Calculus

Problem 2301

Find the limit as xx approaches -10 for the expression x2+20x+100x+10\frac{x^{2}+20 x+100}{x+10}. If it doesn't exist, write "DNE".

See Solution

Problem 2302

Given f(5)=1f(5)=1, f(5)=7f^{\prime}(5)=7, g(5)=8g(5)=-8, and g(5)=6g^{\prime}(5)=6, find: (a) (fg)(5)(f g)^{\prime}(5) (b) (fg)(5)\left(\frac{f}{g}\right)^{\prime}(5) (c) (gf)(5)\left(\frac{g}{f}\right)^{\prime}(5)

See Solution

Problem 2303

Find the derivative of f(x)=5x2cos(x)4xf(x)=5 x^{2} \cos (x)-4 x. What is f(x)f^{\prime}(x)?

See Solution

Problem 2304

Find the derivative of the function f(t)=t3t6f(t)=\frac{\sqrt[3]{t}}{t-6}. What is f(t)f^{\prime}(t)?

See Solution

Problem 2305

Find the derivative of the function f(x)=2x+43x4f(x)=-\frac{2 x+4}{3 x-4}.

See Solution

Problem 2306

Find the derivative of G(x)=(8x3+5x2)5G(x)=(-8 x^{3}+5 x^{2})^{5}. What is G(x)G^{\prime}(x)?

See Solution

Problem 2307

Evaluate the limit: limx16x16x2256=\lim _{x \rightarrow 16} \frac{x-16}{x^{2}-256}= (Enter "DNE" if it doesn't exist.)

See Solution

Problem 2308

Find the derivative g(1)g^{\prime}(-1) for the function g(x)=14x2+3xg(x)=\frac{1}{4 x^{2}+3 x}.

See Solution

Problem 2309

Find the limit: limx1x+11x1\lim _{x \rightarrow 1} \frac{\sqrt{x+1}-1}{x-1}. If it doesn't exist, write DNE.

See Solution

Problem 2310

Classify the asymptotes for the functions: (a) y=x+5x6x2xy=\frac{\sqrt{x}+5 x}{6 \sqrt{x}-2 x}, (b) y=16x2+2x16x24xy=\sqrt{16 x^{2}+2 x}-\sqrt{16 x^{2}-4 x}. Use limits for justification.

See Solution

Problem 2311

Find the limit limxx22x\lim _{x \rightarrow \infty} \frac{x^{2}}{2^{x}} by evaluating it at x=0,1,2,,100x=0,1,2,\ldots,100 and sketch a graph.

See Solution

Problem 2312

Evaluate the limit: limx112x26x176x2121=\lim _{x \rightarrow 11} \frac{2 x^{2}-6 x-176}{x^{2}-121}= (Enter "DNE" if it doesn't exist.)

See Solution

Problem 2313

Evaluate the limit: limx981x2x9\lim _{x \rightarrow 9} \frac{81-x^{2}}{x-9} using algebraic transformation and continuity. Enter "DNE" if it doesn't exist.

See Solution

Problem 2314

Evaluate the limit: limx0(5+2x)3125x=\lim _{x \rightarrow 0} \frac{(5+2 x)^{3}-125}{x}= (Enter "DNE" if it doesn't exist.)

See Solution

Problem 2315

Find limx8f(x)\lim _{x \rightarrow 8} f(x) given the graph with points (0,0), (8,4), and (10,6.5).

See Solution

Problem 2316

Find f(1)f^{\prime}(1) if f(x)=3h(x)4xh(x)f(x)=-3h(x)-\frac{4x}{h(x)}, with h(1)=4h(1)=4 and h(1)=3h^{\prime}(1)=-3.

See Solution

Problem 2317

Evaluate the limit as x x approaches -4 for x2+8x+16x+4 \frac{x^{2}+8x+16}{x+4} . If it doesn't exist, enter "DNE". limx4x2+8x+16x+4=\lim _{x \rightarrow-4} \frac{x^{2}+8 x+16}{x+4}=

See Solution

Problem 2318

Find f(1)f^{\prime}(1) given f(x)=3h(x)4xh(x)f(x)=-3 \cdot h(x)-\frac{4 x}{h(x)}, h(1)=4h(1)=4, h(1)=3h^{\prime}(1)=-3.

See Solution

Problem 2319

Find h(0)h'(0) for h(x)=f(x)×g(x)h(x)=f(x) \times g(x) given f(0)=6f(0)=-6, f(0)=5f'(0)=5, g(0)=2g(0)=2, g(0)=2g'(0)=-2.

See Solution

Problem 2320

Evaluate the limit: limx9x9x281=\lim _{x \rightarrow 9} \frac{x-9}{x^{2}-81}= (Enter "DNE" if it doesn't exist.)

See Solution

Problem 2321

Find the limit: limx72x2+8x154x249=\lim _{x \rightarrow 7} \frac{2 x^{2}+8 x-154}{x^{2}-49}= (Enter "DNE" if it doesn't exist.)

See Solution

Problem 2322

Find the limit: limx100x10x100=\lim _{x \rightarrow 100} \frac{\sqrt{x}-10}{x-100}=. If it doesn't exist, enter "DNE".

See Solution

Problem 2323

Find the derivative of f(x)=3x2f(x) = 3x^{2} using the limit: limΔx03(x+Δx)23x2Δx\lim_{\Delta x \to 0} \frac{3(x+\Delta x)^{2}-3 x^{2}}{\Delta x}.

See Solution

Problem 2324

Evaluate the limit: limx4950x17x4.\lim _{x \rightarrow 49} \frac{\sqrt{50-x}-1}{7-\sqrt{x}} \cdot 4.

See Solution

Problem 2325

Evaluate the limit: limh02+h10h=\lim _{h \rightarrow 0} \frac{\sqrt{2+h}-10}{h}= (Enter "DNE" if it doesn't exist.)

See Solution

Problem 2326

Evaluate the limit: limx0(7+5x)3343x=\lim _{x \rightarrow 0} \frac{(7+5 x)^{3}-343}{x}= (Enter "DNE" if it doesn't exist.)

See Solution

Problem 2327

Evaluate the limit: limx25x5x25=\lim _{x \rightarrow 25} \frac{\sqrt{x}-5}{x-25}= (Enter "DNE" if it doesn't exist.)

See Solution

Problem 2328

Find the 35th derivative of the function f(x)=xcosxf(x) = x \cos x.

See Solution

Problem 2329

Evaluate the limit: limx4x3+64x2+15x+44\lim _{x \rightarrow-4} \frac{x^{3}+64}{x^{2}+15 x+44}. Use a3+b3=(a+b)(a2ab+b2)a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2}).

See Solution

Problem 2330

Find the limit as xx approaches 9 for the expression 9a+x9 \cdot a + x. Enter "DNE" if it doesn't exist.

See Solution

Problem 2331

Find the limit as tt approaches 5 for 4t+2at+8a4t + 2at + 8a. Enter "DNE" if it doesn't exist. limt5(4t+2at+8a)=\lim _{t \rightarrow 5}(4 t+2 a t+8 a) =

See Solution

Problem 2332

Evaluate the limit: limt34t+1214416t2=\lim _{t \rightarrow-3} \frac{4 t+12}{144-16 t^{2}}= (Exact answer, use DNE if it doesn't exist.)

See Solution

Problem 2333

Evaluate the limit:
limx2(1x212x2+8x20) \lim _{x \rightarrow 2}\left(\frac{1}{x-2}-\frac{12}{x^{2}+8 x-20}\right)
Choose the justification for your answer.

See Solution

Problem 2334

Find the limit: limh0x+h+9x+915h\lim _{h \rightarrow 0} \frac{\sqrt{x+h+9}-\sqrt{x+9}}{15 h}.

See Solution

Problem 2335

Evaluate the limit: limxπ6csc(6x)cot(6x)\lim _{x \rightarrow \frac{\pi}{6}} \frac{\csc (6 x)}{\cot (6 x)}. Justify your answer.

See Solution

Problem 2336

Evaluate the limit: limθπ2(3sec(θ)3tan(θ))=\lim _{\theta \rightarrow \frac{\pi}{2}}(3 \sec (\theta)-3 \tan (\theta))=

See Solution

Problem 2337

Evaluate the limit: limx4x3+64x2+13x+36\lim _{x \rightarrow-4} \frac{x^{3}+64}{x^{2}+13 x+36} using a3+b3=(a+b)(a2ab+b2)a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2}).

See Solution

Problem 2338

Evaluate the limit as xx approaches 6 for 9a+x9 \cdot a + x. Enter "DNE" if it doesn't exist. limx6(9a+x)=\lim _{x \rightarrow 6}(9 \cdot a+x) =

See Solution

Problem 2339

Approximate the limit of the piecewise function f(x)={x+8x23x+2x>2f(x)=\begin{cases} x+8 & x \leq 2 \\ 3x+2 & x>2 \end{cases} as x2x \to 2.

See Solution

Problem 2340

Find the limit as xx approaches 4a4a: limx4a3x3axa=\lim _{x \rightarrow 4 a} \frac{\frac{3}{x}-\frac{3}{a}}{x-a}=

See Solution

Problem 2341

Evaluate the limit: limh0x+h+4x+418h\lim _{h \rightarrow 0} \frac{\sqrt{x+h+4}-\sqrt{x+4}}{18 h}.

See Solution

Problem 2342

Evaluate the limits of the piecewise function:
f(x)={4x+8x1x26x>1 f(x)=\left\{\begin{array}{ll} 4 x+8 & x \leq 1 \\ x^{2}-6 & x>1 \end{array}\right.
Find:
limx1f(x),limx1+f(x),limx1f(x) \lim _{x \rightarrow 1^{-}} f(x), \quad \lim _{x \rightarrow 1^{+}} f(x), \quad \lim _{x \rightarrow 1} f(x)
Enter DNE if a limit does not exist.

See Solution

Problem 2343

Find the limit: limx1(1x19x2+7x8)\lim _{x \rightarrow 1}\left(\frac{1}{x-1}-\frac{9}{x^{2}+7 x-8}\right). Provide the exact answer or DNE.

See Solution

Problem 2344

Define the function f(x)={x+6if x<06if x>0f(x)=\begin{cases} x+6 & \text{if } x<0 \\ 6 & \text{if } x>0 \end{cases}. Sketch its graph and find: 1. limx0f(x)\lim _{x \rightarrow 0^{-}} f(x), 2. limx0+f(x)\lim _{x \rightarrow 0^{+}} f(x), 3. limx0f(x)\lim _{x \rightarrow 0} f(x).

See Solution

Problem 2345

Evaluate the limit: limxπ6csc(6x)cot(6x)\lim _{x \rightarrow \frac{\pi}{6}} \frac{\csc (6 x)}{\cot (6 x)}. Provide the answer in exact form or DNE if it doesn't exist.

See Solution

Problem 2346

Find the derivative of G(t)=6tt+7G(t)=\frac{6t}{t+7} using the definition and state its domain in interval notation.

See Solution

Problem 2347

Determine if the derivative f(0)f^{\prime}(0) exists for the function f(x)=x2sin(3x)f(x)=x^{2} \sin \left(\frac{3}{x}\right) when x0x \neq 0 and f(0)=0f(0)=0. If it exists, find its value.

See Solution

Problem 2348

Find the marginal revenue at 96 units for the revenue function R(q)=2q2+900qR(q)=-2 q^{2}+900 q. Calculate MR(96)=$M R(96)=\$ per unit.

See Solution

Problem 2349

Find the limit: limh07f(x+h)7f(xh)h\lim _{h \rightarrow 0} \frac{7 f(x+h)-7 f(x-h)}{h} for a differentiable function ff.

See Solution

Problem 2350

Find the marginal cost of producing 1000 stuffed alligator toys given C(x)=0.004x2+6x+7000C(x)=0.004 x^{2}+6 x+7000.

See Solution

Problem 2351

Find the extreme values of z=39x+10y+90z=39x+10y+90 with constraints y0y \geq 0 and y25x2y \leq 25-x^{2}.

See Solution

Problem 2352

Find the extreme values of z=39x+10y+90z=39x+10y+90 with constraints y0y \geq 0 and y25x2y \leq 25-x^{2}. Complete: fmin=1f_{\min }=-1 at (5,0)(-5, 0), fmax=f_{\max }=\square at (,)(\square, \square).

See Solution

Problem 2353

Find the average velocity for L(t)=t2t8L(t)=t^{2}-t-8 in these intervals:
1. [5,8][5, 8]
2. [1,6][1, 6]
3. [2,4][2, 4] (3+ decimal places)

See Solution

Problem 2354

Given the limits for function ff, determine which statements are true: A. removable discontinuity at x=1x=1, B. differentiable at x=1x=1, C. f(1)=2f(1)=2, f(1)=3f'(1)=3.

See Solution

Problem 2355

What is the expression for f(a)f^{\prime}(a) for a differentiable function ff? A, B, or C?

See Solution

Problem 2356

Find the expression for f(a)f^{\prime}(a) if ff is differentiable: A. limh0f(a+h)f(a)h\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}, B. limxaf(x)f(a)xa\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}, C. limxaf(x+h)f(x)h\lim _{x \rightarrow a} \frac{f(x+h)-f(x)}{h}.

See Solution

Problem 2357

Find the derivative of the function y=x45x4y=\frac{x}{4-5 x^{4}} in simplified form.

See Solution

Problem 2358

Find the derivative f(x)f^{\prime}(x) of the function f(x)=3x32x3+1f(x)=\frac{3 x^{3}}{2 x^{3}+1}.

See Solution

Problem 2359

Evaluate the integral: 012x3ln(x2+1)dx\int_{0}^{1} 2 x^{3} \ln \left(x^{2}+1\right) d x

See Solution

Problem 2360

A ball is dropped from 79 m. Find when it hits the ground, its velocity v(t)v(t), and acceleration a(t)a(t).

See Solution

Problem 2361

A particle's position is s(t)=2t330t2+126ts(t)=2 t^{3}-30 t^{2}+126 t. Find velocity at t=0t=0, rest times, position at t=20t=20, and total distance from t=0t=0 to t=20t=20.

See Solution

Problem 2362

A particle's position is s(t)=2t315t2+24ts(t)=2 t^{3}-15 t^{2}+24 t. Find its velocity at t=0t=0, when it stops, its position at t=10t=10, and total distance from t=0t=0 to t=10t=10.

See Solution

Problem 2363

A particle's position is s(t)=2t324t2+42ts(t)=2 t^{3}-24 t^{2}+42 t. Find its velocity at t=0t=0, when it stops, its position at t=16t=16, and total distance from t=0t=0 to t=16t=16.

See Solution

Problem 2364

Compute the surface integral S(×F)ndS\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S for the given vector field F\mathbf{F}.

See Solution

Problem 2365

Compute the surface integral SFndS\iint_{S} \mathbf{F} \cdot \mathbf{n} d S for F(x,y,z)=x,1y+ez,yez\mathbf{F}(x, y, z)=\langle x, 1-y+e^{z}, y-e^{z}\rangle on y+z=10y+z=10 inside x2+y2=1x^{2}+y^{2}=1.

See Solution

Problem 2366

Calculate the work done to compress a spring from 40 cm40 \mathrm{~cm} to 10 cm10 \mathrm{~cm} with a force of 60 N60 \mathrm{~N}.

See Solution

Problem 2367

Consider F=rr3\mathbf{F}=\frac{\mathbf{r}}{|\mathbf{r}|^{3}}. Which statement is true: (i) CFdr\int_{C} \mathbf{F} \cdot d \mathbf{r} path-independent, (ii) SFndS=0\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=0 for closed SS, (iii) div(F)=0\operatorname{div}(\mathbf{F})=0? A. None, B. (i) and (ii), C. (i) and (iii), D. (ii) and (iii), E. All.

See Solution

Problem 2368

Find the volume of the solid formed by rotating the area between x=y3x=y^{3} and x=yx=y in the first quadrant about the yy-axis using the washer method.

See Solution

Problem 2369

Find the sixth derivative of y=x2sinxy=x^{2} \sin x at x=0x=0.

See Solution

Problem 2370

Calculate the integral of x2x^{2} with respect to xx: x2dx=\int x^{2} d x=

See Solution

Problem 2371

Find the integral of x7x^{7} with respect to xx: x7dx=\int x^{7} d x=

See Solution

Problem 2372

Solve for 2xdx=(ex+cosec2x+secxtanx)dx2 x d x = \int\left(e^{x}+\operatorname{cosec}^{2} x+\sec x \cdot \tan x\right) d x.

See Solution

Problem 2373

Find the integral: (ex+cosec2x+secxtanx)dx\int\left(e^{x}+\operatorname{cosec}^{2} x+\sec x \cdot \tan x\right) d x

See Solution

Problem 2374

Calculate the integral 0?e5x+11dx\int_{0}^{?} e^{5x+11} dx.

See Solution

Problem 2375

Calculate the integral: 2log42dx\int 2^{\log _{4} 2} dx.

See Solution

Problem 2376

Calculate the integral: 2log4xdx\int 2^{\log _{4} x} dx

See Solution

Problem 2377

Calculate the integral: 2logxxdx\int 2^{\log^{x} x} \, dx

See Solution

Problem 2378

Find the integral of 5lnx5^{\ln x} with respect to xx: 5lnxdx=\int 5^{\ln x} d x=

See Solution

Problem 2379

Find the integral of the function (x22)2(x^{2}-2)^{2} with respect to xx: (x22)2dx\int (x^{2}-2)^{2} \, dx.

See Solution

Problem 2380

Calculate the integral: (13x)dx\int\left(1-\frac{3}{x}\right) d x.

See Solution

Problem 2381

Evaluate the integral: (1x4+1x4)dx\int\left(\frac{1}{x^{4}}+\frac{1}{\sqrt[4]{x}}\right) d x

See Solution

Problem 2382

Calculate the integral: x4+2x21xdx\int \frac{x^{4}+2 x^{2}-1}{\sqrt{x}} \, dx

See Solution

Problem 2383

Evaluate the integral: x(4x2)23dx\int x \sqrt[3]{(4-x^{2})^{2}} \, dx

See Solution

Problem 2384

Evaluate the integral: 1+cosxx+sinxdx\int \frac{1+\cos x}{x+\sin x} d x

See Solution

Problem 2385

Find the integral of sec2xtanx\frac{\sec ^{2} x}{\tan x} with respect to xx.

See Solution

Problem 2386

Find j(2)j^{\prime}(-2) for j(x)=f(x)g(x)j(x)=\frac{f(x)}{g(x)} using the quotient rule with given values for ff and gg.

See Solution

Problem 2387

Find h(5)h^{\prime}(-5) for h(x)=f(x)g(x)h(x)=f(x) \cdot g(x), where f(x)=95x2f(x)=9-5 x^{2}, g(5)=4g(-5)=-4, g(5)=2g^{\prime}(-5)=-2.

See Solution

Problem 2388

Find h(3)h^{\prime}(-3) for h(x)=f(x)g(x)h(x)=\frac{f(x)}{g(x)}, where f(x)=x2+8f(x)=x^{2}+8, g(3)=8g(-3)=8, g(3)=3g^{\prime}(-3)=-3. Answer: h(3)= h^{\prime}(-3)=

See Solution

Problem 2389

Find j(8)j^{\prime}(8) for j(x)=f(x)g(x)j(x)=f(x) \cdot g(x) using the product rule, given f(8)=9f(8)=-9, f(8)=8f^{\prime}(8)=8, g(8)=0g(8)=0, g(8)=3g^{\prime}(8)=-3. Answer: j(8)=j^{\prime}(8)=

See Solution

Problem 2390

Find k(0)k^{\prime}(0) for k(x)=(3x2)g(x)h(x)k(x)=(3x^{2})g(x)h(x) using the given values for g(x)g(x) and h(x)h(x).

See Solution

Problem 2391

Find k(3)k^{\prime}(3) for k(x)=x2(f(x))12xk(x)=\frac{x^{2}(f(x))}{1-2x}, given f(3)=1f(3)=1 and f(3)=2f^{\prime}(3)=2.

See Solution

Problem 2392

Find the derivative h(x)h^{\prime}(x) using the quotient rule for h(x)=7x210x2+4x3h(x)=-\frac{7 x^{2}}{-10 x^{2}+4 x-3}.

See Solution

Problem 2393

Find k(3)k'(3) for k(x)=x2(f(x))12xk(x)=\frac{x^{2}(f(x))}{1-2x}, given f(3)=1f(3)=1 and f(3)=2f'(3)=2.

See Solution

Problem 2394

Find h(3)h^{\prime}(3) for h(x)=3x2+f(x)g(x)h(x)=\frac{3}{x^{2}}+\frac{f(x)}{g(x)} using given values at x=3x=3.

See Solution

Problem 2395

Find h(3)h^{\prime}(3) for h(x)=3x2+f(x)g(x)h(x)=\frac{3}{x^{2}}+\frac{f(x)}{g(x)} using values: f(3)=4f(3)=-4, g(3)=4g(3)=-4, f(3)=1f^{\prime}(3)=1, g(3)=3g^{\prime}(3)=3.

See Solution

Problem 2396

Find h(8)h^{\prime}(8) for h(x)=f(x)g(x)h(x)=f(x) \cdot g(x) where f(x)=4x25f(x)=-4x^{2}-5, g(8)=2g(8)=2, g(8)=8g^{\prime}(8)=8.

See Solution

Problem 2397

Find k(1)k^{\prime}(-1) for k(x)=2x(h(x)+2x2g(x))k(x)=-2 x(h(x)+2 x^{2} g(x)) using given values for h(x)h(x) and g(x)g(x).

See Solution

Problem 2398

Find k(1)k^{\prime}(-1) for k(x)=2x(h(x)+2x2g(x))k(x)=-2 x(h(x)+2 x^{2} g(x)) using given values of h(x)h(x) and g(x)g(x).

See Solution

Problem 2399

Find k(2)k'(2) for k(x)=5h(x)+3x2g(x)k(x)=5h(x)+\frac{3x^2}{g(x)} using given values of hh, gg, hh', and gg'.

See Solution

Problem 2400

Find k(2)k^{\prime}(2) for k(x)=(x2)g(x)h(x)k(x)=(-x^{2}) g(x) h(x) using given values for g(x)g(x) and h(x)h(x).

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord