunktion von f(x)=x3447x3f(x)=\frac{x^{3}}{4}-\frac{4}{7 x^{3}}.

See Solution

Problem 29142

Finde die allgemeine Stammfunktion von f(x)=73x7f(x)=\frac{7}{3 x^{7}}.

See Solution

Problem 29143

Bestimme die Stammfunktionen für die folgenden Funktionen: a) fa(x)=14x313x212x+1f_{a}(x)=\frac{1}{4} x^{3}-\frac{1}{3} x^{2}-\frac{1}{2} x+1, b) fb(x)=sinxf_{b}(x)=\sin x, c) fc(x)=22x+5f_{c}(x)=\frac{2}{2 x+5}, d) fd(x)=15x22f_{d}(x)=\frac{1}{5 x^{2}-2}, e) fe(x)=5xf_{e}(x)=5^{x}, f) f(x)=53x1f(x)=5^{3 x-1}.

See Solution

Problem 29144

Find the derivative of the function f(x)=x2xf(x) = x^{2x}.

See Solution

Problem 29145

Finde die allgemeine Stammfunktion von f(x)=2x4(3x5)f(x)=2 x^{4}(3-x^{5}).

See Solution

Problem 29146

Find the limit of the series n=1(nn1)\sum_{n=1}^{\infty}(\sqrt{n}-\sqrt{n-1}).

See Solution

Problem 29147

Find bb if the average value of f(x)=3x26xf(x)=3 x^{2}-6 x on [0,b][0, b] is 4.

See Solution

Problem 29148

Calculate 20f(2x)dx\int_{2}^{0} f(2 x) \mathrm{d} x given that 04f(x)dx=12\int_{0}^{4} f(x) \mathrm{d} x=-12.

See Solution

Problem 29149

Find the height m2m_{2} rises before stopping if m1=3.7 kgm_{1}=3.7 \mathrm{~kg}, m2=4.1 kgm_{2}=4.1 \mathrm{~kg}, and initial speed is 0.20 m/s0.20 \mathrm{~m/s}.

See Solution

Problem 29150

Calculate the volume of the solid formed by rotating the area between y=xy=\sqrt{x}, y=0y=0, x=0x=0, and x=3x=3 around the x-axis.

See Solution

Problem 29151

Find the surface area from revolving y=4sinxy=4 \sqrt{\sin x}, for π4xπ2\frac{\pi}{4} \leq x \leq \frac{\pi}{2}, about the xx-axis.

See Solution

Problem 29152

Prove the convergence of n=143n+2n\sum_{n=1}^{\infty} \frac{4}{3^{n}+2 n} using one of the following tests: a. Limit Comparison with 13n\sum \frac{1}{3^{n}} b. Limit Comparison with 2n\sum \frac{2}{n} c. Alternating series d. Divergence Test.

See Solution

Problem 29153

Identify the conditionally convergent series among: a. n=20(1)n+1n3/4\sum_{n=20}^{\infty} \frac{(-1)^{n+1}}{n^{3 / 4}}, b. n=3(1)n+1n5\sum_{n=3}^{\infty} \frac{(-1)^{n+1}}{n^{5}}, d. n=7en+2en\sum_{n=7}^{\infty} \frac{e^{n}+2}{e^{n}}.

See Solution

Problem 29154

Data una successione convergente {an}\{a_n\} con an>0a_n > 0, analizza il comportamento di {bn}\{b_n\}, {cn}\{c_n\} e {dn}\{d_n\} quando nn \to \infty.

See Solution

Problem 29155

Prove the convergence of the series n=143n+2n\sum_{n=1}^{\infty} \frac{4}{3^{n}+2 n}.

See Solution

Problem 29156

Find the surface area from revolving x=2π3y+1x=\frac{2}{\pi} \sqrt{3 y+1}, 0y10 \leq y \leq 1 about the yy axis.

See Solution

Problem 29157

Find the sum of the series n=1(2)n122n\sum_{n=1}^{\infty} \frac{(-2)^{n-1}}{2^{2 n}}.

See Solution

Problem 29158

Find f(x)f(x) if 1xf(t)etdt=x76x\int_{1}^{x} \frac{f(t)}{e^{t}} d t = x^{7} - 6x.

See Solution

Problem 29159

Is the series n=11n2\sum_{n=1}^{\infty} \frac{1}{n^{\sqrt{2}}} convergent?
Select one: True False

See Solution

Problem 29160

Calcola il limite: limx+(1+12x2)3x2\lim _{x \rightarrow+\infty}\left(1+\frac{1}{2 x^{2}}\right)^{3 x^{2}}. Qual è il risultato?

See Solution

Problem 29161

Calcola la derivata di f(x)=tan(arccos(x))1x2f(x)=\frac{\tan (\arccos (x))}{\sqrt{1-x^{2}}} per x(0,1)x \in(0,1). Quale affermazione è vera?

See Solution

Problem 29162

Calcola l'integrale 1=012x231+x2dx1=\int_{0}^{1} \frac{2 x^{2}-3}{1+x^{2}} d x.

See Solution

Problem 29163

Consider the function f(x)f(x) defined as:
f(x)=exf(x) = e^x if x0x \geq 0, and f(x)=1f(x) = 1 if x>0x > 0.
Determine its continuity and differentiability at x=0x = 0.

See Solution

Problem 29164

Trova l'equazione della retta tangente al grafico di f(x)=1e2tt2+1dtf(x)=\int_{1}^{e^{2}} \frac{t}{t^{2}+1} d t in x=1x=1 tra le opzioni: (a) y=x1y=x-1, (b) y=x+1y=x+1, (c) y=2xy=2 x, (d) Non esiste, (e) Nessuna delle precedenti.

See Solution

Problem 29165

Match the trigonometric substitution for each integral: (i) x24x2dx\int \frac{x^{2}}{\sqrt{4-x^{2}}} d x (ii) dxx2x29\int \frac{d x}{x^{2} \sqrt{x^{2}-9}} (iii) x216+x2dx\int \frac{x^{2}}{\sqrt{16+x^{2}}} d x

See Solution

Problem 29166

Calcola il limite L:=limx+((x32x2)1/3(x3+x)1/3)L:=\lim _{x \rightarrow+\infty}\left(\left(x^{3}-2 x^{2}\right)^{1 / 3}-\left(x^{3}+x\right)^{1 / 3}\right). Qual è il valore di LL? (a) L=2/3L=-2 / 3 (b) L=3/2L=3 / 2 (c) L=+L=+\infty (d) L=L=-\infty (e) Nessuna delle precedenti.

See Solution

Problem 29167

Calcola l'integrale indefinito I:=4x2x1dxI:=\int \frac{4^{x}}{2^{x}-1} d x e scegli la risposta corretta tra le opzioni.

See Solution

Problem 29168

Find 20f(2x)dx\int_{2}^{0} f(2 x) \mathrm{d} x if 04f(x)dx=12\int_{0}^{4} f(x) \mathrm{d} x=-12. Options: a. 4, b. -6, c. -4, d. 6.

See Solution

Problem 29169

Find the limit: limx1020\lim _{x \rightarrow 10} \sqrt{20}.

See Solution

Problem 29170

Trova a>0a>0 tale che 0ae2tdx=1\int_{0}^{a} e^{2t} \,dx = 1. Opzioni: (a) a=2log(2)a=2 \log (2), (b) non esiste, (c) a=log(3)a=\log (\sqrt{3}), (d) a=e3/2a=e^{3/2}, (e) nessuna delle precedenti.

See Solution

Problem 29171

Calcola il limite L=limx0f(x)x3L=\lim _{x \rightarrow 0} \frac{f(x)}{x^{3}} con f(x)=x2xsin(t2)dtf(x)=\int_{x}^{2 x} \sin(t^{2}) \mathrm{d} t. Qual è LL?

See Solution

Problem 29172

Calcola il limite L=limx0f(x)x3L=\lim _{x \rightarrow 0} \frac{f(x)}{x^{3}} per f(x)=x2xsin(t2)dtf(x)=\int_{x}^{2 x} \sin \left(t^{2}\right) d t. Qual è il valore di LL? (a) non esiste, (b) 7/37/3, (c) 2/3-2/3, (d) 00, (e) nessuna delle precedenti.

See Solution

Problem 29173

Trova l'equazione della retta tangente a f(x)=1tanxf(x)=\frac{1}{\tan x} in x=π4x=\frac{\pi}{4}. Qual è?

See Solution

Problem 29174

Find the limit: Ltxex2=?\operatorname{Lt}_{x \rightarrow \infty} e^{-x^{2}} = ? Options: a) 0 b) 1 c) Ltxex\underset{x \rightarrow \infty}{\operatorname{Lt}} e^{-x} d) \infty

See Solution

Problem 29175

Un échantillon de 20mg20 \mathrm{mg} de thorium 233 a diminué à 17mg17 \mathrm{mg} en 5min5 \mathrm{min}. Trouve la demi-vie.

See Solution

Problem 29176

Calcola il limite L=limx+x(2x+1)x(2x)x+1L=\lim _{x \rightarrow+\infty} \frac{x(2 x+1)^{x}}{(2 x)^{x+1}}. Qual è il valore di LL?

See Solution

Problem 29177

Calcola il limite L=limx+x2(x(1+x3)1/3)L=\lim _{x \rightarrow+\infty} x^{2}\left(x-\left(1+x^{3}\right)^{1 / 3}\right). Qual è il valore di LL?

See Solution

Problem 29178

Trova l'integrale generale II della funzione f(x)=x(1+arctan(x2))1+x4f(x)=\frac{x(1+\arctan(x^{2}))}{1+x^{4}}. Quale opzione è corretta?

See Solution

Problem 29179

Trova a>0a>0 tale che: (a) a=2log(2)a=2 \log (2) e 0ae2xdx=1\int_{0}^{a} e^{2 x} d x=1; (b) Non esiste; (c) a=log(3)a=\log (\sqrt{3}); (d) a=e3/2a=e^{3 / 2}; (e) Nessuna delle precedenti.

See Solution

Problem 29180

Berechne die Ableitung der Funktion f(x)=2,4104x3+0,04x23,2f(x)=2,4 \cdot 10^{-4} x^{3}+0,04 x^{2}-3,2. Was ist f(x)f'(x)?

See Solution

Problem 29181

Find the line integral of f(x,y)=xyf(x, y) = x y from (1,1)(1,1) to (4,5)(4,5).

See Solution

Problem 29182

A player spikes the ball at 10 ft with an initial velocity of -55 ft/s. How much time do opponents have to return it?

See Solution

Problem 29183

Approximate the area between the xx-axis and f(x)f(x) from x=1x=-1 to x=3x=3 using a trapezoidal sum with 4 subdivisions.

See Solution

Problem 29184

Evaluate the line integral of F(x,y)=x2i+xj\mathbf{F}(x, y)=x^{2} \mathbf{i}+x \mathbf{j} from (0,0)(0,0) to (1,1)(1,1) along y2=xy^{2}=x.

See Solution

Problem 29185

Un échantillon de 20mg20 \mathrm{mg} de thorium 233 s'est désintégré en 17mg17 \mathrm{mg} après 5 min5 \mathrm{~min}. Trouve la demi-vie et le temps pour atteindre 1mg1 \mathrm{mg}.

See Solution

Problem 29186

Approximate the area under f(x)f(x) from x=0x=0 to x=9x=9 using a trapezoidal sum with 3 subdivisions. Given points are: (0,2)(0, 2), (3,5)(3, 5), (6,7)(6, 7), (9,11)(9, 11).

See Solution

Problem 29187

Find the derivative of 13x+2\frac{1}{\sqrt{3 x+2}}. Choose from: a) 32(3x+2)32\frac{3}{2(3 x+2)^{\frac{3}{2}}} b) 32(3x+2)32\frac{-3}{2(3 x+2)^{\frac{3}{2}}} c) 32(3x2)32\frac{3}{2(3 x-2)^{\frac{3}{2}}} d) 32(3x2)32\frac{-3}{2(3 x-2)^{\frac{3}{2}}}

See Solution

Problem 29188

Find an approximation for h(10)h^{\prime}(10) using the given depth data, and explain its meaning regarding pool depth.

See Solution

Problem 29189

Find the derivative of sinx+cosx1+sin2x\frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}}. What is it? a) 0 b) 1 c) 2 d) 3

See Solution

Problem 29190

Approximate the area under g(x)=x2g(x)=x^{2} from x=1x=1 to x=4x=4 using a trapezoidal sum with 3 subdivisions.

See Solution

Problem 29191

Approximate the area under f(x)=2xf(x)=\frac{2}{x} from x=0.5x=0.5 to x=2x=2 using a trapezoidal sum with 3 subdivisions.

See Solution

Problem 29192

A quantity starts at 840 and decays at 5%5\% daily. Find its value after 10 weeks, rounded to the nearest hundredth.

See Solution

Problem 29193

A quantity starts at 510 and decays at 65%65\% per month. Find its value after 0.25 years, rounded to two decimal places.

See Solution

Problem 29194

Approximate the area under f(x)f(x) from x=0x=0 to x=9x=9 using a trapezoidal sum with 3 equal parts.

See Solution

Problem 29195

Approximate the area under f(x)=2xf(x)=\frac{2}{x} from x=0.5x=0.5 to x=2x=2 using a trapezoidal sum with 3 subdivisions.

See Solution

Problem 29196

Approximate the area under f(x)=2xf(x)=\frac{2}{x} from x=0.5x=0.5 to x=2x=2 using a trapezoidal sum with 3 subdivisions.

See Solution

Problem 29197

Approximate the area under f(x)=(x3)2f(x)=(x-3)^{2} from x=0x=0 to x=6x=6 using a midpoint Riemann sum with 3 subdivisions.

See Solution

Problem 29198

Evaluate limxf(x)\lim _{x \rightarrow \infty} f(x) and limxf(x)\lim _{x \rightarrow -\infty} f(x) for each function: a. f(x)=2x+3x1f(x)=\frac{2 x+3}{x-1}, b. f(x)=5x23x2+2f(x)=\frac{5 x^{2}-3}{x^{2}+2}, c. f(x)=5x2+3x2x25f(x)=\frac{-5 x^{2}+3 x}{2 x^{2}-5}, d. f(x)=2x53x2+53x4+5x4f(x)=\frac{2 x^{5}-3 x^{2}+5}{3 x^{4}+5 x-4}.

See Solution

Problem 29199

Find the volume when the curve y=x2+2y=x^{2}+2 from x=1x=1 to x=2x=2 is rotated 2π2\pi radians around the xx-axis.

See Solution

Problem 29200

Find the limit of the sequence an=7+1na_n = 7 + \frac{1}{\sqrt{n}} without using Theorems 3.4.3 or 3.4.6. Prove your answer.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord