Calculus

Problem 25201

Déterminez les intervalles de convexité de la fonction f(x)=3x2x24f(x)=\frac{-3 x^{2}}{x^{2}-4} avec f(x)=72x2+96(x24)3f^{\prime \prime}(x)=-\frac{72 x^{2}+96}{\left(x^{2}-4\right)^{3}}.

See Solution

Problem 25202

Soit la fonction f(x)=3x2x24f(x)=\frac{-3 x^{2}}{x^{2}-4}. Trouvez les intervalles de convexité et concavité de ff.

See Solution

Problem 25203

Find the change in kinetic energy of a 7.5 kg7.5 \mathrm{~kg} projectile fired at 11.8 m/s11.8 \mathrm{~m/s} from 20.9 m20.9 \mathrm{~m} height. Use g=9.81 m/s2g = 9.81 \mathrm{~m/s}^{2}. Answer in JJ.

See Solution

Problem 25204

Calculer dQdKi=π2\left.\frac{d Q}{d K}\right|_{i=\frac{\pi}{2}}, déterminer quand dKdt=0\frac{d K}{d t}=0 et dQdt\frac{d Q}{d t} à t=3π2t=\frac{3 \pi}{2}.

See Solution

Problem 25205

Find the tangent line equation for f(x)=4xf(x)=\frac{4}{x} at x=9x=9.

See Solution

Problem 25206

Find the limits: (a) limx(x25x+1x)\lim_{x \to \infty} \left(\sqrt{x^2 - 5x + 1} - x\right), (b) limx(x25x+1x)\lim_{x \to -\infty} \left(\sqrt{x^2 - 5x + 1} - x\right).

See Solution

Problem 25207

Find the volume of the solid formed by revolving region RR (bounded by x=y23x=y^{\frac{2}{3}} and y=x13y=x^{\frac{1}{3}}) around y=0y=0 using the disc method.

See Solution

Problem 25208

Déterminez les intervalles de concavité de la fonction f(x)=3x2x24f(x)=\frac{-3 x^{2}}{x^{2}-4} avec f(x)=72x2+96(x24)3f^{\prime \prime}(x)=-\frac{72 x^{2}+96}{\left(x^{2}-4\right)^{3}}.

See Solution

Problem 25209

Déterminez les intervalles de concavité de la fonction f(x)=3x2x24f(x)=\frac{-3 x^{2}}{x^{2}-4} avec f(x)=72x2+96(x24)3f^{\prime \prime}(x)=-\frac{72 x^{2}+96}{\left(x^{2}-4\right)^{3}}.

See Solution

Problem 25210

Déterminez les points d'inflexion de la fonction f(x)=3x2x24f(x)=\frac{-3 x^{2}}{x^{2}-4} en utilisant f(x)f^{\prime}(x) et f(x)f^{\prime \prime}(x).

See Solution

Problem 25211

Differentiate the function: 10(sin2(t)+cos(t))+3010(\sin^{2}(t) + \cos(t)) + 30 with respect to tt.

See Solution

Problem 25212

Tracez la courbe de la fonction f(x)=3x2x24f(x)=\frac{-3 x^{2}}{x^{2}-4} avec f(x)f^{\prime}(x) et f(x)f^{\prime \prime}(x) donnés.

See Solution

Problem 25213

Calculate f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for the function f(x)=x23x+5f(x)=x^{2}-3x+5.

See Solution

Problem 25214

Find the average velocity of a train with location s(t)=50ts(t)=\frac{50}{t} from t=3t=3 to t=8t=8 hours.

See Solution

Problem 25215

Un fil de 48 cm est plié pour former une boîte. Trouvez les dimensions pour un volume maximal V=l×L×hV = l \times L \times h avec 4l+4L+4h=484l + 4L + 4h = 48.

See Solution

Problem 25216

Find the horizontal asymptote of the function f(x)=3x25x+22x28xf(x)=\frac{3 x^{2}-5 x+2}{2 x^{2}-8 x}.

See Solution

Problem 25217

Find the horizontal asymptote of each function: a. f(x)=3x25x+22x28xf(x)=\frac{3 x^{2}-5 x+2}{2 x^{2}-8 x}; answer: y=32y=\frac{3}{2}. b. g(x)=x35x6+18x3g(x)=\frac{x^{3}-5 x^{6}+1}{8 x^{3}}.

See Solution

Problem 25218

Approximate area under f(x)=xf(x)=\sqrt{x} from a=5a=5 to b=8b=8 using 6 rectangles. Then find exact area via integral.

See Solution

Problem 25219

Deriver funksjonen a(x)=32x2xa(x)=32 x^{2}-\sqrt{x}.

See Solution

Problem 25220

Find the function ff from the limit of Riemann sums: limΔ0k=1n(xk)6Δxk;[3,11]\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n}\left(x_{k}^{*}\right)^{6} \Delta x_{k} ;[3,11] and express it as a definite integral.

See Solution

Problem 25221

Find the production level xx that minimizes the average cost given by c(x)=x320x2+20,000xc(x)=x^{3}-20x^{2}+20,000x.

See Solution

Problem 25222

Calculate the integral 04f(x)dx\int_{0}^{4} f(x) dx for the piecewise function: f(x)=5f(x)=5 if x2x \leq 2, f(x)=4x3f(x)=4x-3 if x>2x>2.

See Solution

Problem 25223

Find the derivative of f(x)=x4xf(x)=x^{4 x} using logarithmic differentiation. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 25224

Soit f(x)=1x1f(x)=\frac{1}{x-1}. Trouvez les équations des deux tangentes de pente -1 et le point de tangence avec y=x34y=\frac{-x-3}{4}.

See Solution

Problem 25225

Trouvez l'équation de la tangente à f(x)=x33x23f(x)=x^{3}-3 x^{2}-3 au point où x=3x=-3.

See Solution

Problem 25226

A farmer uses 60 m of fencing for 3 sides of a corral. Find dimensions for maximum area.

See Solution

Problem 25227

Find the horizontal asymptotes of the curve y=16x(x4+1)2y=\frac{16 x}{(x^{4}+1)^{2}}, denoted as y1y_{1} and y2y_{2}.

See Solution

Problem 25228

Find the dimensions for a rectangular field with 600 m600 \mathrm{~m} of fencing that maximizes the area and calculate that area.

See Solution

Problem 25229

Gitt funksjonen f(x)=x3+3xf(x)=-x^{3}+3 x: Finn nullpunkt, topp/bunnpunkter, og vendetangenter.

See Solution

Problem 25230

Prove that the function g(x)=dxb2+(dx)2g(x)=\frac{d-x}{\sqrt{b^{2}+(d-x)^{2}}} is decreasing in xx.

See Solution

Problem 25231

Prove that the function defined by dtdx=xc1a2+x2dxc2b2+(dx)2\frac{d t}{d x}=\frac{x}{c_{1} \sqrt{a^{2}+x^{2}}}-\frac{d-x}{c_{2} \sqrt{b^{2}+(d-x)^{2}}} is increasing in xx.

See Solution

Problem 25232

Find the derivative of the function given by P(t)=(t24t5/25)P^{\prime}(t)=\left(t^{2}-\frac{4 t^{5 / 2}}{5}\right)^{\prime}.

See Solution

Problem 25233

Calculate the fetal growth rate dHdt\frac{dH}{dt} using the formula H=30.56+1.856t20.5741t2logtH=-30.56+1.856 t^{2}-0.5741 t^{2} \log t.

See Solution

Problem 25234

Given s(t)=4t2+4ts(t)=4 t^{2}+4 t, find: a) v(t)v(t), b) a(t)a(t), c) velocity and acceleration at t=4t=4 sec.

See Solution

Problem 25235

Find the derivative f(x)f^{\prime}(x) for the function f(x)=ln6x47x+4f(x)=\ln \sqrt{\frac{6 x-4}{7 x+4}}.

See Solution

Problem 25236

Find where the tangent line of y=13xx2y=13x-x^{2} has a slope. Choose from: A. (1,12)(1,12) B. (6,42)(6,42) C. (6.5,42.25)(6.5,42.25) D. (12,84)(12,84).

See Solution

Problem 25237

Find the derivative of the function (5x2+7x+3)(2x)(5 x^{2}+7 x+3)(2 x).

See Solution

Problem 25238

Find the inflection points of the function f(x)=18x1.5x2+2f(x)=\frac{18 x}{1.5 x^{2}+2} using its derivatives. Lowest =, Middle =, Highest =.

See Solution

Problem 25239

Find dydu\frac{d y}{d u}, dudx\frac{d u}{d x}, and dydx\frac{d y}{d x} for y=u45y=u^{45} and u=5x3+3x2u=5 x^{3}+3 x^{2}.

See Solution

Problem 25240

Differentiate f(x)=(7x22x+6)(4x2+3x6)f(x)=(7 x^{2}-2 x+6)(4 x^{2}+3 x-6). Which option shows how to find f(x)f'(x)?

See Solution

Problem 25241

Find limn(43)n+(83)nn\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{4}{3}\right)^{n}+\left(\frac{8}{3}\right)^{n}}.

See Solution

Problem 25242

Find the volume of the solid formed by rotating the area between y=x2y=x^{2} and y=x3y=x^{3} in the first quadrant around x=1x=1.

See Solution

Problem 25243

A wrench is dropped from an 80.0 m80.0 \mathrm{~m} tower. What is its velocity upon hitting the ground?

See Solution

Problem 25244

A city’s population grows from 200,000 to P(t)=200,000+5000t2P(t)=200,000+5000t^{2}. Find: a) dPdt\frac{\mathrm{dP}}{\mathrm{dt}}; b) P(20)P(20); c) Growth rate at t=20t=20; d) Meaning of part (c).

See Solution

Problem 25245

Find the area between the curves y=6sinxy = 6 \sin x and y=6cosxy = 6 \cos x over the interval [0,π2][0, \frac{\pi}{2}].

See Solution

Problem 25246

Find the limit: limn4+6n+5n23n+2\lim _{n \rightarrow \infty} \frac{\sqrt{4+6 n+5 n^{2}}}{3 n+2}.

See Solution

Problem 25247

Given the function f(x)=x249x7f(x)=\frac{x^{2}-49}{x-7}, find where it's not differentiable and compute f(1)f^{\prime}(-1).

See Solution

Problem 25248

Bestimme die Durchschnittsgeschwindigkeiten für [0;3][0; 3] und [3;7][3; 7] der Funktion s(t)=6t20,4t3s(t)=6t^{2}-0,4t^{3}. Finde die Momentangeschwindigkeit bei t=3t=3 und t=12t=12. Wann erreicht der Ballon den Boden?

See Solution

Problem 25249

Find the volume of the solid formed by rotating the area between y=x2y=x^{2} and y=x3y=x^{3} in the first quadrant around x=1x=1.

See Solution

Problem 25250

Find xx where the tangent line to y=x2+2x3y=x^{2}+2x-3 is horizontal. Options: A. 12\frac{1}{2} B. 0 C. 1 D. -1

See Solution

Problem 25251

Find the derivative of f(x)=8xf(x)=\frac{8}{x} and evaluate it at x=1x=-1. What is f(1)f^{\prime}(-1)?

See Solution

Problem 25252

Find the tangent line equation for the curve y=xx2y=x-x^{2} at the point (2,2)(2,-2). Choose from the options.

See Solution

Problem 25253

Berechnen Sie die Ableitung f(2)f^{\prime}(2) für die Funktion f(x)=5x2+1f(x) = 5x^{2} + 1.

See Solution

Problem 25254

Finn topp- og bunnpunkter samt vendepunkt for funksjonen p(x)=ln(x21)p(x)=\ln \left(x^{2}-1\right) der x<1x<-1 eller x>1x>1.

See Solution

Problem 25255

Find the velocity v(t)v(t) and acceleration a(t)a(t) for s(t)=5t2+15ts(t)=5 t^{2}+15 t. Calculate both at t=2t=2 sec.

See Solution

Problem 25256

Differentiate y=4x272x3+3y=\frac{4 x^{2}-7}{2 x^{3}+3}. Which option shows the correct derivative formula?

See Solution

Problem 25257

Find the difference quotient for f(x)=9x2f(x)=9x-2 at x=5x=5 for h=2,1,0.1,0.01h=2, 1, 0.1, 0.01.

See Solution

Problem 25258

Calculate the sum: n=0(23)n(1.5)nn!\sum_{n=0}^{\infty} \frac{\left(\frac{2}{3}\right)^{n}(1.5)^{n}}{n !}.

See Solution

Problem 25259

Find the limit: limn(3+6n+n23+13n+n2)\lim _{n \rightarrow \infty}\left(\sqrt{3+6 n+n^{2}}-\sqrt{3+13 n+n^{2}}\right).

See Solution

Problem 25260

Find points on the graph of y=13xx2y=13x-x^{2} where the tangent line has a slope of 1.

See Solution

Problem 25261

Calculate the average value of y=9exy=9 e^{-x} over the interval [0,1][0,1]. The average value is \square.

See Solution

Problem 25262

A particle's speed is v(t)=0.2t2+10tv(t)=-0.2 t^{2}+10 t. Find distances traveled in the first and second 4 seconds.

See Solution

Problem 25263

Gegeben ist die Funktion ff: (I) f(x)=x2+1f(x) = x^{2} + 1, (II) f(x)=x3f(x) = x^{3}, (III) f(x)=0,5x2f(x) = 0,5 x^{2}, (IV) f(x)=x3f(x) = -x^{3}.
a) Zeichne den Graphen und bestimme die Ableitung an x0=1x_{0} = -1.
b) Berechne die Ableitung an x0=1x_{0} = -1 mit einem kleinen Δx\Delta x.

See Solution

Problem 25264

Find the velocity function v(t)v(t) given acceleration a(t)=8ta(t)=8t and initial condition v(0)=15v(0)=15.

See Solution

Problem 25265

Find the total cost of producing 220 dresses with marginal cost C(x)=425x+50C^{\prime}(x)=-\frac{4}{25} x+50. Total cost is \$\square.

See Solution

Problem 25266

Calculate the area under the curve of f(x)f(x) from x=2x = -2 to x=4x = 4, where f(x)=x2+6f(x) = x^{2} + 6 for x2x \leq 2 and f(x)=5xf(x) = 5x for x>2x > 2. The area is \square.

See Solution

Problem 25267

Determine the center, radius, and interval of convergence for the series: n=0(23)n(x4)nn!\sum_{n=0}^{\infty} \frac{\left(\frac{2}{3}\right)^{n}(x-4)^{n}}{n !}

See Solution

Problem 25268

Find the limit as xx approaches 6 for [f(x)]26f(x)+2[g(x)]249\frac{[f(x)]^{2}-6 f(x)+2}{[g(x)]^{2}-49} given f(6)=10f(6)=10, f(6)=1f'(6)=-1, g(6)=8g(6)=-8, g(6)=4g'(6)=4.

See Solution

Problem 25269

At what minimum times is A(t)=0A^{\prime}(t)=0 for the function A(t)A(t), given 0t80 \leq t \leq 8? Options: a. 0, b. 2, c. 3, d. 4, e. 5.

See Solution

Problem 25270

Differentiate h(t)=72t28t+5h(t)=\frac{7}{2} t^{2}-8 t+5 with respect to tt.

See Solution

Problem 25271

Find the sum of values of cc that satisfy the Mean Value Theorem for f(x)=2cosx4cos2xf(x)=2 \cos x-4 \cos 2x on [0,π][0,\pi].

See Solution

Problem 25272

Find the distance the particle travels to the right given its position s(t)=3t2t2s(t)=3t-2t^{2} for t0t \geq 0.

See Solution

Problem 25273

Evaluate f(x+h)f(x+h) and find f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=4x2+2xf(x)=4x^{2}+2x.

See Solution

Problem 25274

Find the rate of area increase of a circular plate when the radius is 50 cm and increases at 0.01 cm/s.

See Solution

Problem 25275

Evaluate 269f(x)dx\int_{2}^{6} 9 f(x) d x given 27f(x)dx=14\int_{2}^{7} f(x) d x=14 and 67f(x)dx=8\int_{6}^{7} f(x) d x=8.

See Solution

Problem 25276

Calculate the average rate of change of f(x)=1x2f(x)=\frac{1}{x-2} from x=4x=-4 to x=0x=0.

See Solution

Problem 25277

Evaluate the integrals given:
a. 269f(x)dx\int_{2}^{6} 9 f(x) d x
b. 27(f(x)g(x))dx\int_{2}^{7}(f(x)-g(x)) d x

See Solution

Problem 25278

Given continuous functions ff and gg, define h(x)=f(g(x))xh(x)=f(g(x))-x.
a. Show there exists tt in (1,4)(1,4) where h(t)=3h'(t)=3.
b. Show there exists tt in (1,4)(1,4) where h(t)=1h(t)=-1.

See Solution

Problem 25279

Bestimmen Sie alle αR\alpha \in \mathbb{R}, für die die Reihe n=03nn+2(α+1)n\sum_{n=0}^{\infty} \frac{3^{n}}{\sqrt{n}+2}(\alpha+1)^{n} konvergiert.

See Solution

Problem 25280

Evaluate 269f(x)dx\int_{2}^{6} 9 f(x) d x given 27f(x)dx=14\int_{2}^{7} f(x) d x=14 and 26g(x)dx=4\int_{2}^{6} g(x) d x=4.

See Solution

Problem 25281

Find the rate of change of Kleenexes KK when there are 52 left and sick students ss are increasing at 3 per day.

See Solution

Problem 25282

Find the simplified difference quotient for f(x)=x2f(x)=-x^{2} and complete the table for x=5x=5 and various hh values.

See Solution

Problem 25283

Given u(1)=2u(1)=2, u(1)=0u'(1)=0, v(1)=5v(1)=5, v(1)=1v'(1)=-1, find the derivatives at x=1x=1:
a. ddx(uv)\frac{d}{dx}(uv), b. ddx(uv)\frac{d}{dx}(\frac{u}{v}), c. ddx(vu)\frac{d}{dx}(\frac{v}{u}), d. ddx(7v2u)\frac{d}{dx}(7v-2u).

See Solution

Problem 25284

Given u(1)=2u(1)=2, u(1)=0u'(1)=0, w(1)=5w(1)=5, and v(1)=1v'(1)=-1, find the derivatives at x=1x=1:
a. ddx(uv)\frac{d}{dx}(uv), b. ddx(uv)\frac{d}{dx}\left(\frac{u}{v}\right), c. ddx(xu)\frac{d}{dx}\left(\frac{x}{u}\right), d. ddx(7v2u)\frac{d}{dx}(7v-2u).

See Solution

Problem 25285

Evaluate the integrals given 27f(x)dx=14\int_{2}^{7} f(x) d x=14, 27g(x)dx=6\int_{2}^{7} g(x) d x=6:
a. 269f(x)dx\int_{2}^{6} 9 f(x) d x b. 27(f(x)g(x))dx\int_{2}^{7}(f(x)-g(x)) d x

See Solution

Problem 25286

A balloon inflates at 100π100 \pi cubic feet/min. Find the rate of radius increase when the radius is 2 feet.

See Solution

Problem 25287

Find the derivative of f(x)=2x26x+2f(x)=2 x^{2}-6 x+2 and calculate f(1)f^{\prime}(1).

See Solution

Problem 25288

Evaluate the integrals given:
a. 269f(x)dx\int_{2}^{6} 9 f(x) d x
b. 27(f(x)g(x))dx\int_{2}^{7}(f(x)-g(x)) d x
c. 26(f(x)g(x))dx=\int_{2}^{6}(f(x)-g(x)) d x=\square

See Solution

Problem 25289

Given the piecewise function f(x)={x2+7if x33x+7if x>3f(x) = \begin{cases} x^2 + 7 & \text{if } x \leq 3 \\ 3x + 7 & \text{if } x > 3 \end{cases}, check: (a) Is ff continuous at x=3x=3? (b) Is ff differentiable at x=3x=3?

See Solution

Problem 25290

Find the tangent line equation to f(x)=x23f(x)=x^{2}-3 at the point (5,22)(-5,22). y=y=\square

See Solution

Problem 25291

A researcher found antacid level L(t)=6tt2+2t+1L(t)=\frac{6t}{t^2+2t+1}. Find tt for L(t)=0L'(t)=0, then L(t)L(t), graph L(t)L(t), and analyze levels at 11 min and 2t82 \leq t \leq 8.

See Solution

Problem 25292

Find where the tangent line to y=13x37x+5y=\frac{1}{3} x^{3}-7 x+5 is horizontal. State if none exist.

See Solution

Problem 25293

Find limx3f(x)\lim _{x \rightarrow 3} f(x) for the piecewise function: f(x)=x+153f(x)=\frac{x+15}{3} (if x<3x<3), 33 (if x=3x=3), x211x+30x^{2}-11 x+30 (if x>3x>3).

See Solution

Problem 25294

A sociologist finds N(t)=20tt2N(t)=20t-t^{2} vocabulary terms learned after tt hours.
a. How many terms from t=2t=2 to t=3t=3? b. Rate of learning at t=2t=2? c. Maximum learning rate?

See Solution

Problem 25295

Find the point(s) where the tangent line of y=13x34x2+16x+25y=\frac{1}{3} x^{3}-4 x^{2}+16 x+25 has a slope of 4.

See Solution

Problem 25296

A company reduces production of protein bars by 100 cases/day. Given the demand function p(x)=30x200p(x)=30-\frac{x}{200}, find the revenue's rate of change when production is 900 cases.

See Solution

Problem 25297

Calculate the integral 15[4y(y25)]dy\int_{-1}^{5}\left[4 y - (y^{2} - 5)\right] dy.

See Solution

Problem 25298

Evaluate the integral from -9 to 0 of (y9+y+10)\left(\frac{y}{9}+\sqrt{y+10}\right).

See Solution

Problem 25299

Find the derivative of the function f(x)=1+2x3f(x) = \sqrt{1 + 2x^3}.

See Solution

Problem 25300

Evaluate 258f(x)dx\int_{2}^{5} 8 f(x) d x given 27f(x)dx=11\int_{2}^{7} f(x) dx=11, 57f(x)dx=5\int_{5}^{7} f(x) dx=5.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord