Calculus

Problem 24501

A 200 m200 \mathrm{~m} fence surrounds a rectangular lawn with a semi-circle.
a Explain why y=100xπ2xy=100-x-\frac{\pi}{2} x. b Show A=200xx2(2+π2)A=200 x-x^{2}\left(2+\frac{\pi}{2}\right). c Use calculus to find dimensions for maximum area.

See Solution

Problem 24502

Find the sum of the infinite series: k=02k\sum_{k=0}^{\infty} \sqrt{2}^k.

See Solution

Problem 24503

Find the slope of the curve defined by x2+2xy+y=4x^{2}+2xy+y=4 at the point (1,1)(1,1).

See Solution

Problem 24504

Find the limit: limx5x525x2\lim _{x \rightarrow 5} \frac{|x-5|}{25-x^{2}}.

See Solution

Problem 24505

Berechne den Flächeninhalt AA zwischen f(x)=x2+1f(x)=x^{2}+1, der xx-Achse und den Linien x=1x=1 und x=2x=2: A=12(x2+1)dxA = \int_{1}^{2} (x^{2} + 1) \, dx

See Solution

Problem 24506

Find the distance ss (in cm) moved by a cam-shaft follower in 4 seconds, given s=04t4+9t2dts=\int_{0}^{4} t \sqrt{4+9 t^{2}} dt.

See Solution

Problem 24507

Calculate the sum of the series: m=05m\sum_{m=0}^{\infty} 5^{-m}.

See Solution

Problem 24508

Calculate the area under the curve y=52x2y=5-2x^{2} between x=0x=0 and x=1x=1.

See Solution

Problem 24509

Evaluate the integral using the substitution u=4x2+5xu=4 x^{2}+5 x:
(8x+5)4x2+5xdx=(u)du\int(8 x+5) \sqrt{4 x^{2}+5 x} d x=\int(\sqrt{u}) d u
Find the result:
(8x+5)4x2+5xdx=\int(8 x+5) \sqrt{4 x^{2}+5 x} d x=\square

See Solution

Problem 24510

Bestimmen Sie das unbestimmte Integral: (35x)7dx=\int(3-5 x)^{7} d x=

See Solution

Problem 24511

Find the area between the xx-axis and f(x)=3ex4f(x)=3 e^{x}-4 over the interval [3,2][-3,2]. Check for xx-axis crossings.

See Solution

Problem 24512

Find the limits: h) limx5x525x2\lim _{x \rightarrow 5} \frac{|x-5|}{25-x^{2}} i) limz11z11z21\lim _{z \rightarrow 1} \frac{\frac{1}{z}-1}{\frac{1}{z^{2}}-1}

See Solution

Problem 24513

Find the limit as α\alpha approaches π\pi from the right: limαπ+tan3π2α\lim _{\alpha \rightarrow \pi^{+}} \tan \frac{3 \pi}{2}-\alpha.

See Solution

Problem 24514

Find the limit: limx2ex7+8ex\lim _{x \rightarrow \infty} \frac{2 e^{-x}}{7+8 e^{-x}}.

See Solution

Problem 24515

Find the area between the xx-axis and f(x)=ex2f(x)=e^{x}-2 over the interval [1,3][-1,3]. Does the graph cross the xx-axis?

See Solution

Problem 24516

Find the length of the curve given by y2=4(x+3)3y^{2}=4(x+3)^{3} for 0x10 \leq x \leq 1, y>0y>0.

See Solution

Problem 24517

Find the first and second derivatives of the function y=7x+1y=7x+1.

See Solution

Problem 24518

Find the limit: limx2(3x+4)\lim_{x \rightarrow 2} (-3x + 4). Choose the correct rewriting option from A, B, C, or D.

See Solution

Problem 24519

Calculate the length of the curve given by y=3+8x3/2y=3+8 x^{3/2} for 0x10 \leq x \leq 1.

See Solution

Problem 24520

Chewing frequency cc is related to body mass MM by c=kM0.128c=kM^{-0.128}. Given M(t)=1+2tM(t)=1+2\sqrt{t}, find dcdt\frac{d c}{d t}. Also, L=rM0.312L=rM^{0.312}; find dcdL\frac{d c}{d L}.

See Solution

Problem 24521

Differentiate y=9xex9exy=9 x e^{x}-9 e^{x}.

See Solution

Problem 24522

Differentiate the equation y85x3=5xy^{8}-5 x^{3}=5 x to find dydx\frac{d y}{d x}. Choose the correct answer.

See Solution

Problem 24523

Calculate the integral of the function: (x244)dx\int\left(\frac{x^{2}}{4}-4\right) d x.

See Solution

Problem 24524

Find the limit: limx4x2+xx+1\lim _{x \rightarrow-\infty} \frac{4 x^{2}+x}{x+1}.

See Solution

Problem 24525

Evaluate the infinite series: k=0k1k!\sum_{k=0}^{\infty} \frac{k-1}{k !}.

See Solution

Problem 24526

Find the exact length of the polar curve r=θ2r=\theta^{2} for 0θ8π0 \leq \theta \leq 8\pi.

See Solution

Problem 24527

Find the average rate of change of y=x22y = x^{2} - 2 from x=0x = 0 to x=1x = 1.

See Solution

Problem 24528

Fish interactions can be modeled by the Morse potential V(r)=erAearV(r)=e^{-r}-A e^{-a r}. For A=1A=1, a=12a=\frac{1}{2}, find limr0V(r)\lim_{r \to 0} V(r).

See Solution

Problem 24529

Find the average rate of change of y=x22y = x^2 - 2 from x=0x = 0 to x=1x = 1.

See Solution

Problem 24530

Evaluate the integral: (lnx)8xdx\int \frac{(\ln x)^{8}}{x} d x, assuming u>0u>0 for lnu\ln u.

See Solution

Problem 24531

Approximate the area under f(x)=ex+6f(x)=e^{x}+6 from x=2x=-2 to x=2x=2 using n=4n=4 rectangles: left, right, average, and midpoints.

See Solution

Problem 24532

Find the limit: limh0sin(x+h)cos(x+h)sinxcosxh\lim _{h \rightarrow 0} \frac{\sin (x+h) \cos (x+h)-\sin x \cos x}{h}.

See Solution

Problem 24533

Find the average rate of change of y=2x22x+2y=2x^{2}-2x+2 over the interval [0,1][0,1].

See Solution

Problem 24534

Find the area under f(x)=(10x)f(x)=(10-x) from x=0x=0 to x=10x=10 using 10 rectangles and midpoints. Area is approximately \square square units.

See Solution

Problem 24535

Find the indefinite integral and verify by differentiating:
(sec2x2)dx= \int\left(\sec ^{2} x-2\right) d x=\square

See Solution

Problem 24536

A substance grows at 14%14\% per day. If it starts at 46 grams, find its mass after 4 days, exact and rounded to the nearest tenth.

See Solution

Problem 24537

Estimate the age of cave paintings with 6%6\% carbon-14 remaining using the decay model A=A0ektA = A_0 e^{-kt}.

See Solution

Problem 24538

Find the area between the xx-axis and f(x)=2ex1f(x)=2 e^{x}-1 over the interval [-2,3]. Check for xx-axis crossings.

See Solution

Problem 24539

Calculate the area between the curves y=2,916xy=2,916 \sqrt{x} and y=108x2y=108 x^{2}. The area is \square.

See Solution

Problem 24540

Calculez f(x)f^{\prime}(x) pour f(x)=x24xf(x)=x^{2}-4x, f(x)=x+14f(x)=\sqrt{x+1}-4, f(x)=712xf(x)=\frac{7}{1-2x}, et f(x)=1x3f(x)=\frac{1}{\sqrt{x-3}}. Esquissez le graphique de la dérivée pour deux fonctions.

See Solution

Problem 24541

Differentiate the function: u=t5+6t5u=\sqrt[5]{t}+6 \sqrt{t^{5}}.

See Solution

Problem 24542

Differentiate the function u=t5+4t5u=\sqrt[5]{t}+4 \sqrt{t^{5}}.

See Solution

Problem 24543

Calculate the area in the first quadrant between y=10y=10 and y=10sinxy=10 \sin x from x=0x=0 to x=π2x=\frac{\pi}{2}. Area: \square.

See Solution

Problem 24544

How long for a tranquilizer to decay to 95%95\% of its original dosage if its half-life is 40 hours? Use A=A0ektA=A_{0} e^{kt}.

See Solution

Problem 24545

Find critical points and use the first derivative test for f(x)=x4x2f(x)=x \sqrt{4-x^{2}} on [2,2][-2,2] to determine max/min values.

See Solution

Problem 24546

Find the critical points of f(x)=x36x2f(x)=x \sqrt{36-x^{2}} on [6,6][-6,6] and determine local/absolute max/min values.

See Solution

Problem 24547

Find the absolute extrema of f(x)=13x352x26x2f(x)=\frac{1}{3} x^{3}-\frac{5}{2} x^{2}-6 x-2 on [2,7][-2,7].

See Solution

Problem 24548

Find the area between f(x)=xf(x)=x and g(x)=x1/ng(x)=x^{1/n} for x0x \geq 0, expressed in terms of positive integer n2n \geq 2.

See Solution

Problem 24549

Find the absolute extrema of f(x)=13x352x26x2f(x)=\frac{1}{3} x^{3}-\frac{5}{2} x^{2}-6 x-2 on [2,7][-2,7].

See Solution

Problem 24550

Find critical points of f(x)=x4x2f(x)=x \sqrt{4-x^{2}} on [2,2][-2,2] and use the first derivative test for extrema.

See Solution

Problem 24551

Differentiate the function y=ex+4+1y=e^{x+4}+1.

See Solution

Problem 24552

Differentiate the function y=ex+4+1y=e^{x+4}+1 and find y=y'=\square.

See Solution

Problem 24553

Differentiate the function S(R)=2πR2S(R)=2 \pi R^{2} and find S(R)S^{\prime}(R).

See Solution

Problem 24554

Differentiate the function g(u)=7u+10ug(u) = \sqrt{7} u + \sqrt{10u}. Find g(u)=g'(u) = .

See Solution

Problem 24555

Find critical points and use the first derivative test for f(x)=x36x2f(x)=x \sqrt{36-x^{2}} on [6,6][-6,6] to determine local extrema.

See Solution

Problem 24556

Find the absolute extrema of f(x)=3x4150x2+1f(x)=3 x^{4}-150 x^{2}+1 on [6,6][-6,6] and their corresponding xx values.

See Solution

Problem 24557

Find critical points and use the first derivative test for f(x)=x4x2f(x)=x \sqrt{4-x^{2}} on [2,2][-2,2]. Identify extrema.

See Solution

Problem 24558

Find the velocity v(1)v(1) and acceleration a(1)a(1) at t=1t=1 for s(t)=t24ts(t)=t^{2}-4t. v(1)= v(1)=\square

See Solution

Problem 24559

Find the absolute extrema of f(x)=3x4150x2+1f(x)=3 x^{4}-150 x^{2}+1 on [6,6][-6,6] and the xx values where they occur.

See Solution

Problem 24560

Find the first and second derivative of the function G(r)=r+r6G(r)=\sqrt{r}+\sqrt[6]{r}. What are G(r)G^{\prime}(r) and G(r)G^{\prime \prime}(r)?

See Solution

Problem 24561

Verify if the function f(x)=4x2+4x7f(x)=-4 x^{2}+4 x-7 has a local extremum and find the absolute extrema.

See Solution

Problem 24562

Find f(1)f^{\prime}(1) given that f(x)+x2[f(x)]3=10f(x)+x^{2}[f(x)]^{3}=10 and f(1)=2f(1)=2.

See Solution

Problem 24563

Find the absolute extrema of f(x)=1x5+xf(x)=\frac{1-x}{5+x} on [0,5][0,5]. What are the max value and xx where it occurs?

See Solution

Problem 24564

Find the first and second derivatives of the function f(x)=12x12+9x9xf(x)=12 x^{12}+9 x^{9}-x. What are f(x)f'(x) and f(x)f''(x)?

See Solution

Problem 24565

Find the tangent line equation at (3,4) for the curve x2+2xyy2+x=20x^{2}+2xy-y^{2}+x=20 using implicit differentiation.

See Solution

Problem 24566

Verify if the function A(r)=16r+2πr2A(r)=\frac{16}{r}+2 \pi r^{2} has an absolute extremum for r>0r>0, then find its location and value.

See Solution

Problem 24567

Find the absolute extrema of f(x)=6+x7xf(x)=\frac{6+x}{7-x} on [7,0][-7,0]. What are the values and where do they occur?

See Solution

Problem 24568

Find the absolute extrema of f(x)=3x324x2+48x+3f(x)=3 x^{3}-24 x^{2}+48 x+3 on [0,7][0,7]. What is the absolute minimum and where does it occur?

See Solution

Problem 24569

Bestimme die Ableitung der Funktionen und klammere aus: a) f(x)=xexf(x)=x \cdot e^{x} b) f(x)=(x3)exf(x)=(x-3) \cdot e^{x} c) f(x)=x2exf(x)=x^{2} \cdot e^{x} d) f(x)=20e0,1x+x+5f(x)=20 \cdot e^{0,1 x}+x+5 e) f(x)=13x32e0,25xf(x)=\frac{1}{3} x^{3}-2 \cdot e^{-0,25 x} f) f(x)=2x2ex+3+x3f(x)=2 x^{2}-e^{-x+3}+x^{3} g) f(x)=sin(x)exf(x)=\sin (x) \cdot e^{x} h) f(x)=(x25)exf(x)=\left(x^{2}-5\right) \cdot e^{x} i) f(x)=x4ex7f(x)=x^{4} \cdot e^{x}-7 j) f(x)=5xxexf(x)=5 x-x \cdot e^{x}

See Solution

Problem 24570

Differentiate the function: y=5ex+8x3y = 5 e^{x} + \frac{8}{\sqrt[3]{x}}.

See Solution

Problem 24571

Find the absolute extrema of f(x)=3x3+18x2+27x+6f(x)=3 x^{3}+18 x^{2}+27 x+6 on [6,0][-6,0]. What is the max and where does it occur?

See Solution

Problem 24572

Verify if the function A(r)=20r+2πr2,r>0A(r)=\frac{20}{r}+2 \pi r^{2}, r>0 has an absolute extremum. Find its location and value.

See Solution

Problem 24573

Given the motion s=t33ts=t^{3}-3t, find velocity v(t)v(t) and acceleration a(t)a(t). Also, find a(5)a(5) and a(v=0)a(v=0).

See Solution

Problem 24574

Determine if the function f(x)f(x) is continuous at x=2x=-2 using f(2)f(-2) and limx2f(x)\lim_{x \to -2} f(x).

See Solution

Problem 24575

Find the absolute extrema of f(x)=3x3+18x2+27x+6f(x)=3x^{3}+18x^{2}+27x+6 on [6,0][-6,0] and their xx values.

See Solution

Problem 24576

The function f(x)=xxf(x) = \frac{|x|}{x} is not continuous on [1,1][-1,1]. True or False?

See Solution

Problem 24577

Find the absolute extremum of the function A(r)=20r+2πr2A(r) = \frac{20}{r} + 2 \pi r^{2} for r>0r > 0.

See Solution

Problem 24578

Find the derivative of g(x)=arcsin(3x)x g(x) = \frac{\arcsin(3x)}{x} .

See Solution

Problem 24579

Find the absolute extreme values of f(x)=4sin2xf(x)=4 \sin ^{2} x on [0,π][0, \pi]. Select A, B, C, or D and fill in the blanks.

See Solution

Problem 24580

Find the tangent line to y=xxy=x \sqrt{x} that is parallel to y=6+9xy=6+9x. What is the equation? y=y=

See Solution

Problem 24581

Find the area under f(x)=(10x)f(x)=(10-x) from x=0x=0 to x=10x=10 using 10 rectangles with midpoints. Area is \square square units.

See Solution

Problem 24582

Find the linear approximation of g(x)=1+x3g(x)=\sqrt[3]{1+x} at a=0a=0. What is g(x)g(x) \approx?

See Solution

Problem 24583

Find an antiderivative of sin23x\sin 23 x and verify by differentiating. What is sin23xdx=\int \sin 23 x \, dx = \square?

See Solution

Problem 24584

A ball on a 2 m string moves in a circle at 4 m/s4 \mathrm{~m/s}. Find its centripetal acceleration.

See Solution

Problem 24585

Evaluate the integral 7x+1dx\int \sqrt{7 x+1} \, dx using the substitution u=ax+bu = ax + b. Result: 7x+1dx=\int \sqrt{7 x+1} \, dx = \square.

See Solution

Problem 24586

Use uu-substitution to evaluate 24(2x3)4dx\int_{2}^{4}(2 x-3)^{4} d x and find uu, dud u, aa, bb, and f(u)f(u).

See Solution

Problem 24587

Find local maxima and minima for y=x327x+5y=x^{3}-27x+5. Identify intervals of increase and decrease.

See Solution

Problem 24588

Find where the function f(x)=3x42x3+6f(x)=3 x^{4}-2 x^{3}+6 is concave up or down and identify inflection points.

See Solution

Problem 24589

Find the area under f(x)=(10x)f(x)=(10-x) from x=0x=0 to x=10x=10 using midpoints of 10 rectangles. Also, calculate the integral 010(10x)dx\int_{0}^{10}(10-x) dx.

See Solution

Problem 24590

Estimate e0.01e^{-0.01} using linear approximation or differentials.

See Solution

Problem 24591

Find the linear approximation of f(x)=4xf(x)=\sqrt{4-x} at a=0a=0. What is L(x)=?L(x)=?

See Solution

Problem 24592

Approximate 3.9\sqrt{3.9} and 3.99\sqrt{3.99} using L(x)L(x). Round answers to four decimal places.

See Solution

Problem 24593

Find where the tangent line is horizontal for the curve y=2x3+3x212x+3y=2 x^{3}+3 x^{2}-12 x+3. Identify the points (x,y)(x, y).

See Solution

Problem 24594

Find where the function f(x)=x42x3+3f(x)=x^{4}-2 x^{3}+3 is concave up/down and identify inflection points.

See Solution

Problem 24595

Evaluate the integral: sec5wtan5wdw=\int \sec 5 w \tan 5 w \, d w = \square using a variable change or integration table.

See Solution

Problem 24596

Determine if the piecewise function f(x)f(x) is continuous at x=1x=1 for a given cc. Choose the correct option about continuity.

See Solution

Problem 24597

Evaluate the integral: 2x416x5dx\int \frac{2 x^{4}}{\sqrt{1-6 x^{5}}} d x using a change of variables or a table.

See Solution

Problem 24598

Find the indefinite integral using a variable change and verify by differentiation: dx(9x2)2=\int \frac{d x}{(9 x-2)^{2}}=\square

See Solution

Problem 24599

Evaluate the integral: x5(x6+14)8dx\int x^{5}\left(x^{6}+14\right)^{8} d x using a change of variables.

See Solution

Problem 24600

Find the interval where the function ff is increasing, given its derivative f(x)=(x+2)2(x5)5(x6)4f^{\prime}(x)=(x+2)^{2}(x-5)^{5}(x-6)^{4}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord