Calculus

Problem 14101

Determine if the function f(x)={6x25 for x3,15x+9 for x>3}f(x) = \{6x^2 - 5 \text{ for } x \leq 3, 15x + 9 \text{ for } x > 3\} is continuous at x=3x=3.

See Solution

Problem 14102

Evaluate the integral xsin111xdx\int x \sin \frac{1}{11} x \, dx using integration by parts. Which option simplifies it?

See Solution

Problem 14103

Find the average rate of change of revenue R(x)=600x0.3x2\mathrm{R}(x)=600 x-0.3 x^{2} from 100 to 200 units. Also, differentiate 6+5xx26+5 x-x^{2} using first principles.

See Solution

Problem 14104

Find the limit: limx01cos(5x)cos(2x)1\lim _{x \rightarrow 0} \frac{1-\cos (5 x)}{\cos (2 x)-1}.

See Solution

Problem 14105

Evaluate the limit as xx approaches -2 for the expression 7x2+87x^{2} + 8. What is the result?

See Solution

Problem 14106

Differentiate the function 6+5xx26 + 5x - x^{2} using the first principle of differentiation.

See Solution

Problem 14107

Evaluate the limit as xx approaches -2 for the expression 7x2+87 x^{2} + 8.

See Solution

Problem 14108

Evaluate the limit: limx5x225x5\lim _{x \rightarrow-5} \frac{x^{2}-25}{x-5}. Options: A. 0 B. -5 C. -1 D. \infty

See Solution

Problem 14109

A spherical tumor's radius grows by 15\frac{1}{5} cm/week. Find the volume's growth rate when the radius is 3 cm.

See Solution

Problem 14110

Evaluate the integral xsin14xdx\int x \sin \frac{1}{4} x \, dx using integration by parts. Choose the correct new integral form.

See Solution

Problem 14111

Find dydx\frac{d y}{d x} for x2+y2=xy+19x^{2}+y^{2}=x y+19 at x=5,y=2x=5, y=2. What is dydx=\frac{d y}{d x}=\square?

See Solution

Problem 14112

Evaluate the integral 1eln22xdx=(\int_{1}^{e} \ln 22 x \, dx = \square( Type an exact answer.)

See Solution

Problem 14113

Find dydx\frac{d y}{d x} for x3+y3=6\sqrt[3]{x}+\sqrt[3]{y}=6 at x=1x=1, y=8y=8. What is dydx=\frac{d y}{d x}=\square?

See Solution

Problem 14114

Find dpdx\frac{d p}{d x} for the demand equation x=500p2x=\sqrt{500-p^{2}} at p=20p=20.

See Solution

Problem 14115

Evaluate the integral x2e10xdx\int x^{2} e^{10 x} d x using integration by parts. Choose the correct answer.

See Solution

Problem 14116

Evaluate the integral xsin14xdx\int x \sin \frac{1}{4} x \, dx using integration by parts. Which option simplifies it?

See Solution

Problem 14117

Find the limit: limx05x=\lim _{x \rightarrow 0} \frac{5}{x}= A. 0 B. 1 C. 5 D. \infty

See Solution

Problem 14118

Find the volume change rate of a sphere with radius 6 in, given drdt=43\frac{dr}{dt} = \frac{4}{3} in/min. Use dVdt=4πr2drdt\frac{dV}{dt}=4\pi r^{2}\frac{dr}{dt}.

See Solution

Problem 14119

Evaluate the integral 10xln9xdx\int 10 x \ln 9 x \, dx using integration by parts. Which option simplifies it? A. 5xln(5x2)(9x)dx5 x \ln (5 x^{2}) - \int(9 x) \, dx B. 5xln(5x)(9x)dx5 x \ln (5 x) - \int(9 x) \, dx C. 5x2ln(9x)(5x)dx5 x^{2} \ln (9 x) - \int(5 x) \, dx D. 9xln(9x)(5x2)dx9 x \ln (9 x) - \int(5 x^{2}) \, dx

See Solution

Problem 14120

Derive the reduction formula using integration by parts: xncosaxdx=xnsinaxanaxn1sinaxdx\int x^{n} \cos a x \, dx=\frac{x^{n} \sin a x}{a}-\frac{n}{a} \int x^{n-1} \sin a x \, dx for a0 a \neq 0 . What is the formula for integration by parts? A. udv=uvvdu\int u \, dv = uv - \int v \, du B. udv=uduvdv\int u \, dv = \int u \, du - \int v \, dv C. udv=uvudv\int u \, dv = uv - \int u \, dv D. udv=udu+vdv\int u \, dv = \int u \, du + \int v \, dv

See Solution

Problem 14121

Evaluate the integral 8xe7xdx\int 8 x e^{7 x} d x using integration by parts. Choose the correct answer.

See Solution

Problem 14122

Evaluate the integral: x5e5xdx\int x^{5} e^{5 x} d x using the reduction formula for eaxe^{a x}.

See Solution

Problem 14123

Find dydx\frac{d y}{d x} using implicit differentiation for the equation x(y5)2=8x(y-5)^{2}=8.

See Solution

Problem 14124

Use implicit differentiation on y3y2+y1=xy^{3}-y^{2}+y-1=x to find dydx\frac{d y}{d x}.

See Solution

Problem 14125

Test if the series n=1sin(nπ/6)1+nn\sum_{n=1}^{\infty} \frac{\sin (n \pi / 6)}{1+n \sqrt{n}} is absolutely convergent, conditionally convergent, or divergent.

See Solution

Problem 14126

Evaluate the integral using integration by parts: 1eln22xdx=(\int_{1}^{e} \ln 22 x \, dx = \square( Type an exact answer.)

See Solution

Problem 14127

Evaluate the integral: xsin14xdx=\int x \sin \frac{1}{4} x \, dx = \square

See Solution

Problem 14128

Find the predicted population in 4 years using the model P(t)=219,000e0.021tP(t)=219,000 e^{-0.021 t}. Round to the nearest person.

See Solution

Problem 14129

Calculate the expectation R\mathbb{R} and variance V\mathbb{V} for the PDF ρ(x)=2π1x2+1\rho(x)=\frac{2}{\pi} \frac{1}{x^{2}+1} on [0,+)[0,+\infty). Check for convergence first.

See Solution

Problem 14130

Find the storage time tt that maximizes the wine value V(t)=2000+60t10tV(t)=2000+60 \sqrt{t}-10 t, for 0t250 \leq t \leq 25. t=yr t=\square \mathrm{yr}

See Solution

Problem 14131

Find the predicted population in 9 years using the model P(t)=458,000e0.015tP(t)=458,000 e^{-0.015 t}. Round to the nearest person.

See Solution

Problem 14132

Find the tax rate tt that maximizes revenue, given S(t)=76t3S(t)=7-6 \sqrt[3]{t}. Round your answer to three decimal places.

See Solution

Problem 14133

For the function f(x)=2x+5f(x)=\frac{2}{x+5}, which limit behavior is correct as xx approaches certain values?

See Solution

Problem 14134

Find the learning rate at 4 hours and 8 hours, given y=25x23y=25 \sqrt[3]{x^{2}}.

See Solution

Problem 14135

Determine where the function f(x)=1+7x6x2f(x)=1+\frac{7}{x}-\frac{6}{x^{2}} is increasing or decreasing.

See Solution

Problem 14136

Find the local max and min of the function f(x)=1+7x6x2f(x)=1+\frac{7}{x}-\frac{6}{x^{2}}.

See Solution

Problem 14137

Determine the horizontal asymptote of the function f(x)=1+7x6x2f(x)=1+\frac{7}{x}-\frac{6}{x^{2}}.

See Solution

Problem 14138

Find the sensitivity SS, defined as the rate of change of reaction RR with respect to brightness xx, given R(x)=40+24x0.41+4x0.4R(x)=\frac{40+24 x^{0.4}}{1+4 x^{0.4}}. R(x)=R^{\prime}(x)=

See Solution

Problem 14139

Analyze the function f(x)=2x2x21f(x)=\frac{2x^2}{x^2 -1}:
1. Find and simplify f(x)f'(x); determine where f(x)>0f'(x)>0 and f(x)<0f'(x)<0.
2. Identify critical numbers and check for local max/min.
3. Find and simplify f(x)f''(x); determine where f(x)>0f''(x)>0 and f(x)<0f''(x)<0.
4. Identify concavity and points of inflection.

See Solution

Problem 14140

Find the sensitivity SS of the reaction R(x)=40+24x0.41+4x0.4R(x)=\frac{40+24 x^{0.4}}{1+4 x^{0.4}}. Compute R(x)R'(x).

See Solution

Problem 14141

Evaluate if the following limits are indeterminate forms given:
1. limxaf(x)=0\lim _{x \rightarrow a} f(x)=0
2. limxag(x)=0\lim _{x \rightarrow a} g(x)=0
3. limxah(x)=1\lim _{x \rightarrow a} h(x)=1
4. limxap(x)=\lim _{x \rightarrow a} p(x)=\infty
5. limxaq(x)=\lim _{x \rightarrow a} q(x)=\infty

(a) limxa[f(x)p(x)]\lim _{x \rightarrow a}[f(x)-p(x)] (b) limxa[p(x)q(x)]\lim _{x \rightarrow a}[p(x)-q(x)] (c) limxa[p(x)+q(x)]\lim _{x \rightarrow a}[p(x)+q(x)]
If indeterminate, enter INDETERMINATE.

See Solution

Problem 14142

Find the derivative of the function y=x2(4x29x)y=x^{2}(4x^{2}-9x). What is yy'?

See Solution

Problem 14143

Find the derivative of the function f(x)=x8x3f(x)=\sqrt{x}-8 \sqrt[3]{x}, so f(x)=f^{\prime}(x)=

See Solution

Problem 14144

Find the derivative of f(x)=10x3+2cosxf(x)=\frac{10}{\sqrt[3]{x}}+2 \cos x.

See Solution

Problem 14145

Differentiate h(t)=t24t+3t+1h(t)=\frac{t^{2}-4 t+3}{t+1} with respect to tt. Find h(t)=h^{\prime}(t)=\square.

See Solution

Problem 14146

Differentiate the function h(t)=t23t+5t+4h(t)=\frac{t^{2}-3 t+5}{t+4} with respect to tt: h(t)=h^{\prime}(t)=\square.

See Solution

Problem 14147

Find the absolute maximum of the function f(x)=x108+x2f(x)=\frac{\sqrt{x}}{108+x^{2}} on the interval 0x80 \leq x \leq 8.

See Solution

Problem 14148

Find the absolute maximum of the function f(x)=x108+x2f(x)=\frac{\sqrt{x}}{108+x^{2}} for 0x80 \leqslant x \leqslant 8. What is xx?

See Solution

Problem 14149

Find the limit using L'Hospital's rule: limx01cos7x1cos2x.\lim _{x \rightarrow 0} \frac{1-\cos 7 x}{1-\cos 2 x}.

See Solution

Problem 14150

Find dydx\frac{d y}{d x} for the equation y9ln(x4)+5x7y10=7y^{9} \ln(x^{4}) + 5x^{7} - y^{10} = -7.

See Solution

Problem 14151

Find dydx\frac{d y}{d x} for the equation y2ln(x10)10x6y3=4y^{2} \ln (x^{10}) - 10 x^{6} - y^{3} = -4.

See Solution

Problem 14152

Find the rate of change of the area A=s2A=s^{2} with respect to ss when s=4s=4 meters. What is A(4)A^{\prime}(4)?

See Solution

Problem 14153

Find the average rate of change of f(t)=6t21f(t)=6 t^{2}-1 over [5,5.1][5,5.1] and compare it with the rates at the endpoints.

See Solution

Problem 14154

Bestimme die Ableitung von f(x)=x2+2f(x)=x^{2}+2 an den gegebenen Stellen und trage die Werte in ein Koordinatensystem ein.

See Solution

Problem 14155

Find the derivative of g(x)=(3x5)(17x)g(x)=(3 x-5)(1-7 x) using the Product Rule: g(x)=g^{\prime}(x)=

See Solution

Problem 14156

Calculate the average rate of change of f(t)=8t+1f(t)=8t+1 over [2,6][2,6] and compare it with the rates at the endpoints.

See Solution

Problem 14157

Use a graphing tool to estimate and find the limit of f(x)=x2xx(x1)f(x)=x^{2}-x \sqrt{x(x-1)} as xx \to \infty.

See Solution

Problem 14158

Find the derivative of g(x)=7sinxexg(x)=\frac{7 \sin x}{e^{x}} using the Quotient Rule: g(x)=g^{\prime}(x)=\square.

See Solution

Problem 14159

Find the average rate of change of f(t)=5t22f(t)=5t^2-2 from t=4t=4 to t=4.1t=4.1, and the instantaneous rates at both points.

See Solution

Problem 14160

Find the derivative of the function y=excotxy=e^{x}-\cot x. What is yy^{\prime}?

See Solution

Problem 14161

Find the average rate of change of f(t)=5t22f(t)=5 t^{2}-2 over [4,4.1][4,4.1] and compare with instantaneous rates at endpoints.

See Solution

Problem 14162

Find the derivative of f(x)=4excosxf(x)=4 e^{x} \cos x using the Product Rule. What is f(x)f^{\prime}(x)?

See Solution

Problem 14163

Find the derivative f(x)f^{\prime}(x) and evaluate it at cc for the function f(x)=x24x3f(x)=\frac{x^{2}-4}{x-3}.

See Solution

Problem 14164

Find f(x)f^{\prime}(x) and f(1)f^{\prime}(1) for the function f(x)=x24x3f(x)=\frac{x^{2}-4}{x-3}.

See Solution

Problem 14165

Find f(x)f^{\prime}(x) and f(0)f^{\prime}(0) for f(x)=(x5+3x)(2x4+2x4)f(x)=(x^{5}+3x)(2x^{4}+2x-4).

See Solution

Problem 14166

Evaluate the integral cot3xcsc43xdx\int \sqrt{\cot 3 x} \csc ^{4} 3 x \, dx.

See Solution

Problem 14167

Find the derivative of the function y=7xsin(x)+x2exy=7x \sin(x) + x^2 e^x. What is yy'?

See Solution

Problem 14168

A culture starts with 420 bacteria, growing as P(t)=420(5+3t25+t2)P(t)=420\left(5+\frac{3 t}{25+t^{2}}\right). Find P(t)P^{\prime}(t) and P(2)P^{\prime}(2).

See Solution

Problem 14169

Integrate (csc4x+cot4x)2(\csc 4 x + \cot 4 x)^{2} with respect to xx.

See Solution

Problem 14170

Find f(x)f^{\prime}(x) and f(c)f^{\prime}(c) for the function f(x)=xcos(x)f(x)=x \cos (x) where c=π4c=\frac{\pi}{4}.

See Solution

Problem 14171

Find the growth rate P(t)P^{\prime}(t) when t=2t=2 for P(t)=420(325+t6t2(25+t2)2)P^{\prime}(t)=420\left(\frac{3}{25+t}-\frac{6t^{2}}{(25+t^{2})^{2}}\right). Round to two decimal places.

See Solution

Problem 14172

Show that g(1)μng(n+1n)g(1n) g(1) \leq \mu_n \leq g\left(\frac{n+1}{n}\right) - g\left(\frac{1}{n}\right) given the equations for g(x) g'(x) , g(x) g(x) , and μn \mu_n .

See Solution

Problem 14173

Berechnen Sie das Integral von f(x)=3xf(x)=3 \sqrt{x} im Intervall [0,3][0, 3].

See Solution

Problem 14174

Berechne das Integral von f(x)=1xf(x) = \frac{1}{\sqrt{x}} im Intervall [1; 4] oder den Flächeninhalt unter dieser Kurve.

See Solution

Problem 14175

Calculate the integral x294x2dx\int x^{2} \sqrt{9-4 x^{2}} \, dx.

See Solution

Problem 14176

Bestimme die Monotonieintervalle für die Funktionen f(x)=6,5x2+1f(x)=6,5 x^{2}+1 und f(x)=13x3+12x2f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}.

See Solution

Problem 14177

Find the integral: dxxx29\int \frac{d x}{x \sqrt{x^{2}-9}}.

See Solution

Problem 14178

Evaluate the integral: dxxx29\int \frac{d x}{x \sqrt{x^{2}-9}}.

See Solution

Problem 14179

Berechnen Sie die Fläche unter der Funktion f(x)=4x2f(x)=\frac{4}{x^{2}} im Intervall [3,1][-3, -1].

See Solution

Problem 14180

Evaluate the integral dx4925x2\int \frac{d x}{49-25 x^{2}}.

See Solution

Problem 14181

Find the derivative of the function f(x)=15xx2x23f(x)=\frac{1-5x-x^{2}}{x^{2}-3}. What is f(x)f'(x)?

See Solution

Problem 14182

Find the derivative of f(x)=3x2ln(3x)f(x)=3 x^{2} \ln(3 x).

See Solution

Problem 14183

Evaluate the integral: dx(x+3)225\int \frac{d x}{(x+3)^{2}-25}.

See Solution

Problem 14184

Find the derivative of the function f(x)=15xx2x23f(x)=\frac{1-5 x-x^{2}}{x^{2}-3}. What is f(x)f^{\prime}(x)?

See Solution

Problem 14185

Find the derivative of f(x)=6x2ln(6x)f(x)=6 x^{2} \ln(6 x).

See Solution

Problem 14186

Evaluate the integral xarcsinx1x2dx\int \frac{x \arcsin x}{\sqrt{1-x^{2}}} d x.

See Solution

Problem 14187

Solve the differential equation: (y2+y)dx+xdy=0(y^{2}+y) \, dx + x \, dy = 0.

See Solution

Problem 14188

Find the derivative of the function y=x(82x)y=x(8^{-2x}).

See Solution

Problem 14189

Find the derivative of h(x)=sin(7x)cos(7x)h(x)=\sin(7x)\cos(7x).

See Solution

Problem 14190

Find the derivative f(x)=64x2+4096(x2+64)2f^{\prime}(x)=\frac{-64 x^{2}+4096}{(x^{2}+64)^{2}} and evaluate it at x=4x=-4. Then, find the tangent line at (4,165)(-4,-\frac{16}{5}).

See Solution

Problem 14191

Analyze the function y=x2x2+75y=\frac{x^{2}}{x^{2}+75}: find intercepts, extrema, inflection points, and asymptotes.

See Solution

Problem 14192

Analyze and sketch the graph of y=x2x2+75y=\frac{x^{2}}{x^{2}+75}. Find intercepts, extrema, inflection points, and asymptotes.

See Solution

Problem 14193

Determine if Rolle's Theorem applies to f(x)=(x2)(x3)(x8)f(x)=(x-2)(x-3)(x-8) on [2,8][2,8]. If yes, find cc where f(c)=0f'(c)=0.

See Solution

Problem 14194

Find the integral of the function (23x+1)2(2^{3x} + 1)^{2} with respect to xx.

See Solution

Problem 14195

Bestimmen Sie FF zu ff mit F(1)=100F(1)=100: (a) f(x)=2xf(x)=2x, (b) f(x)=x2f(x)=x^{2}, (c) f(x)=5f(x)=5, (d) f(x)=xf(x)=-x, (e) f(x)=10f(x)=-10.

See Solution

Problem 14196

Determine if Rolle's Theorem applies to f(x)=(x2)(x3)(x8)f(x)=(x-2)(x-3)(x-8) on [2,8][2,8]. If yes, find cc where f(c)=0f'(c)=0.

See Solution

Problem 14197

Find the derivative of h(x)=(3x2)2h(x)=(3x-2)^{2} and simplify it to h(x)=18x12h^{\prime}(x)=18x-12.

See Solution

Problem 14198

Finde die Stammfunktionen für die folgenden Funktionen: (a) f(x)=2x+x3f(x)=2 x+x^{3}, (b) f(x)=3x2+12x3f(x)=-3 x^{2}+\frac{1}{2} x^{3}, (c) f(x)=23x4+x2f(x)=\frac{2}{3} x^{-4}+x^{-2}, (d) f(x)=14x52x4+2x3f(x)=-\frac{1}{4} x^{-5}-2 x^{-4}+2 x^{3}, (e) f(x)=x+x3f(x)=\sqrt{x}+x^{3}, (f) f(x)=3x42x2+7xf(x)=3 x^{-4}-2 x^{-2}+7 x.

See Solution

Problem 14199

Find the derivative of g(x)=(9x244x+9)2g(x)=\left(\frac{9 x^{2}-4}{4 x+9}\right)^{-2}.

See Solution

Problem 14200

Find the temperature below which the reaction 2HNO3(aq)+NO(g)3NO2(g)+H2O(l)2 \mathrm{HNO}_3(\mathrm{aq})+\mathrm{NO}(\mathrm{g}) \rightarrow 3 \mathrm{NO}_2(\mathrm{g})+\mathrm{H}_2\mathrm{O}(\mathrm{l}) is nonspontaneous, given ΔH=+193 kJ\Delta H=+193 \mathrm{~kJ} and ΔS=+285 J/K\Delta S=+285 \mathrm{~J/K}. Report without decimals.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord