Calculus

Problem 31001

Which option represents the acceleration of a particle: first or second time derivative of velocity?

See Solution

Problem 31002

Finde die Ableitung von f(x)=x2xf(x) = x^2 - x.

See Solution

Problem 31003

What is the slope of the acceleration vs. time plot for a baseball tossed upward? Options: constant positive, constant negative, or zero slope?

See Solution

Problem 31004

A particle's velocity decreases at a constant rate. What does the acceleration vs. time plot look like?

See Solution

Problem 31005

Evaluate the integral 0πxsin(x2)dx\int_{0}^{\pi} x \cdot \sin \left(x^{2}\right) d x.

See Solution

Problem 31006

A rumour spreads in a school of 1200 pupils. Given dx dt=x(1200x)3600\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{x(1200-x)}{3600} with 300 pupils aware at t=0t=0, show t=3ln(3x1200x)t=3 \ln \left(\frac{3 x}{1200-x}\right).

See Solution

Problem 31007

Find the relative maximum point for the function f(x)=x23x2f(x)=\frac{x^{2}-3}{x-2} using f(x)f'(x) and f(x)f''(x).

See Solution

Problem 31008

Integrate 11x2dx\int \frac{1}{\sqrt{1-x^{2}}} dx using the substitution x=sin(z)x=\sin(z) and find dxdx.

See Solution

Problem 31009

Find the integral of 1x2\sqrt{1-x^{2}} with respect to xx.

See Solution

Problem 31010

Calculate the integral: 11x2dx\int \frac{1}{\sqrt{1-x^{2}}} d x

See Solution

Problem 31011

Evaluate the integral: 144x2dx\int \frac{1}{\sqrt{4-4 x^{2}}} d x

See Solution

Problem 31012

Find the price elasticity of demand when P=£10\mathrm{P} = £10 for the demand function Qd=100020P\mathrm{Qd} = 1000 - 20P.

See Solution

Problem 31013

How much work is done to stretch a spring from its natural length to 10in10 \mathrm{in} if a force of 10lb10 \mathrm{lb} stretches it 4in4 \mathrm{in}?

See Solution

Problem 31014

Find xx values for y=x2x23x+2y=\frac{x^{2}}{x^{2}-3 x+2} when dydx=0\frac{d y}{d x}=0.

See Solution

Problem 31015

Find the price elasticity of demand when P=£10\mathrm{P} = £10 for the demand function Qd=100020P\mathrm{Qd} = 1000 - 20\mathrm{P}.

See Solution

Problem 31016

Kaffee (85°C) und Milch (8°C) kühlen ab. a) Zeige f(t)=20+65e0,1625tf(t)=20+65 e^{-0,1625 t} für Kaffee. b) Wer ist nach 5 Min. kälter? c) Wie lange bis Milchkaffee 40°C? d) Wann Milch für 40°C? e) Untersuche fa(x)=ln((xa)2+1)f_a(x)=\ln((x-a)^{2}+1).

See Solution

Problem 31017

Find the derivative of tan(x2)\tan(x^2) with respect to xx.

See Solution

Problem 31018

Evaluate the integral xex2dx\int x e^{x^{2}} d x.

See Solution

Problem 31019

Berechnen Sie die Integrale und Stammfunktionen für gegebene Werte von f(x)f(x) und g(x)g(x) sowie bestimmte Integrale.

See Solution

Problem 31020

Calculate the integrals: a) 13(6x25)dx\int_{1}^{3}(6 x^{2}-5) dx and b) 21(x)dx\int_{-2}^{1}(-x) dx. What are the results?

See Solution

Problem 31021

Find the relative minimum point of the function f(x)=x23x2f(x) = \frac{x^{2}-3}{x-2} using f(x)f'(x) and f(x)f''(x).

See Solution

Problem 31022

Find the price elasticity of demand when Qd=100020P\mathrm{Qd}=1000-20 \mathrm{P} and P=£10P=£ 10. Options: 0.125, 0.025, 0.25, 0.5.

See Solution

Problem 31023

a) Evaluate 13(6x25)dx\int_{1}^{3}(6 x^{2}-5) dx and find the result. b) Calculate 21(x)dx\int_{-2}^{-1}(-x) dx and determine the value.

See Solution

Problem 31024

Find 48f(x41)dx\int_{4}^{8} f\left(\frac{x}{4}-1\right) d x given 01f(x)dx=4\int_{0}^{1} f(x) d x=4. Options: 0, 10, 16, 20, 80.

See Solution

Problem 31025

Find the solution of the equation: dydx=2xy+y2x2+2xy \frac{d y}{d x}=\frac{2 x y+y^{2}}{x^{2}+2 x y} .

See Solution

Problem 31026

Find the derivative of the function f(x)=(x+1)3xf(x)=(x+1)^{3 x}. What is f(x)f^{\prime}(x)?

See Solution

Problem 31027

Find the integral x+1dx\int \sqrt{x+1} \, dx and choose the correct answer from the options provided.

See Solution

Problem 31028

Find local extrema of f(x)=x42f(x)=x^{4}-2. Where are the local maxima and minima?

See Solution

Problem 31029

Find values of cc for the Mean Value Theorem with f(x)=x34xf(x)=x^{3}-4x, for 2x2-2 \leq x \leq 2.

See Solution

Problem 31030

y=x35x+3y=x^{3}-5 x+3 eğrisinin OxO x-ekseniyle 4545^{\circ} teğetinin denklemi hangisidir? A) B) C) D) E)

See Solution

Problem 31031

Find the limit: limx0(ex+x)1/2x\lim _{x \rightarrow 0}\left(e^{x}+x\right)^{1 / 2 x}. What is the result?

See Solution

Problem 31032

Eine Kugel wird aus 30m30 m Höhe auf der Erde (gε=9,81ms2g_{\varepsilon}=9,81 \frac{m}{s^{2}}) und Neptun (gN=11ms2g_{N}=11 \frac{m}{s^{2}}) geworfen. Berechne die Aufprallgeschwindigkeiten in kmh\frac{km}{h} und die Zeitdifferenz bis zum Aufprall.

See Solution

Problem 31033

Find the second derivative of the function y=78xy=\frac{7}{8x}.

See Solution

Problem 31034

جد الفترات التي تزداد وتنقص فيها الدالة ff بناءً على الرسم البياني لـ y=f(x)y=f^{\prime}(x).

See Solution

Problem 31035

Evaluate the integral dxxlnx\int \frac{d x}{x \ln x}. Choose the correct answer from the options.

See Solution

Problem 31036

f(x)={2sinx;x<03x2+2x;x0f(x)=\left\{\begin{array}{cc}2 \sin x & ; x<0 \\ 3 x^{2}+2 x & ; x \geq 0\end{array}\right. fonksiyonunun (0,0)(0,0) noktasındaki teğetinin denklemi nedir?

See Solution

Problem 31037

Determine where f(x)=cosxf(x)=\cos x is concave up and down on [0,2π][0, 2\pi].

See Solution

Problem 31038

Find the inflection points of ff given f(x)=(x2)5(x1)3(x+1)4f^{\prime \prime}(x)=(x-2)^{5}(x-1)^{3}(x+1)^{4}.

See Solution

Problem 31039

Find dydx\frac{d y}{d x} for y=1cosxlog7(1+t3)dty=\int_{1}^{\cos x} \log _{7}(1+t^{3}) dt.

See Solution

Problem 31040

Find intervals where the function ff increases and decreases based on its derivative y=f(x)y=f^{\prime}(x).

See Solution

Problem 31041

Find the limit as xx approaches 0 for 2x13x1\frac{2^{x}-1}{3^{x}-1}. What is the result?

See Solution

Problem 31042

احسب حجم الجسم الناتج عن دوران المنطقة بين y=(x1)2y=(x-1)^{2} و y=x1y=\sqrt{x-1} حول x=2x=-2.

See Solution

Problem 31043

Find the length of the curve y=13(x2+2)3/2y=\frac{1}{3}(x^{2}+2)^{3/2} for 0x120 \leq x \leq 12.

See Solution

Problem 31044

y=xsinxy=x^{\sin x} fonksiyonunun türevini bulun. Aşağıdakilerden hangisi doğrudur? A) B) C) D) E)

See Solution

Problem 31045

Find when the particle at x(t)=16t3.0t3x(t)=16 t-3.0 t^{3} is momentarily at rest for tt values: 0.75s, 1.3s, 1.8s, 5.3s, 7.3s.

See Solution

Problem 31046

Find the average velocity of an object with x=7t3t2x=7t-3t^{2} from t=0t=0 to t=2t=2 seconds. Choices: 5 m/s5 \mathrm{~m/s}, 11 m/s11 \mathrm{~m/s}, 1 m/s1 \mathrm{~m/s}, 5 m/s-5 \mathrm{~m/s}, 11 m/s-11 \mathrm{~m/s}.

See Solution

Problem 31047

Find how dVdt\frac{d V}{d t} relates to drdt\frac{d r}{d t} for a cylinder with constant height using V=πr2hV=\pi r^{2} h.

See Solution

Problem 31048

Calculate the area AA using the integrals:
1. A=01(y3y2)dyA=\int_{0}^{1}(y^{3}-y^{2}) dy
2. A=01(2yy)dyA=\int_{0}^{1}(2 \sqrt{y}-y) dy
3. A=04(2x(2x4))dxA=\int_{0}^{4}(2 \sqrt{x}-(2 x-4)) dx
4. A=02(xx24)dxA=\int_{0}^{2}\left(x-\frac{x^{2}}{4}\right) dx
5. A=24((2+y2)y24)dyA=\int_{-2}^{4}\left(\left(2+\frac{y}{2}\right)-\frac{y^{2}}{4}\right) dy
6. A=01(x3x)dxA=\int_{0}^{1}(\sqrt[3]{x}-\sqrt{x}) dx

See Solution

Problem 31049

Find the intervals where the function ff increases and decreases based on the graph of its derivative y=f(x)y=f'(x).

See Solution

Problem 31050

Find the average velocity of an object with constant acceleration 4 m/s24 \mathrm{~m/s}^2 from x=2mx=2 m to x=8mx=8 m.

See Solution

Problem 31051

Find the acceleration of an automobile at t=1.0t=1.0 s given x(t)=27t4.0t3x(t)=27t-4.0t^{3}. Options: 2323, 1515, 4-4, 12-12, 24-24 m/s².

See Solution

Problem 31052

Find the acceleration of an object at the moment it stops, given x(t)=75t1.0t3x(t)=75 t-1.0 t^{3}. Choices: 9.8-9.8, 00, 9.2×1039.2 \times 10^{3}, 73-73, 30-30 m/s².

See Solution

Problem 31053

Evaluate the integral cosx5sinxdx\int \cos x 5^{\sin x} d x. Choose the correct answer from the options provided.

See Solution

Problem 31054

How far does an object fall during the second second of free fall? Options: 4.9 m4.9 \mathrm{~m}, 9.8 m9.8 \mathrm{~m}, 15 m15 \mathrm{~m}, 20 m20 \mathrm{~m}, 25 m25 \mathrm{~m}.

See Solution

Problem 31055

Find critical values of f(x)=x33+x222xf(x)=\frac{x^{3}}{3}+\frac{x^{2}}{2}-2x for x={2,1,1,2}x=\{-2, -1, 1, 2\}.

See Solution

Problem 31056

Find an antiderivative function F(x)F(x) of f(x)=2xf(x)=|2 x| for 2x2-2 \leq x \leq 2.

See Solution

Problem 31057

احسب نقطة الحد الأدنى النسبي لدالة f(x)=13x32x2+3x+1f(x)=\frac{1}{3} x^{3}-2 x^{2}+3 x+1 باستخدام f(x)f^{\prime}(x) و f(x)f^{\prime \prime}(x).

See Solution

Problem 31058

Find the average velocity of an object with v=4t3t2v=4t-3t^{2} from t=0t=0 to t=2t=2 seconds. Options include 0, 2 m/s-2 \mathrm{~m/s}, 2 m/s2 \mathrm{~m/s}, 4 m/s-4 \mathrm{~m/s}, or need initial position.

See Solution

Problem 31059

A plane at 40.0 m/s drops supplies from 200.0 m. When to release? Find the velocity just before hitting the ground. t=24009.8t=\sqrt{\frac{2400}{-9.8}}

See Solution

Problem 31060

Find 35f(x)dx\int_{3}^{5} f(x) d x given 15f(x)dx=5\int_{1}^{5} f(x) d x=5 and 13f(x)dx=3\int_{1}^{3} f(x) d x=3.

See Solution

Problem 31061

Ein Wassertank hat zu Beginn 2 m32 \mathrm{~m}^{3} Wasser. Die Zuflussrate erreicht max. 3m3h3 \frac{\mathrm{m}^{3}}{\mathrm{h}} nach 3 Stunden. Berechne das Volumen nach 6 Stunden.

See Solution

Problem 31062

A stone is dropped from a 190 m roof. What is its speed just before hitting the ground? Options: 43 m/s43 \mathrm{~m/s}, 61 m/s61 \mathrm{~m/s}, 120 m/s120 \mathrm{~m/s}, 190 m/s190 \mathrm{~m/s}, 1400 m/s1400 \mathrm{~m/s}.

See Solution

Problem 31063

A car starts at 16 m/s16 \mathrm{~m/s} and slows down with a=0.50ta=-0.50 \mathrm{t}. When does it stop: 4s4s, 8s8s, 16s16s, 32s32s, or 64s64s?

See Solution

Problem 31064

Bestimmen Sie die Stammfunktionen für die folgenden Funktionen: a) f(x)=2sin(π2x)f(x)=2 \sin \left(\frac{\pi}{2} x\right), b) f(x)=13+xf(x)=\frac{1}{3+x}, c) f(x)=e4x1f(x)=e^{4 x-1}, d) f(x)=73x+1f(x)=\frac{7}{3 x+1}, e) f(x)=52(1x)2f(x)=\frac{5}{2(1-x)^{2}}, f) f(x)=23(54x)4f(x)=\frac{2}{3}(5-4 x)^{4}, g) f(x)=913xf(x)=\sqrt{9-\frac{1}{3} x}, h) f(x)=3(15x)4f(x)=\frac{3}{(1-5 x)^{4}}.

See Solution

Problem 31065

Find the initial velocity and acceleration of an auto given x(t)=27t4.0t3x(t)=27t-4.0t^{3} at t=0t=0.

See Solution

Problem 31066

A spot moves as x=8.79t0.624t3x=8.79 t-0.624 t^{3}. Find when it's at rest, its position, acceleration, and when it hits screen edges.

See Solution

Problem 31067

Analyse - Tangentengleichungen
A 9.1: Bestimme f(3)f'(3) und die Tangentengleichung an f(x)=12x2f(x)=\frac{1}{2}x^2 bei x0=3x_0=3.
A 9.2: Finde den Schnittpunkt SS der Tangente von f(x)=12x3f(x)=\frac{1}{2}x^3 durch P(2f(2))P(-2 \mid f(-2)) mit der xx-Achse.
A 9.3: a) Bestimme die Tangentengleichung an P(4f(4))P(4 \mid f(4)) für f(x)=4xf(x)=\frac{4}{x}. b) Wo hat ff die Steigung -1? c) Wo ist die Tangente parallel zu y=49x+5y=-\frac{4}{9}x+5?
A 9.4: Skizziere f(x)=23x3f(x)=\frac{2}{3}x^3 und g(x)=1x2g(x)=\frac{1}{x^2}. a) Wo haben sie den gleichen Funktionswert? b) Wo haben die Tangenten die gleiche Steigung und wie groß ist der Steigungswinkel?
A 9.6: Bestimme die Tangentengleichung an f(x)=14x4x2+1f(x)=\frac{1}{4}x^4-x^2+1 bei P(2f(2))P(2 \mid f(2)).
A 9.7: Zeige, dass f(x)=x2f(x)=x^2 und g(x)=x2+4x2g(x)=-x^2+4x-2 sich berühren.

See Solution

Problem 31068

Finde a, sodass die Fläche zwischen der xx-Achse und f(x)=12x2f(x)=\frac{1}{2} x^{2} im Intervall [a; 2] 12 beträgt.

See Solution

Problem 31069

Find dydt\frac{d y}{d t} for y=sin(2x)y=\sin(2x) and dxdt=2\frac{d x}{d t}=2 at x=π2x=\frac{\pi}{2}.

See Solution

Problem 31070

Bestimmen Sie die Fläche zwischen dem Graphen f(x)=0,25x4+x3f(x)=-0,25 x^{4}+x^{3} und der x-Achse.

See Solution

Problem 31071

Find the limits or show divergence for these sequences: (i) an=n(n+1n1)a_{n}=\sqrt{n}(\sqrt{n+1}-\sqrt{n-1}); (ii) bn=(1)n21/nb_{n}=(-1)^{n} 2^{1/n}.

See Solution

Problem 31072

Simplify the expression: x2x13x1x3x1\frac{x^{2}}{x-1}-\frac{3}{x-1}-\frac{x-3}{x-1}.

See Solution

Problem 31073

A ball's velocity changes from 20 cm/s20 \mathrm{~cm/s} to 0 cm/s0 \mathrm{~cm/s} in 5 seconds. Find the average acceleration.

See Solution

Problem 31074

Find dxdt\frac{d x}{d t} when y=2sin(x)y=2 \sin (x), dydt=1\frac{d y}{d t}=1, and x=π3x=\frac{\pi}{3}.

See Solution

Problem 31075

Find the limit: limx196x14x196\lim _{x \rightarrow 196} \frac{\sqrt{x}-14}{x-196}. What is it equal to?

See Solution

Problem 31076

Find the distance traveled in the first 3 seconds if the velocity is constant at vs=10 m/sv_{s}=10 \mathrm{~m/s}.

See Solution

Problem 31077

Find the Linearization L(x)L(x) of f(x)=(112+x)2/3f(x) = \left(1 - \frac{1}{2+x}\right)^{2/3} at x=0x=0.

See Solution

Problem 31078

Find the object's speed at t=5t=5 seconds if its position is x(t)=5+10t2x(t)=5+10 t^{2}. Options: 5 m/s5 \mathrm{~m/s}, 50 m/s50 \mathrm{~m/s}, 100 m/s100 \mathrm{~m/s}, 15 m/s15 \mathrm{~m/s}.

See Solution

Problem 31079

Find dxdt \frac{dx}{dt} when y=2cot(x) y = 2 \cot(x) and dydt=8 \frac{dy}{dt} = 8 unit/s at x=π4 x = \frac{\pi}{4} .

See Solution

Problem 31080

If \1,120isinvestedat151,120 is invested at 15% interest compounded continuously, what is its value in 7 years using A=P e^{rt}$?

See Solution

Problem 31081

Determine if the speed of the particle at t=4t=4 seconds is increasing, decreasing, or constant for x(t)=10tt2x(t)=10t-t^{2}.

See Solution

Problem 31082

Find dxdt\frac{d x}{d t} when y=2cot(x)y=2 \cot (x), dydt=8\frac{d y}{d t}=8 unit/s, and x=π4x=\frac{\pi}{4}.

See Solution

Problem 31083

How fast is Butch's distance from the origin changing at (7,24)(7,24) if dτdt=5 m/s\frac{d \tau}{d t}=-5 \mathrm{~m/s} and dydt=3 m/s\frac{d y}{d t}=-3 \mathrm{~m/s}?

See Solution

Problem 31084

Find the inflection point of f(x)=0.1x3+3x2+1100f(x)=-0.1 x^{3}+3 x^{2}+1100. Choose from the options provided.

See Solution

Problem 31085

Find the linearization of f(x)=12xf(x)=\frac{1}{2 x} at x=110x=\frac{1}{10}. Provide exact coefficients: L(x)=L(x)=

See Solution

Problem 31086

A radioactive substance has a half-life of 48 hours and starts with 20 grams. Find the function for remaining grams and when it reaches 11 grams.

See Solution

Problem 31087

Analyze a diver's ascent rate to see if they risk "the bends" when moving faster than ±3ft10ft\pm 3 \frac{\mathrm{ft}}{10 \mathrm{ft}}.
1. Choose sections from three functions and check for "the bends."
2. Discuss the realism of your piecewise function.
3. Find the instantaneous rate of change at 1500ft1500 \mathrm{ft}.

The functions are:
1. 0.00005x(x100)(x206)0.00005x(x-100)(x-206) for 0x2350 \leq x \leq 235
2. 0.6x+91x230\frac{0.6x+91}{x}-230 for 235<x800235 < x \leq 800
3. log(x800)+1\log(x-800)+1 for 800x2000800 \leq x \leq 2000

See Solution

Problem 31088

A cat jumps up 3.00 m3.00 \mathrm{~m}. How long is it in the top 1.00 m1.00 \mathrm{~m} (up and down)?

See Solution

Problem 31089

A radioactive substance has a half-life of 36 hours and starts with 13 grams. Find the function for remaining grams and when it reaches 5 grams.

See Solution

Problem 31090

Ein Land hat 20 Millionen Einwohner, die nach 5 Jahren auf 23 Millionen steigen. Bestimme die Wachstumsfunktion N(t)N(t) und skizziere den Graphen. Berechne den Prozentsatz des Grenzbestandes nach 50 Jahren und die Zeit für 95\% des Grenzbestandes.

See Solution

Problem 31091

Bevölkerungswachstum: Ein Land hat 20 Mio. Einwohner, nach 5 Jahren 23 Mio. Maximal 100 Mio. Wachstumsfunktion: N(t)=a1+bektN(t)=\frac{a}{1+b \cdot e^{-k t}} skizzieren für 0<t1000<t \leq 100.

See Solution

Problem 31092

Find the area of region SS bounded by y=x+4y=\sqrt{-x+4}, y=2y=2, and x=4x=4.
Also, write integrals for volumes with square cross sections (perpendicular to yy) and rectangle cross sections (perpendicular to xx) of height 3.

See Solution

Problem 31093

If df(x)dx=x23x+2\frac{d f(x)}{d x}=x^{2}-3 x+2 for x>1x>1, find df1dx\frac{d f^{-1}}{d x} at x=f(3)x=f(3).

See Solution

Problem 31094

Find intervals where the function f(x)=x22x+1x+1f(x) = \frac{x^{2} - 2x + 1}{x + 1} is increasing or decreasing, and identify relative minima or maxima for integer xx.

See Solution

Problem 31095

A 250-kg car with a 75-kg passenger starts at rest 20.0 m high. Neglect friction. Find:
a) Gravitational potential energy at A. b) Speed at B. c) Speed at C (10.0 m high). d) Compare total mechanical energy at A, B, and C. (Ans: a) 63700 J63700 \mathrm{~J}; b) 19.8 m/s19.8 \mathrm{~m/s}; c) 14 m/s14 \mathrm{~m/s}; d) TME is the same at all points)

See Solution

Problem 31096

Aufgabe: Schwimmbecken mit Leck. Gegeben ist die Funktion f(x)=120x3+65x2215x+4f(x)=-\frac{1}{20} x^{3}+\frac{6}{5} x^{2}-\frac{21}{5} x+4.
a) Füllmenge zu Beginn. b) Durchschnittliche Zulaufgeschwindigkeit in 5 Stunden. c) Füllvorgang beschreiben (Zulauf, Abfluss, Füllstand). d) Momentane Füllgeschwindigkeit nach 10 Stunden. e) Warum ist die Füllgeschwindigkeit nach 8 Stunden am größten?

See Solution

Problem 31097

Find the relative minimum point of the function f(x)=13x32x2+3x+1f(x)=\frac{1}{3} x^{3}-2 x^{2}+3 x+1.

See Solution

Problem 31098

Finde die Funktionen ff für die Ableitungen: a) f(x)=x3f^{\prime}(x)=x^{3}, b) f(x)=10x4f^{\prime}(x)=10 x^{4}, c) f(x)=6x2+8x3f^{\prime}(x)=6 x^{2}+8 x^{3}, d) f(x)=x95x5f^{\prime}(x)=x^{9}-5 x^{5}, e) f(x)=2x2f^{\prime}(x)=\frac{2}{x^{2}}, f) f(x)=10x3f^{\prime}(x)=\frac{10}{x^{3}}.

See Solution

Problem 31099

Schätzen und berechnen Sie die Fläche unter den Funktionen:
1. f(x)=x21f(x)=x^{2}-1, f(x)=2sin(x)f(x)=2 \cdot \sin (x), f(x)=2x+2f(x)=-2 \cdot \sqrt{x}+2
2. f(x)=1(2x3)2f(x)=\frac{1}{(2 x-3)^{2}}, f(x)=1(x1)2f(x)=\frac{-1}{(x-1)^{2}}, f(x)=13[1(x+2)31]f(x)=-\frac{1}{3} \cdot\left[\frac{1}{(x+2)^{3}}-1\right]

See Solution

Problem 31100

Bestimme den Funktionsterm ff aus der Ableitung ff^{\prime} und finde die Konstante CC für den Punkt PP. a) f(x)=2x,P(13)f^{\prime}(x)=2 x, P(1 \mid 3) b) f(x)=6x2,P(11)f^{\prime}(x)=6 x^{2}, P(-1 \mid -1) c) f(x)=5x2,P(0,55)f^{\prime}(x)=\frac{5}{x^{2}}, P(0,5 \mid 5) d) f(x)=3x,P(410)f^{\prime}(x)=\frac{3}{\sqrt{x}}, P(4 \mid 10) e) f(x)=x2+6x+2,P(03)f^{\prime}(x)=x^{2}+6 x+2, P(0 \mid 3) f) f(x)=0,P(11)f^{\prime}(x)=0, P(1 \mid 1)

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord