Math Statement

Problem 1

Calculate 318 31 - 8 .

See Solution

Problem 2

Calculate 25÷4 -2^{5} \div 4 .

See Solution

Problem 3

Calculate (4+27)32 (4+27)-32 .

See Solution

Problem 4

Solve for x x in the equation: 3(x+3)5=16 3(x+3)-5=16 .

See Solution

Problem 5

Evaluate npn+p \frac{n p}{n+p} for n=9 n=9 and p=15 p=15 .

See Solution

Problem 6

Multiply and simplify (2x5)(3x3) (2x - 5)(3x - 3)

See Solution

Problem 7

Calculate 8÷2(2+2) 8 \div 2(2+2) .

See Solution

Problem 8

Calculate 167+89(4)13(2)2527(4)445+(16)6 \frac{16^{7}+8^{9}-(-4)^{13}-(-2)^{25}}{2^{7} \cdot(-4)^{4} \cdot 4^{5}+(-16)^{6}} .

See Solution

Problem 9

Solve 3x5=16 3x - 5 = 16 for x x and express your answer in set notation.

See Solution

Problem 10

Solve 3x5=16 3x - 5 = 16 for x x and express your answer in set notation.

See Solution

Problem 11

Evaluate the integral 9x+2x2+x6dx \int \frac{9 x+2}{x^{2}+x-6} d x .

See Solution

Problem 12

Решите у в уравнении: 4y+3=6y74y + 3 = 6y - 7.

See Solution

Problem 13

Calculate the integral 233x2dt \int_{2}^{3} 3 x^{2} d t .

See Solution

Problem 14

Evaluate the integral 221+x21+2xdx \int_{-2}^{2} \frac{1+x^{2}}{1+2^{x}} d x .

See Solution

Problem 15

Calculate the integral tan3xsecxdx \int \tan^{3} x \sec x \, dx .

See Solution

Problem 16

What is the result of 93÷13+1 9-3 \div \frac{1}{3}+1 ?

See Solution

Problem 17

Find y y if logy19=3 \log _{y} \frac{1}{9}=3 .

See Solution

Problem 18

Solve for y y in the equation y2+7y60=0 y^{2}+7 y-60=0 .

See Solution

Problem 19

פתרו את המשוואה 3x+5=14 3 x + 5 = 14 ומצאו את ערך x x . תשובה: x= x =

See Solution

Problem 20

Find the z z -score for x=7 x=7 given that the mean is 4 and the standard deviation is 2.

See Solution

Problem 21

פתרו את המשוואה 3x+5=14 3 x + 5 = 14 ומצאו את x= x =

See Solution

Problem 22

Evaluate 3Δ1 -3 \Delta -1 for the operation aΔb=a+bab a \Delta b = \frac{a+b}{\sqrt{ab}} where a,b0 a, b \neq 0 .

See Solution

Problem 23

Expand the expression (x5)(x+2)(x-5)(x+2).

See Solution

Problem 24

Calculate 318 31 - 8 .

See Solution

Problem 25

Calculate 324 \frac{32}{4} .

See Solution

Problem 26

Calculate 25÷42^{5} \div 4.

See Solution

Problem 27

Calculate (4+27)324 (4+27)-\frac{32}{4} .

See Solution

Problem 28

Calculate 25÷4-2^{5} \div 4.

See Solution

Problem 29

Calculate 32÷4-32 \div 4.

See Solution

Problem 30

Find the integral of 15sinudu-\frac{1}{5} \sin u \, du.

See Solution

Problem 31

Calculate ((14×22)+33)254 \left((1^{4} \times 2^{2})+3^{3}\right)-\frac{2^{5}}{4} .

See Solution

Problem 32

Calculate 167+89(4)13(2)2527(4)445+(16)6 \frac{16^{7}+8^{9}-(-4)^{13}-(-2)^{25}}{2^{7} \cdot(-4)^{4} \cdot 4^{5}+(-16)^{6}} .

See Solution

Problem 33

Calculate the value of (14×22+33)25÷4(1^{4} \times 2^{2}+3^{3})-2^{5} \div 4 and 6÷2(1+2)6 \div 2(1+2).

See Solution

Problem 34

Calculate 31324 31 - \frac{32}{4}

See Solution

Problem 35

Solve the system of equations: 6x7y=86x - 7y = -8 and x4y=9-x - 4y = -9.

See Solution

Problem 36

Solve the equation 7x85=2x+54 \frac{7x - 8}{5} = \frac{2x + 5}{4} .

See Solution

Problem 37

Solve the equation: 5(x+11)3=3(1+x)2 \frac{5(x+11)}{3}=\frac{3(1+x)}{2} for x x .

See Solution

Problem 38

Solve 3x5=16 3x - 5 = 16 for x x and express your answer in set notation.

See Solution

Problem 39

Solve the system of equations: 10x14y=410x - 14y = -4 and 10x20y=30-10x - 20y = -30.

See Solution

Problem 40

Multiply and simplify (2x5)(3x3) (2x - 5)(3x - 3) .

See Solution

Problem 41

Multiply and simplify: (2x5)(3x3) (2x - 5)(3x - 3)

See Solution

Problem 42

Calculate 62(1+2) \frac{6}{2}(1+2) .

See Solution

Problem 43

Find y y if logy19=3 \log_{y} \frac{1}{9} = 3 .

See Solution

Problem 44

Find the z z -score for x=7 x = 7 given that the mean μ=4 \mu = 4 and standard deviation σ=2 \sigma = 2 .

See Solution

Problem 45

Expand (x5)(x+2) (x-5)(x+2) using the FOIL method.

See Solution

Problem 46

Multiply and simplify: (2x5)(3x3)(2x - 5)(3x - 3).

See Solution

Problem 47

Calculate 14×22+33 1^{4} \times 2^{2} + 3^{3} .

See Solution

Problem 48

Find the z z -score for x=7 x = 7 given μ=4 \mu = 4 and σ=2 \sigma = 2 using z=xμσ z = \frac{x - \mu}{\sigma} .

See Solution

Problem 49

Calculate (1×4)+27 (1 \times 4) + 27 .

See Solution

Problem 50

Calculate 1×471 \times 4 - 7.

See Solution

Problem 51

Calculate 1×4+271 \times 4 + 27.

See Solution

Problem 52

Calculate ((14×22)+33)(25÷4) \left((1^{4} \times 2^{2})+3^{3}\right)-(2^{5} \div 4) .

See Solution

Problem 53

Convert the parabola equation (x+6)2=12(y1)(x+6)^{2}=12(y-1) to standard form.

See Solution

Problem 54

Multiply and simplify (2x5)(3x3) (2x - 5)(3x - 3) .

See Solution

Problem 55

Multiply and simplify (2x5)(3x3) (2x-5)(3x-3) .

See Solution

Problem 56

Rewrite y=2x24x+7 y=2 x^{2}-4 x+7 in focus-directrix form.

See Solution

Problem 57

Find m16 m \angle 16 if m1=5x+8 m \angle 1=5x+8 and m16=7x20 m \angle 16=7x-20 .

See Solution

Problem 58

Multiply and simplify: (2x5)(3x3) (2x-5)(3x-3) .

See Solution

Problem 59

Convert the parabola equation y=18(x4)2+7 y=-\frac{1}{8}(x-4)^{2}+7 to standard form.

See Solution

Problem 60

Prove that two lines are parallel if and only if alternate exterior angles are congruent: 18 \angle 1 \cong \angle 8 .

See Solution

Problem 61

Convert y=18(x4)2+7 y=-\frac{1}{8}(x-4)^{2}+7 to standard form and choose the correct option from 1-4.

See Solution

Problem 62

Convert y=x24x8 y=x^{2}-4 x-8 to vertex form. Which is correct? 1) (x+2)2=y12(x+2)^{2}=y-12 2) (x+2)2=y+12(x+2)^{2}=y+12 3) (x2)2=y12(x-2)^{2}=y-12 4) (x2)2=y+12(x-2)^{2}=y+12

See Solution

Problem 63

Convert y=3x2+12x1 y=3 x^{2}+12 x-1 to vertex form and select the correct option from:
1. y=3(x4)2+1 y=3(x-4)^{2}+1
2. y=3(x+2)213 y=3(x+2)^{2}-13
3. y=3(x2)2+13 y=3(x-2)^{2}+13
4. y=3(x+4)21 y=3(x+4)^{2}-1

See Solution

Problem 64

Differentiate xex x^{e^{x}} with respect to x x .

See Solution

Problem 65

What is the value of 6÷2(1+2) 6 \div 2(1+2) ?

See Solution

Problem 66

Convert y=x24x8 y=x^{2}-4 x-8 to vertex form. Which is correct?
1. (x+2)2=y+12 (x+2)^{2}=y+12
2. (x+2)2=y12 (x+2)^{2}=y-12
3. (x2)2=y+12 (x-2)^{2}=y+12
4. (x2)2=y12 (x-2)^{2}=y-12

See Solution

Problem 67

Convert x=14(y2)2+3 x=\frac{1}{4}(y-2)^{2}+3 to standard form. Which option is correct?
1. x=14y2y+4 x=\frac{1}{4} y^{2}-y+4
2. y=14x2x+4 y=\frac{1}{4} x^{2}-x+4
3. x=14y2y4 x=-\frac{1}{4} y^{2}-y-4
4. y=14x2x4 y=-\frac{1}{4} x^{2}-x-4

See Solution

Problem 68

Solve 60÷2(3+7) 60 \div 2(3+7) .

See Solution

Problem 69

Find k k such that x2+k(x+2)+3(x+1)>0 x^{2}+k(x+2)+3(x+1)>0 for all x x . What is the range of k k ?

See Solution

Problem 70

Show that the roots of mx2+2x+1=m m x^{2}+2 x+1=m are always real for any real constant m m .

See Solution

Problem 71

Show that the roots of the equation mx2+2x+1=0 m x^{2}+2 x+1=0 are real for a real constant m m .

See Solution

Problem 72

Calculate (14×22+33)25÷4 (1^{4} \times 2^{2} + 3^{3}) - 2^{5} \div 4 .

See Solution

Problem 73

Find the derivative of x2 x^{2} with respect to x x .

See Solution

Problem 74

Calculate 3132÷4 31 - 32 \div 4 .

See Solution

Problem 75

Solve the system of equations: 5x14y=23 5x - 14y = -23 and 6x+7y=8 -6x + 7y = 8 .

See Solution

Problem 76

Calculate (4+27)32÷4 (4+27)-32 \div 4 .

See Solution

Problem 77

Multiply and simplify (2x5)(3x3)(2 x-5)(3 x-3).

See Solution

Problem 78

Determine if the series converges or diverges: n=1[(67)n32n]\sum_{n=1}^{\infty}\left[\left(\frac{6}{7}\right)^{n}-\frac{3}{2^{n}}\right]. If it converges, find the sum.

See Solution

Problem 79

Find the sum of the series n=11n(n+2)\sum_{n=1}^{\infty} \frac{1}{n(n+2)}.

See Solution

Problem 80

Find the limit of the sequence an=n2+3nna_{n}=\sqrt{n^{2}+3 n}-n. Options: A) 3 B) 2 C) 1/2 1 / 2 D) 3/2 3 / 2 E) 0 F) 1 G) \infty H) does not exist.

See Solution

Problem 81

1. Prove n7n n^{7}-n is divisible by 42 for all positive integers n n . Show primes ≠ 2, 5 divide numbers like 1, 11, etc.
2. Prove if p>3 p>3 is prime, then p21(mod24) p^{2} \equiv 1(\bmod 24) .
3. Find the number of trailing zeros in 1000! 1000! .
4. If p p and p2+2 p^{2}+2 are primes, prove p3+2 p^{3}+2 is prime.
5. Prove gcd(2a1,2b1)=2gcd(a,b)1 \operatorname{gcd}(2^{a}-1,2^{b}-1)=2^{\operatorname{gcd}(a, b)}-1 for positive integers a,b a, b .

See Solution

Problem 82

Solve the equation 3h2/224h45/2=0-3 h^{2} / 2 - 24 h - 45 / 2 = 0.

See Solution

Problem 83

Determine if these series are absolutely convergent, conditionally convergent, or divergent:
(I) n=1(π2)n \sum_{n=1}^{\infty}\left(\frac{\pi}{2}\right)^{n}
(II) n=1(1)n1en \sum_{n=1}^{\infty} \frac{(-1)^{n-1} e}{\sqrt{n}}
(III) n=11n(n+1)3 \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}(\sqrt{n}+1)^{3}}

See Solution

Problem 84

Prove that n7n n^{7}-n is divisible by 42 for all positive integers n n and that primes other than 2 or 5 divide infinitely many of 1,11,111,1111, 1, 11, 111, 1111, etc.

See Solution

Problem 85

Prove that for any positive integer n n , n7n n^{7}-n is divisible by 42. Also, show p21(mod24) p^{2} \equiv 1(\bmod 24) for primes p>3 p>3 .

See Solution

Problem 86

Prove that n7n n^{7}-n is divisible by 42 for all positive integers n n and p>3 p>3 prime, p21(mod24) p^{2} \equiv 1(\bmod 24) .

See Solution

Problem 87

Find a a and b b if the line y=x+h y=x+h is tangent to y=k1x y=\frac{k}{1-x} and k=(h+a)2b k=\frac{(h+a)^{2}}{b} .

See Solution

Problem 88

Any two parallel lines lie in the same plane. True or False?

See Solution

Problem 89

A ball's position is given by x(t)=0.000015t50.004t3+0.4tx(t)=0.000015 t^5 - 0.004 t^3 + 0.4 t. Find its velocity at t=10.0t=10.0 s.

See Solution

Problem 90

Is it true or false that 'If two rays are parallel, then the lines containing them must be coplanar'?

See Solution

Problem 91

Find values of k k so that 2x2+k2+22(k+2)x>0 2 x^{2}+k^{2}+2-2(k+2) x > 0 for all x x .

See Solution

Problem 92

A ball's position is given by x(t)=0.000015t50.004t3+0.4tx(t)=0.000015 t^5 - 0.004 t^3 + 0.4 t. Find its velocity at t=10.0t=10.0 s.

See Solution

Problem 93

Find the integral of x2 x^{2} with respect to x x .

See Solution

Problem 94

Rewrite y=x26x+1 y=-x^{2}-6 x+1 as y=a(x+b)2 y=a-(x+b)^{2} . Find the max value of y y and its x x value. Sketch the curve.

See Solution

Problem 95

Prove x2x+274 x^{2}-x+2 \geq \frac{7}{4} for all values of x x .

See Solution

Problem 96

Find x x such that 1+x27xx23 1+x^{2} \geq-\frac{7 x-x^{2}}{3} and determine the minimum of y=1+x2+7xx23 y=1+x^{2}+\frac{7 x-x^{2}}{3} .

See Solution

Problem 97

Find the length of line segment AB AB where A A and B B are intersections of 2x+3y=6 2x + 3y = 6 and x22y2xy=0 x^2 - 2y^2 - xy = 0 .

See Solution

Problem 98

Find all solutions for the function f(x)=2x36x2+9x27f(x)=2 x^{3}-6 x^{2}+9 x-27.

See Solution

Problem 99

Find the integral sin(3x)dx \int \sin (3 x) d x . Choose from: (a) 3cos(3x)+C 3 \cos (3 x)+C , (b) 13cos(3x)+C \frac{1}{3} \cos (3 x)+C , (c) 3cos(3x)+C -3 \cos (3 x)+C , (d) 13cos(3x)+C -\frac{1}{3} \cos (3 x)+C .

See Solution

Problem 100

Calculate the integral 15x1xdx\int_{1}^{5} \frac{x-1}{x} dx and choose the correct answer: (a) 5ln55-\ln 5, (b) 4ln54-\ln 5, (c) 2ln52-\ln 5, (d) 1ln51-\ln 5.

See Solution
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord