Calculus

Problem 3601

Find the surface area of the graph y=2x2y=2 x^{2} from x=2x=2 to x=4x=4 when revolved around the xx-axis. Set up the integral.

See Solution

Problem 3602

A particle moves along the curve r(t)=(cos2t,cos2t,t)\vec{r}(t)=\left(\cos ^{\wedge} 2 t,-\cos ^{\wedge} 2 t, t\right). Find its max speed and when it occurs, plus the acceleration related to direction change.

See Solution

Problem 3603

Stilus-Stifte hat eine Kostenfunktion K(x)=2x318x2+62x+32K(x)=2 x^{3}-18 x^{2}+62 x+32. a) Erklären Sie den Graphen und den Wendepunkt. b) Bei \$50 pro 1000 Bleistifte, wo wird Gewinn erzielt und wo ist er maximal?

See Solution

Problem 3604

Find the infinite limits: 1. limx3+8x3\lim _{x \rightarrow 3^{+}} \frac{8}{x-3}; I. limx38x3\lim _{x \rightarrow 3^{-}} \frac{8}{x-3}.

See Solution

Problem 3605

Calculate the integral: x21x2+1dx\int \frac{x^{2}-1}{x^{2}+1} d x

See Solution

Problem 3606

Evaluate the integral: 2x2+1dx\int \frac{2}{x^{2}+1} \, dx.

See Solution

Problem 3607

Find the direction of rr^{\prime} for r(t)=5t2,7t+1,t2r(t)=\langle 5t-2, 7t+1, t^{2} \rangle at t0=1t_{0}=1. Choose the correct option.

See Solution

Problem 3608

Evaluate the limit as hh approaches 0: limh02(3+h)218h\lim_{h \rightarrow 0} \frac{2(3+h)^{2}-18}{h}. Simplify first.

See Solution

Problem 3609

Given the piecewise function:
f(x)={14if x>91if x=9x+14if 8x<922if x<8f(x) = \begin{cases} 14 & \text{if } x > 9 \\ 1 & \text{if } x = 9 \\ -x + 14 & \text{if } -8 \leq x < 9 \\ 22 & \text{if } x < -8 \end{cases}
Sketch the graph and find the limits:
1. limx9f(x)\lim_{x \to 9^{-}} f(x)
2. limx9+f(x)\lim_{x \to 9^{+}} f(x)
3. limx9f(x)\lim_{x \to 9} f(x)
4. limx8f(x)\lim_{x \to -8^{-}} f(x)
5. limx8+f(x)\lim_{x \to -8^{+}} f(x)

See Solution

Problem 3610

Sketch the graph of the piecewise function f(x)f(x) and find the limits as specified:
1. limx9f(x)\lim _{x \rightarrow 9^{-}} f(x)
2. limx9+f(x)\lim _{x \rightarrow 9^{+}} f(x)
3. limx9f(x)\lim _{x \rightarrow 9} f(x)
4. limx8f(x)\lim _{x \rightarrow -8^{-}} f(x)
5. limx8+f(x)\lim _{x \rightarrow -8^{+}} f(x)
6. limx8f(x)\lim _{x \rightarrow -8} f(x)

See Solution

Problem 3611

Calculate the integral: x2+1x21dx\int \frac{x^{2}+1}{x^{2}-1} d x

See Solution

Problem 3612

Bestimme die Ableitungen für die Funktionen: a) f(x)=2x+x3f(x)=2 x+x^{3}, b) f(x)=5xf(x)=5 x, c) f(x)=ax2f(x)=a x^{2}, d) f(x)=axnf(x)=a x^{n}, e) f(x)=2x2+4xf(x)=2 x^{2}+4 x, f) f(x)=12x2+5f(x)=\frac{1}{2} x^{2}+5, g) f(x)=2x33x2+2f(x)=2 x^{3}-3 x^{2}+2, h) f(x)=ax3+bx+cf(x)=a x^{3}+b x+c.

See Solution

Problem 3613

Calculate the integral: 1x2+8x+7dx\int \frac{1}{\sqrt{x^{2}+8 x+7}} d x

See Solution

Problem 3614

Evaluate the integral 1v=94x2dx\int \frac{1}{v=9-4 x^{2}} d x.

See Solution

Problem 3615

Find the difference quotient, f(a+h)f(a)h\frac{f(a+h)-f(a)}{h}, for f(x)=x2xf(x)=\sqrt{x^{2}-x}.

See Solution

Problem 3616

Evaluate the integral: 1494x2dx\int \frac{1}{\sqrt{49-4 x^{2}}} d x

See Solution

Problem 3617

Find the integral of 1x(x+2)\frac{1}{x(x+2)} with respect to xx.

See Solution

Problem 3618

Calculate the integral x3x2+1dx\int \frac{x^{3}}{x^{2}+1} d x.

See Solution

Problem 3619

Bestimmen Sie die Ableitung von f(x)=x3+xf(x)=x^{3}+\sqrt{x}.

See Solution

Problem 3620

Bestimmen Sie die Extrempunkte der Funktion f(x)=12x3axf(x) = \frac{1}{2} x^{3}-a x.

See Solution

Problem 3621

Find the derivative using the product rule for: p(y)=(y1+y2)(2y37y4)p(y)=\left(y^{-1}+y^{-2}\right)\left(2 y^{-3}-7 y^{-4}\right). What is p(y)p^{\prime}(y)?

See Solution

Problem 3622

Bestimmen Sie, welcher Graph die Integralfunktion I0:x0xf(t)dtI_{0}: x \mapsto \int_{0}^{x} f(t) dt und welcher die Funktion I1:x1xh(t)dt\mathrm{I}_{1}: \mathrm{x} \mapsto \int_{1}^{\mathrm{x}} \mathrm{h}(\mathrm{t}) dt darstellt. Begründen Sie Ihre Wahl.

See Solution

Problem 3623

Calculate the limit: limxlnxx\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}.

See Solution

Problem 3624

Find h(8)h^{\prime}(8) for h(x)=f(x)g(x)h(x)=\frac{f(x)}{g(x)} given f(8)=1f(8)=1, f(8)=2f'(8)=2, g(8)=9g(8)=9, g(8)=6g'(8)=6.

See Solution

Problem 3625

Find the tangent line equation to f(x)=(3x2)(x+6)f(x)=(3 x-2)(x+6) at the point (1,7)(1,7).

See Solution

Problem 3626

Find the tangent line equation for f(x)=(3x5)(x+6)f(x)=(3x-5)(x+6) at the point (2,8)(2,8).

See Solution

Problem 3627

Find the derivative of the function f(x)=x3+84f(x)=\frac{x^{3}+8}{4}.

See Solution

Problem 3628

5 Forscher untersuchen das Bakterienwachstum mit A(t)=0,005t3+0,2t2+0,9t+1A(t)=-0,005 t^{3}+0,2 t^{2}+0,9 t+1.
a) Fläche um 3 Uhr morgens? b) Maximale Zunahme der Fläche?

See Solution

Problem 3629

Find the values of xx where f(x)=0f'(x)=0 for the function f(x)=(x25)(x25)f(x)=(x^{2}-5)(x^{2}-\sqrt{5}).

See Solution

Problem 3630

Calculate the derivative of the product f(x)g(x)f(x) g(x) using f(x)g(x)f'(x) g'(x) for f(x)=x2+bxf(x)=x^{2}+b x and g(x)=cx+dg(x)=c x+d. What is f(x)g(x)f'(x) g'(x)?

See Solution

Problem 3631

Calculate the derivatives:
(a) Find f(x)g(x)f^{\prime}(x) g^{\prime}(x) for f(x)=x2+bxf(x)=x^{2}+bx and g(x)=cx+dg(x)=cx+d.
(b) Compute [f(x)g(x)][f(x) g(x)]^{\prime} and show it differs from part (a).

See Solution

Problem 3632

Find the derivative of the function f(x)=x9f(x)=x^{9}.

See Solution

Problem 3633

Bestimmen Sie die Ableitung von g(x)=x2ng(x)=x^{2 n}.

See Solution

Problem 3634

A bike company finds that a new employee assembles M(d)=97d24d2+11M(d)=\frac{97 d^{2}}{4 d^{2}+11} bikes/day after dd days.
(a) Determine M(d)M'(d). (b) Calculate and explain M(2)M'(2) and M(5)M'(5).

See Solution

Problem 3635

Find the derivative of f(x)=x7f(x)=x^{7} at the point x0=1x_{0}=-1.

See Solution

Problem 3636

Find the derivative of the function g(x)=x2g(x)=x^{-2} using the power rule.

See Solution

Problem 3637

Find the derivative s(x)s'(x) of the function s(x)=xm+nxs(x) = \frac{x}{m+nx} and evaluate it at x=50x=50, m=15m=15, n=3n=3.

See Solution

Problem 3638

Rewrite f(x)=1x7f(x)=\frac{1}{x^{7}} with xx in the numerator, then find the derivative of the function.

See Solution

Problem 3639

Bestimmen Sie die Wendepunkte von ff: a) f(x)=x3+2f(x)=x^{3}+2, b) f(x)=4+2xx2f(x)=4+2 x-x^{2}, e) f(x)=13x3x2+2xf(x)=\frac{1}{3} x^{3}-x^{2}+2 x.

See Solution

Problem 3640

Calculate the diver's speed when entering the water from an 82 ft platform, neglecting air resistance. Answer in mph.

See Solution

Problem 3641

Simplify the expression: (1x+h1x)h\frac{\left(\frac{1}{x+h}-\frac{1}{x}\right)}{h}.

See Solution

Problem 3642

Find the rate of change of vehicles in line for f(x)=x23(2x)f(x)=\frac{x^{2}}{3(2-x)} at x=0.3x=0.3. Round to four decimal places.

See Solution

Problem 3643

Simplify the expression: (1x+h1x)h\frac{\left(\frac{1}{x+h}-\frac{1}{x}\right)}{h}.

See Solution

Problem 3644

Berechnen Sie folgende Integrale: a) 02(x34x)dx\int_{0}^{2}(x^{3}-4 x) d x, b) 12(x23)2dx\int_{1}^{2}(x^{2}-3)^{2} d x, c) 243dt\int_{-2}^{4} 3 d t, d) 0πcos(x)dx\int_{0}^{\pi} \cos (x) d x, e) 0πsin(t)dt\int_{0}^{\pi} \sin (t) d t, f) 191tdt\int_{1}^{9} \frac{1}{\sqrt{t}} d t, g) 12(x31x2)dx\int_{1}^{2}(x^{3}-\frac{1}{x^{2}}) d x, h) 22(x+sin(x))dx\int_{-2}^{2}(x+\sin (x)) d x.

See Solution

Problem 3645

Berechnen Sie die Integrale: a) 02(x34x)dx\int_{0}^{2}(x^{3}-4 x) d x und c) 243 dt\int_{-2}^{4} 3 \mathrm{~d} t.

See Solution

Problem 3646

Maximale Rechtecke: a) Finde die Seitenlängen eines Rechtecks mit Umfang 1 m, um die Fläche zu maximieren. b) Gilt das Ergebnis für alle Rechtecke?

See Solution

Problem 3647

Berechnen Sie die Fläche zwischen der Funktion ff und der xx-Achse für die Intervalle: a) f(x)=x+3,I=[0;4]f(x)=x+3, I=[0; 4], b) f(x)=2x2+1,I=[1;2]f(x)=2x^{2}+1, I=[1; 2], c) f(x)=(2x)2,I=[1;3]f(x)=(2-x)^{2}, I=[1; 3]. Skizze anfertigen.

See Solution

Problem 3648

Evaluate the integral 01x39x2dx\int_{0}^{1} \frac{x^{3}}{\sqrt{9-x^{2}}} d x.

See Solution

Problem 3649

Find the rate of change of vehicles in line for f(x)=x23(2x)f(x)=\frac{x^{2}}{3(2-x)} at x=0.3x=0.3. Round to four decimal places.

See Solution

Problem 3650

Find the derivative of y=(7x42x2+3)4y=(7 x^{4}-2 x^{2}+3)^{4}. What is u=g(x)u=g(x) if y=f(u)y=f(u)? g(x)=g(x)=

See Solution

Problem 3651

Find the derivative of f(x)=e0.2x(10xx2)f(x) = e^{-0.2x}(10x - x^2).

See Solution

Problem 3652

Integrate tan1(x12)\tan^{-1}\left(x^{\frac{1}{2}}\right) with respect to xx.

See Solution

Problem 3653

Find Dx(f[g(x)])D_{x}(f[g(x)]) at x=3x=3 and Dx(g[f(x)])D_{x}(g[f(x)]) at x=1x=1 using the given function values and derivatives.

See Solution

Problem 3654

Find the tangent line equation for f(x)=x2+33f(x)=\sqrt{x^{2}+33} at x=4x=4. Calculate f(x)f^{\prime}(x).

See Solution

Problem 3655

Find the tangent line equation for f(x)=x2+55f(x)=\sqrt{x^{2}+55} at x=3x=3. y=y= (Use x\mathrm{x} as the variable.)

See Solution

Problem 3656

Find the tangent line equation for f(x)=x(x24x+5)9f(x)=x(x^{2}-4x+5)^{9} at x=2x=2. y=y= (Use x\mathrm{x} as the variable.)

See Solution

Problem 3657

Differentiate the function f=eu2f=e^{u^{2}}.

See Solution

Problem 3658

Find the production level xx (up to 110 units) that minimizes the average cost given by C(x)=0.2x324x2+1503x+30,968C(x)=0.2 x^{3}-24 x^{2}+1503 x+30,968. Round to one decimal place.

See Solution

Problem 3659

If the whitetail deer population grows at 11.5%11.5\%, how long to double it? Round to the nearest tenth.

See Solution

Problem 3660

Find the tangent line to g(x)=16x4xg(x)=\frac{16}{x}-4 \sqrt{x} at the point where x=4x=4.

See Solution

Problem 3661

Find the Taylor series for h(x)=x3ln(13x)h(x)=x^{3} \ln (1-3 x). Discuss the critical point at x=0x=0 and classify it.

See Solution

Problem 3662

Find limx3h(x)\lim_{x \rightarrow 3} h(x) if f(x)h(x)g(x)f(x) \leq h(x) \leq g(x) for 1x51 \leq x \leq 5 with f(x)=x225x229f(x)=\frac{x^{2}-25}{x^{2}-29} and g(x)=x+52x+4g(x)=\frac{x+5}{2x+4}.

See Solution

Problem 3663

A drone descends at 25.0 m/s25.0 \mathrm{~m/s}. You drop a tennis ball from a 180 m building. What’s the ball's speed when it meets the drone?

See Solution

Problem 3664

Find the limits: f(x)=x22x2f(x)=\frac{x-2}{2|x-2|} as x2x \to 2^-, x2+x \to 2^+, and x2x \to 2. What's the discontinuity type?

See Solution

Problem 3665

Determine if the function g(x)={3x25x+1 if x01x(x+1) if x>0g(x)=\left\{\begin{array}{ll}3 x^{2}-5 x+1 & \text { if } x \leq 0 \\ \frac{1}{x(x+1)} & \text { if } x>0\end{array}\right. is continuous at x=0x=0. Choose true statement: (A), (B), (C), or (D).

See Solution

Problem 3666

Evaluate f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for the function f(x)=2x2+3f(x)=2x^2+3.

See Solution

Problem 3667

A farmer has 648 feet of fencing for a rectangular area divided into two equal parts. Find the dimensions for maximum area.

See Solution

Problem 3668

A farmer has 162 feet of fencing for a rectangular area with two equal regions. Find dimensions to maximize the area.

See Solution

Problem 3669

Given the equation x8z3=27x^{-8} \cdot z^{3}=27, find z(1)z(1), z(1)z'(1), z(1)z''(1), and x(3)x'(3). Round to two digits.

See Solution

Problem 3670

Find zz for x=1x=1 from x7z4=256x^{-7} \cdot z^4=256, then find zz', zz'', and xx' at z=4z=4. Round to 2 digits.

See Solution

Problem 3671

Calculate the integral of lnx\ln \sqrt{x} with respect to xx: lnxdx\int \ln \sqrt{x} \, dx.

See Solution

Problem 3672

Integrate sin2xcos3xdx\int \sin^{2} x \cos^{3} x \, dx.

See Solution

Problem 3673

Find the derivative of the function defined by 4x3+4xy6y4=2334 x^{3}+4 x y-6 y^{4}=233 and express it in the given form.

See Solution

Problem 3674

Find the derivative of the function defined by 4x2+4xy8y4=1124 x^{2}+4 x y-8 y^{4}=112 and express it in the given format. Round answers to two digits.

See Solution

Problem 3675

Given the equation x5z4=16x^{-5} \cdot z^{4}=16, find:
(a) z(1)=z(1)= (b) z(1)=z'(1)= (c) z(1)=z''(1)= (d) x(2)=x'(2)=

See Solution

Problem 3676

Find z(1)z(1), z(1)z'(1), z(1)z''(1), and x(2)x'(2) for the equation x5z4=16x^{-5} z^4 = 16. Round to two digits.

See Solution

Problem 3677

Find the derivative dduv\frac{d}{d u} v from u8+v8=Tu^{8}+v^{8}=T in the form A(uv)a+B(uv)b+CA\left(\frac{u}{v}\right)^{a}+B(u \cdot v)^{b}+C. What are the coefficients AA, aa, BB, bb, and CC?

See Solution

Problem 3678

Find z(1)z(1), z(1)z'(1), and z(1)z''(1) for x5z4=16x^{-5} \cdot z^{4}=16. Round to two decimal places.

See Solution

Problem 3679

Find the derivative of kk with respect to ll from k10+l10=Wk^{10} + l^{10} = W and express it as ddkl=A(kl)a+B(kl)b+C\frac{d}{d k} l=A\left(\frac{k}{l}\right)^{a}+B(k \cdot l)^{b}+C. Determine AA, aa, BB, bb, and CC.

See Solution

Problem 3680

Find the derivative of yy from the equation 5x3+6xy5y4=2325 x^{3}+6 x y-5 y^{4}=232 and determine the coefficient aa.

See Solution

Problem 3681

Find z(1)z(1), z(1)z'(1), z(1)z''(1), and x(7)x'(7) for the equation x9z3=343x^{-9} \cdot z^{3}=343. Round to two digits.

See Solution

Problem 3682

Given f(5)=1f(5)=1, f(5)=4f^{\prime}(5)=4, g(5)=3g(5)=-3, and g(5)=7g^{\prime}(5)=7, find: (a) (fg)(5)(f g)^{\prime}(5) (b) (fg)(5)\left(\frac{f}{g}\right)^{\prime}(5) (c) (gf)(5)\left(\frac{g}{f}\right)^{\prime}(5)

See Solution

Problem 3683

Find the derivative ddsr\frac{d}{d s} r from r10+s10=Qr^{10}+s^{10}=Q and express it as ddsr=A(sr)a+B(sr)b+C\frac{d}{d s} r=A\left(\frac{s}{r}\right)^{a}+B(s \cdot r)^{b}+C. What are the coefficients AA, aa, BB, bb, and CC?

See Solution

Problem 3684

Find the integral of x3ex2x^{3} e^{x^{2}} with respect to xx.

See Solution

Problem 3685

Find the rate of biomass increase B(4)B'(4) for a guppy population of 828, growing at 50/week, with avg mass 1.21.2 g.

See Solution

Problem 3686

Berechne das Integral: 01(3xk33x2)dx\int_{0}^{1}\left(-\frac{3 x}{\sqrt{k^{3}-3 x^{2}}}\right) d x

See Solution

Problem 3687

Find the rate of change of AA with respect to CC given B(C)=cosCB(C)=\cos C and dAdB=B3\frac{dA}{dB}=B^{-3}.

See Solution

Problem 3688

Find the elasticity of the function t(z)=29z4lnzt(z) = 29 z^{4} \ln z and determine the coefficients in the expression for Elzt(z)E l_{z} t(z).

See Solution

Problem 3689

Find the elasticity and slope of the function g(y)=31y0.5g(y) = 31 \cdot y^{-0.5} at y0=1y_0 = 1. Round to two digits.

See Solution

Problem 3690

Find the derivative of f(x)=3x5+5x4+6x1/3+5x3+3x+22f(x)=3 x^{5}+5 x^{4}+6 x^{1/3}+5 x^{-3}+3 x+22 and the coefficients aa to kk. What is aa?

See Solution

Problem 3691

Given the function f(x)=3x5+5x4+6x1/3+5x3+3x+22f(x)=3 x^{5}+5 x^{4}+6 x^{1/3}+5 x^{-3}+3 x+22, find its derivative and coefficients aa to kk.

See Solution

Problem 3692

A ball is thrown from a building where h(t)=25t2h(t)=25-t^{2}. Find: (a) building height, (b) time to hit ground, (c) avg. velocity in 2 sec, (d) avg. velocity in last 2 sec.

See Solution

Problem 3693

Find the derivative of f(x)=3x5+5x4+6x1/3+5x3+3x+22f(x)=3 x^{5}+5 x^{4}+6 x^{1/3}+5 x^{-3}+3 x+22 and express it as df4dx(x)=ax6+bx5+cx4+dx3+ex1/3+gx2/3+hx3+ix4+jx+k\frac{d f^{4}}{d x}(x)=a \cdot x^{6}+b \cdot x^{5}+c \cdot x^{4}+d \cdot x^{3}+e \cdot x^{1/3}+g \cdot x^{-2/3}+h \cdot x^{-3}+i \cdot x^{-4}+j \cdot x+k. Determine coefficients aa to kk.

See Solution

Problem 3694

Find the derivative of g(f(x))g(f(x)) at x=7x=7 using f(x)=3(x6)21f(x)=3(x-6)^{2}-1 and g(y)=4y2+3yg(y)=4y^{2}+3y.

See Solution

Problem 3695

Find the integral of xx2+3\frac{x}{x^{2}+3} with respect to xx.

See Solution

Problem 3696

Evaluate limx1g(x)\lim _{x \rightarrow 1} g(x) given 2xg(x)x4x2+22 x \leq g(x) \leq x^{4}-x^{2}+2 for all xx.

See Solution

Problem 3697

A ball is thrown from a building with height h(t)=25t2h(t)=25-t^{2}. Find the building height, time to hit ground, and average velocities.

See Solution

Problem 3698

Find limx0f(x)\lim _{x \rightarrow 0} f(x) if limx0(2f(x)15)=45\lim _{x \rightarrow 0}(2 f(x)-15)=45.

See Solution

Problem 3699

Determine if the following statements are true or false, and provide explanations or examples:
a) If limx0f(x)=0\lim _{x \rightarrow 0} f(x)=0 and limx0g(x)=0\lim _{x \rightarrow 0} g(x)=0, then limx0f(x)g(x)\lim _{x \rightarrow 0} \frac{f(x)}{g(x)} does not exist.
b) If limxaf(x)=L\lim _{x \rightarrow a} f(x)=L, then f(a)=Lf(a)=L.

See Solution

Problem 3700

Find the rate of change of AA with respect to CC given B(C)=cosCB(C)=\cos C and dAdB=B3\frac{dA}{dB}=B^{-3}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord